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Abstract

Problems of testing three hypotheses : (i) equality of covariance matrices of several
multivariate normal populations, (ii) sphericity, and (iii) that a covariance matrix
is equal to a specified one, are treated. High—dimensional Edgeworth expansions
of the null distributions of the modified likelihood ratio test statistics are derived.
Computable error bounds of the expansions are derived for each expansions. The
Edgeworth expansion and its error bound for non—null distribution of the test statis-
tic for (iii) are also derived.

1 Introduction

This paper is concerned with problems of testing hypotheses on covariance matrices
of multivariate normal populations. The null hypotheses considered are

Hy: %1 =% =---=%,,
Hy:¥X =X, and
Hy: ¥ =% (a specified matrix).
Let &1, - - , x;n, be arandom sample from p-variate normal population N, (g, 3;),
where p; and ¥ are the mean vector and the covariance matrix, respectively (i =

1,---, 7). The modified likelihood ratio criterion, suggested by Bartlett [2] for test-
ing the hypothesis

H0:21:~~:ZT
against the alternatives that Hy is not true, is given by

_ H:zl(det Ai)"i/Q npn/2 N
o (det Ay T (1.1)
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and

The unbiasedness of the case r = 2 was proved by Sugiura and Nagao [12] and
Perlman [11] proved for general r (See Muirhead [9, chapter 8] for details). An
asymptotic expansion of the null distribution of —2plog A was given by Box [3] for
large N = pn as

Pr{—2plogA <z} = G4(z) + #{GHAL(w) — Gy(z)} +O(M™?), (1.2)
where G is the distribution function of y? distribution with degree of freedom I,

2p? +3p—1 . n
M: = — __1
e 6<p+1><r—1><2m )

i=1

f= g+ 1) —1) and

V= p(pg 2, {(p - 1(p+2) (ZZ—Z - 1) —6(r — 1)n*(1 - p)Q}-

i=1 1

It is known that (1.2) does not give very good approximation if p is large. So we
consider to use the Edgeworth expansion of the null distribution in such cases.

Let &1, - - -,y be arandom sample from N, (p, ¥). The likelihood ratio criterion
for testing

Hy: X = M, A\:unknown,

against the alternatives that Hy is not true, derived by Mauchly [8] is given by

det A
V=
(ltrA)p (1.3)
p
where
N 1 N
A=Y (x;-z)(x; —2), *= IR (1.4)
j=1 j=1

The unbiasedness of (1.3) was first proved by Gleser [6] (see Muirhead [9]). An
asymptotic expansion of the null distribution for large n, first given by Anderson
(1958) (see [1, sectin 10.7]) is

Pr{—nplogV < a} = Gy (x) + —{Graa(x) = Gra)} + O, (1)

where

20 +p+2 1
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We also treat the problem of testing
HO Y= 20,

where Y, is a specified positive definite matrix, against H; : X # 3. The modified
likelihood ratio statistic is given by

n/2 1
A= (f)p etr(—iﬁalA) (det S5 LAY, (1.6)
n
where A is given by (1.4) and n = N — 1. The unbiasedness was proved by Nagao
[10] and Das Gupta [4]. An asymptotic expansion of the null distribution for large
n, given by Davis [5] is

g B
Pr{=2plogA < &} = Gy(x) + 7 5{Grle) = G@)} +OM ), (L.7)
where
2p2 +3p — 1 1
M=m=n—"2_""F =~ = 1 d
pn=n I f 2p(p +1) an
_ p(2p* + 6p* 4 p* — 12p — 13)
- 288(p + 1) '

It is known that if p is large, the approximation formulas given by (1.5) and (1.7)
are not very good.

The purpose of this paper is to derive the Edgeworth expansion for the test
statistic (1.1) under a framework

p — 00, ni—>oo,£—>ci€(0,1)(i:1,--~,r), (1.8)
and the Edgeworth expansions for the test statistics (1.3) and (1.6) under a frame-
work

p—>oo,n—>oo,£—>c€(0,1), (1.9)
n

and to give computable error bounds of the derived approximation formulas.

2 Testing Equality of the covariance matrices

In this section we derive the Edgeworth expansion of the null distribution of the test
statistic given by (1.1) and give computable error bounds of the derived approxima-
tion formula.

2.1 Edgeworth expansion
Let

V = (det A)~' | | (det 4;).

=1



The hth moment of V' is given by Box [3] as

P F[n p+J T F n; p+] —i—h]
hl _
E[V ] _H{F[n p+j +h H F n; p+] }

j=1 =1

Hence the characteristic function and the sth cumulant of —log V" are given by

T i)

pv(t) =E[V] = H

j=1 F[nigﬂ — it] i=1 F[nFTPH
and
s s 0
Ry = (i) o log oy (t)
t=0
—(=1)* (2T (s—1) (" PTJ
= (S () e e (M)
J:l =1
respectively, where (%) is the polygamma function defined by
/1 1
—-C —_— = =0
d \ s+1 +Z(1+k k+CL> (S )
¥ (a) = (—) log I'[a] = =0 X (2.2)
v Slipgr o2
s — S — s s DRI s
— (k + a)st!
and C' is the Euler constant. Let
—logV — #}))
T %Y "RV . v , (2.3)
()12

and denote the standardized cumulant as

(s)
(s) — __hv _ .
B =)

Then upper bounds for the standardized cumulants are given by the following lemma.

Lemma 2.1 Assume that ny < ny < --- < n, without loss of generality. Let

1
moP—3 0
2 2 (K/V )1/2

2

e @ (5 1)(s+2)(s +3)

S [ A A
> ln==1) T 24

Then it holds that

< m7(372)bsi3 (5 =3,4,--- ) (25)



Proof From (2.1) and (2.2) the sth cumulant mgf) (s > 2) can be expressed as

(s —1)! (s —1)!
Iiv _ZZ{Z nz—p+J —i—k’) - (%ﬂ+k)3}'

k=0 j=1

So apparently /@S) is positive for s > 2. Since

L e

— (nz 2p+y _|_x)s (n 120+y +x)s

is decreasing and convex as a function of x and vy,

0o p+1/2
Ky < / {/ f(fv,y)dy}dx
—1/2 UJ1/2

_ Z{ nz(_s —13)! B 2(; - 3)! } B (253_—1 3)! N 2(1— 3)!}7

P ( i 5—2)5—2 ("12—2)3—2 n 12’ 2)5—2 (nTQ)S—Q

which gives the bound (2.5) immediately. ]

Next lemma gives a lower bound of Iig).

Lemma 2.2 It holds that

EIN 2log — 4 91 .
v _; 0g 05— (2.6)
Proof It can be easily checked that
1 Or ! 1
=— — ——————dz pd
T = /_1{/0 (a+o+3)7 x} !
is decreasing and positive in ((1 +/13)/6,00). Hence
=33 {3 - o |
k=0 j=1 mePE k)2 (S 4 k)2
P& 1 1
> — dy|dx,
- U {Z (4 2y <"—+’+y+x>2} y}
which leads (2.6). m



Lemma 2.2 assures bg in (2.4) is bounded and m — oo under the framework
(1.8). The characteristic function of T" given by (2.3) can be expanded as

o(t) = exp{—§+ O_O o (z’t)s}
(ST )

where

(5143) ... (sx+3)
KR KR
W= D (i) (sp 1 3) (2.8)

s1+-+sp=J

Lemma 2.1 leads that v, ; = O(m~U+k). Therefore let

o0 = e (D) {1+ - WS, ), (29)

=1 j=0

Then it holds that
o(t) = ps(t) + O(m~ ),

Inverting (2.9), we obtain the Edgeworth expansion of the null distribution of the
standardized test statistic 7' up to the order O(m™*) as

S

Q.(0) = 0() = o) 32 35 X wshassa(o) 210

k=1

where ® and ¢ are the distribution function and the probability density function of
the standard normal distribution, respectively, 74 ; is given by (2.6), and h,(x) is
the r—th order Hermite polynomial defined by

2 2

(L) eol-5) = ool -5).

2.2 Error bound

Using the inverse Fourier transformation we obtain a uniform bound for the error
of the above Edgeworth expansion as

1 [>*1
sgp |P(T < x) - QS(I)| < o /OO m |§0(t) - 905(t)| dt (2'11)

_ %(hm + L[v] + Iv)),



where

nil = [ . 1| () — u(0)] dt,

muv |t

B = [ glela md hil= [ el

with some positive constant v < 1. In order to find a bound for each integral I, I
and I3, we prepare some lemmas.

Lemma 2.3 Let T be a random variable such that

E[|T|°] < oo for any s >0, and
2 o
log Elexp(itT)] = —— +

|
2 — s

5(®)

(it)®

in some neighborhood of t = 0. Assume that there are a sequence {bs}s—012... of
positive numbers and positive numbers v and m such that

5]

‘ <m 2p,_, (s > 3) and Blv Zb v® < o0. (2.12)
s!

Define Ry [v] and ps(t) as

Rusfl = o { (Bl -

5 L (i) O
t) = —— )41 t) 5.
#s(t) eXp( 2){ * k! (s1+3)l- (sk—i—B)!(Z)}

k=1 7=0 s1+++sp=3

If |t| < mw, then

1 _ 1 2\ (=1,
BT = (0] < o exp (=5 ) {35 g Reecaaal
k=1 (2.13)

1
b oy Bl exp(PuBla])
and hence
muv 1
/ i ||E[exp(th)] — @s(t)|dt < Uy[v;m, B,
where

U v m, B] = — SlR " e £V
1[v;m, ]_W ;H ks—k+1[V] ; t exp<—§> t

(2.14)
1

n Y (B[v])*+! /Om“ 43542 exp(—gcz))dt}

and ¢, =1 — 2vBv].



Proof The difference between the characteristic function of T" and ¢, is

Elexp(itT)] — ¢s(t) = exp( ){1 + Z (it)3* i ity

j=s—k+1
a Zt 3k f;](]"!‘g) ANk
+ ( it)’) }
2 S S

where 73 ;s have the same definition as (2.9) with x(*)’s in the lemma. Using (2.12)

we have
= zt = kU K A N\
(S Gra) | < 2 (S o)
! (7 + PN
k=s+1 J= k=s+1 7=0
|t|3(s+1) B +1 o0 1 )
Smm kZ:OEtUB
and
@) D ity
j=s—k+1
CUE 3w Y (b by ) (o
Jj=s—k+1 S1+++Sk
1 s—k
_ m|t|s+2k+1v—(s—k+1){(B[U])k _ Z Z (bs, - - bsk)Uj}-
m J=0 s1+-+sp

Hence (2.4) holds.

Lemma 2.4 If p < ny < no, then
ﬁ n2 p+J]F[n1—2p+j _ it]
n2 p+J B it]r[m—;-ﬁ-j]

log

1< [P 4¢2
< —= | 1 d
42/””7 Og{ +<j+x>2} !
j=1 (2.15)
16t2 }
(ni+ny—p+1)2J

4
and
p nl P+] —Zt] 1 p 00 t2
log H o pﬂ <—§Z/ log<1+;)da:
j=1 j=1 (n1—p+j)/2 (216)
plt| [in —p+ 1]
< —_ e —
2 L4y
where
°° 1 1 1
clz] = 10g<1—|— " )dy-2arctan(z> —zlog(l%—;). (2.17)



Proof It is known that

T[]

ST

k=0

for any real number z > 0 and y. Since

ol ) e

is a decreasing function of z for a < b,

p r nz*erj]F[m;erj _ it]

log

2
H F[ﬂz*erj _ it]r[nlﬂﬂr]’]

j=1 2 2

1 V4 o] t2 tz
=—= logel+ —————¢ —logql+ ——Frr——
2 ZZ { Og{ + (n1—2p+J + k’)2} Og{ + (n2—2p+] + ]{:)2 }}

j=1 k=0

<—lzp:/oo[lo {1—{—#}—10 (1+L):|dl‘
2j:1 0 g (n1—2p+j +:C)2 & (n2—2p+j —|—:C)2

1 < /”ﬂ { 4t }
= —— logq 1 4+ — pdx

4; ni-p (7 +x)?

— 1 — 9p\ 2
<_(n2 4nl)plog{1+4t2(p;— +n2+7;1 p) }7

which leads (2.15). Here we used the fact that if f(z,y) is convex and ¢ < d, then

zi:/cdf(%j)dx > p(d — C)f<c+d,zi1)

2 2

for the last inequality.

Similarly,
p F[nl—_Pﬂ' — it] 1 &
log —2 === log{l + — }

g F[ 1 2p+]] ;; ( 1—=p+j +k>2
1< /°° 2 || n—p+j

—— log(1+ )d:v——— [ }
2 —1 J (n1—p+j)/2 ? 2 Z 2]¢|

-1
<3
2 2]t
because c[z] is a convex function of z. m

Now we can give upper bounds of the integrals in (2.11). Let

-2 (1-wv)?
Lau] = W o log(1—v) (0<|v] <1) (2.18)

0 (v=0)




Then it is easily checked that Ls[v] can be expanded as

o0 1 i
=2 e

s=1

So a bound of I[v] is immediately given by lemma 2.3, that is

[1[U] S Ul[v;ma B]a

where U is given by (2.14) with

The calculation of integral I, is not difficult. From (2.9)

00 S ) t2
3k+j—1
Lv] = /mv ;exp dt + E k' E %j/ A exp(—g)dt. (2.20)
A bound for I3 is obtained by using lemma 2.4. Let

Flz] = /OZ{/Oylog(H @le)z)dm}dy (2.21)

22 1 1 9
= — log<1 + —2) + 2z arctan(z) — 5 log(1 + 27).
2

2
Then from (2.15) and (2.16)

1 p+1 n—p 4t2
1 —= log(1
oslevl <~ [ { [ oe(1+ s )ae

1—P

1 4¢2
_ = 1 1 )d d
14 {/ Og +(y+$)2 x} Y
= —tZG(t;nl, - ,nrap)7
where
G(t;ny, ..., ny,p)
_pr=br g — P ) — 2.4 F e
Hence
9
I;[v] < Us[v] ;:/ ;exp{—WG[( (2)) 1/2. m,...,nmp}}dt
., o (2.22)
:/ _exp{—t2G(t;n1,--'7n7‘7p)}dt’
mov
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where

nl_p_%
2

The result obtained here is summarized in the following theorem.

mo =

Theorem 2.1 Let T be the standardized test statistic given by (2.3) and Qs be the
Edgeworth expansion of the null distribution function of T given by (2.10). Then

sup [P(T' < 2) — Qs ()| < %(Ul[v; m, B]) + Iy[v] + Us[v]),

where Uy is given by (2.14) with B given by (2.19), I, is given by (2.20) and Us is
given by (2.22).

The calculation of the integral Us[v] may be difficult. Using lemma 2.4 we can
obtain a simpler bound for I3[v]. Since c[z] defined by (2.17) is a decreasing function,
if t > mgv, then

16t2 —(n—n1)p/4
| <C1+ ,
where
PMU - 2n; —p+1
€, — exp - 2 op 1yl
exp{ 2 iz:;c dmyv }
Hence

) 2 16t2 _(n_nl)p/4
I;[v] < C, —q1+ dt
slv] /movt{ (n+n1—p+1)2}

= CT/ (s — 1) 's~(mmrligs = C, Z—(1+a)—<n—m>p/4—f (2.23)
1+a p +]
4 —(nen 1+« ~
< Crm(l +a)” 1)p/4T = Us[v] (say),
where
16m2v?
(n+m —p+1)%

o =

3 The sphericity test

In this section we derive an error bound of the Edgeworth expansion of the null
distribution of the test statistic given by (1.3). The hth moment of V is given by
Khatri and Srivastava [7] as

p an+]+h]

pn
pn n— p+J
+ph ey I[

E[V" =

11



(see also Muirhead [9, chapter 8.3.2]). Hence the characteristic function and the sth
cumulant of —log V' are obtained similarly to (2.1) as

I N L
ov(t) =p P —— 2 i_ —— and
i1 = i Ll T
p .
np n—p+y
—plogp +p¢<7) - Z@/}(T) (s =1) (3.1)
(s) j=1
KZV - 5

(_1)s—l{ps¢(s—1) (%) _ iw(s—l) (n_zﬂ)} (s=2,3,--")

respectively. Let

. M
e l(gg(‘;)l/:v ’ (3:2)
Ky
and
(s) “gfs) (3.3)
KO =V (5=34,.). 3.3
()2

Then upper bounds for the standardized cumulants are given by the following lemma.

Lemma 3.1 Let

P |
9 _pn_1isp1
bs =5 {1_ <n : L 2) } (3.4)
Ky (s+1)(s+2)(s+3) n—s
2p n—p-— % s+1
_{ @ T }( ) '
Ky (s+3)n? Ky (s+2)(s+3)n n
Then
(s)
o<’ - < m b,y (s=3,4,---). (3.5)
s!

Proof Using multiplication formula

L1

F[pz]:m}i{of{va%}

the characteristic function of —log V' can be written as

p—l{lﬂ[%ﬂ—it] T3+ 1] } (3.6)

ov(t) =BV =] ] T+

j=1 2

12



Hence the sth cumulant can be represented as
- n—p+j noj
(5) _ (_q1)s <s71><—_> ENCES) (_ _>
ry' = (—1) J§_1{w 5 P 2 )1

which leads that /{%}9) > 0 since (—1)**~V(a) is a decreasing function of a.
Since (a + x)~* is a decreasing and convex function of z (z > —a), if @ > 1 then

R N ot I

and if ¢ > 0 then

s (51 (s —1)! -1 (s=1) (s—2)!
(=1)*yEV(a) > +/O " dr = + . (3.8)

a a—+x)s a® a®~
2 ( ) 2 1
Hence
0< (c1p Y ey (IRED) (e 2R
(3.9)
p+d _ o\l9s—1 s—1 _p_ L1 509
</ (s —2)12 dp — (s —3)!2 {1_<n P 2) }
1 (n-p—14a)pt (n—p—3)2 n—s 7
and
_ _ — D25t (s —=2)12571p
—1)5 1S (s 1)(@) _(8 .
( ) p 1/} 2 < ns ns—1 )
which lead (3.5). ]

Let L; and Ly be defined by

24 v

o ot (= Liog(l— ) — (0< o] <1)
L [’U] = = 02 2v and
! 5+3
- ’ w=0) (3.10)
ad st _Ulog(l—v)+2_v (0< v <1) |
e v |
— (s+2)(s+ 3) 0 (v =0)
respectively. Then Blv] =Y o2 bsv® for (3.4) can be represented as
2 n—p-—2
Blv] = W{Lg[v] — Ly | 2|
vky " (3.11)
1 n—p-—=1 P n—p—1
duprehyozpeecy)
n n n n



where L3 is given by (2.18).

Let Qs(x) be the Edgeworth expansion of the null distribution function of T
given by the same formula as (2.10) but the cumulants /ﬁ%,s)’s are given by (3.1) and
m is given in lemma 3.1. Then a uniform bound for the error is given by the same
formula as (2.11) with the characteristic function ¢ of T given by (3.2). An upper
bound for I1[v] is given by lemma 2.3 with B given above. I, the same form as in
(3.5).

Similarly to the proof of (2.15) in lemma 2.4, (3.6) leads that

1 pil n/2+j/p +2
log oy (t)] < —= / log<1 + —)d;z:
2= Jn-pri2 w?
1 [P n/2+y/p 2
< ——/ {/ log(l + —2>dx}dy = —t*G(t;n, p),
2/ (n—p+y)/2 x

where

G(t:n,p) = g{F(”zﬁﬁ) ~ F(% + ]ﬁ)} - F(%) + F(”_2|—i|+1> (3.12)

and F' is given by (2.21). Hence an upper bound of I3]v] is obtained by the same
formula as (2.22) with above G(t;n,p) instead of G(¢;nq, -+ ,n., p).
Thus we obtained the uniform error bound for the Edgeworth expansion.

Theorem 3.1 Let T be the standardized test statistic given by (3.2) and Qs be the
Edgeworth expansion of the null distribution function of T given by (2.10), but the
cumulants are given by (3.3) with (3.1). Then

sup [P(T < ) — Qu(a)| < 5-(Uslvim, BI) + Blu] + Uifol),

where Uy is given by (2.14) with B given by (3.11), I5 is given by (2.20) and U is
given by (2.22), with G(t;n,p) given by (3.12) instead of G(n;ny, -+ ,n.,p).

A simple bound for I3[v] is also given. Since
n/2+y/p 2
/ log(l + —2) dz
(n—p+y)/2 L

is a convex function of y,

-1 n . nt1)/
pz:/ e log<1+ t2>dm <(p— 1)/( " 2log<1+t—22>dx
(

2
n—p+j)/2 x n/2—p/4 z

p—1(p+2) 4t?

i=1

Hence



where

- 1
b Dp+?) a 13
o ( 2myv )2 (3.
-G

4 Equality of covariance matrix to a specified ma-
trix

In this section we derive Edgeworth expansions of the null and non—null distributions
of the modified test statistic given by (1.6). We can assume that ¥y = I, the identity
matrix, without any loss of generality. Let

V= etr(—%A) (det A)™2, (4.1)

where etr(A) means exp(trA). Then the modified likelihood ratio test rejects Hy :
Y = I, for small values of V. The hth moment of V is given by Anderson (1958)
(see [1, sectin 10.8]) as

det 27h/2 p F[n—p-;j-‘rnh]

det (I, + hx)(+hn/2 &5 D[R]

E [vh] _ 2nph/2

The characteristic function of —% log V' is given by

B 2—pit(det E)—it ﬁ F[n_§+j _ it]
- {det(1, - Zx)}s r=gH] -

j=1 2

ov(t)

where z* for complex number z means the principal branch, that is, z* = exp(w log z)
= exp{w(log |z| +iarg z)}. Hence the sth cumulants are given by

p .
K;%/l) = —plog2 —logdet ¥ + trX — Zw<n—§+j> and
7j=1
2\ s—1
/{S) _ (S B 1)'<E> tI‘(ZS _ Si—lzs—l) (42)

FE e (D) (=),
j=1

Let
)

9

ZlogV — /fg/l
()12

(s) — _ v —
K _(/{g))s/Q (s =3,4,---).

A bound for the standardized cumulant ) is given by the following lemma.

15



Lemma 4.1 Let

1
n_ _— =
m = —Z 2 (/<a§/2))1/2 and

2 n— —% s+1
bs:m$>(s+1)(s+2)(s+3){1_( nﬁ% ) } (4:4)

Then

and

2 < n—p—1 nep_ 1L (4.5)
o Z{uﬁ [ [t

VRy M

where Ly, Ly are given by (3.10), Ls is given by (2.18), and Ay, - -+ , A, are the eigen-
values of .

Proof It is easily checked that

(S - —==x) = sz)\j =

)

has the minimum at \; =1 (j =1,---,p). Hence from (3.8)

) > Z{ nsp:f (s 2)!(%)“} >0,

From (3.9)
(s) L s
2 n—p-—z5\52
H,V < m_(3_2) 1— <L12>
s! s(s —1)(s —2) n—3
2\ s5—
+ <—> tr(ZS i ES_l) =m .
ns s—1
(4.5) can be checked by using the series expressions of Ly, Ly and Ls. ]

The next lemma is used for evaluating |y (¢)].

16



Lemma 4.2 Let A be positive. Then

20\ —5 Tit n 2)\2 2t
(1 _ _> = __ log<1 + ) + tarctan(—)
n 4 2 n

n
1 [ t?

< —/ log(1+—2)d:c.
2 n/2 T

log

Proof It is easily checked that

‘(1 B 2it)\>3+“
n

2y2

A 2tA
5 > + tarctan(—)
n
has the maximum at A = 1. Hence

(1 2it/\>—’5+it < t o arct <2t) n <1+ 4t2)
- — arctan( — ) — —lo —
-2 : n 2t & n?

n
1 [ t?
:—/ log<1+ >dx
2 n/2

= exp{—g log<1 +

log

From (2.16) and lemma 4.2

t
log oy (0] < ~ DGt A, ),

where

G(t;n, A, A)
- Z{ [n Qﬁlﬂ} —2arctan<2|il)\ ) +m1 ( 47;2;)} (4.6)

and c[-] is given by (2.17). Hence

2 t
Llv] < Usfo] = / - exp{—§G(t;n,)\1, - ,)\p)}dt, (4.7)
mov
where
1
n—p-—s
mo = 5 2

Now we can state the last theorem which gives an uniform bound for the Edge-
worth expansion of the distribution function of the standardized test statistic.

Theorem 4.1 Let T be the standardized test statistic given by (4.3) and Qs be
the Edgeworth expansion of the distribution function of T given by (2.10), but the
cumulants are given by (4.3) with (4.2). Then

sup [P(T < ) = Qu(w)| < 5-(Uslosm, BI) + Blu] + Uifol),

where Uy is given by (2.14) with B given by (4.5), Iy is given by (2.20) and Us is
given by (4.7).
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A simple bound for I3[v] is given as follows. From (2.16) and lemma 4.2

log |y (t |<——Z/ N log 1+ )dx+g/:10g< ;)dx
—p+3)/

1 p—l ’I’L/2 t2 _ 1 n t2
:——Z/ 10g<1—|——2>d:r;<—p— log(1+—2)dx
2= Jn-pti)2 z 2 Jnptp/2)2 z
pp—1) t°
< - log(l + )
8 (3 -5
Hence
9 > 9 12 —p(p—1)/8
[3[1}] —/ ¥|(10V(Zf>’dt</ ;(1+n—p2> dt
mo mo (5 - g) (48)
< 8 (1_|_a)—p(p—1)/81+_0‘ — ~3[U] (say)
p(p—1) a ’
where

Remark In order to evaluate the order of the error term of the Edgeworth expan-
sion for the non-null distribution function under the framework (1.8), we need some

assumption on how ¥ changes as p — oo. Let Aﬁ” ) be the maximal eigenvalue of X.
Then if Ag” )'is bounded under (1.8), we can show that

Sl;p|P(T§[E)—QS(I)|=O( ! )

ms+1

5 Examples

In this section we show some tables of the error bounds derived in the previous
sections.
In the case of s =2, p,(t) in (2.9) becomes

aft) = exp(=2) {14+ RO + (620" + w0t
2 2 6 72 24 '
Hence Iz[v] in (2.20) is

(1 1 1 1
o[v] / {t+6“ +72(/£ ) +24/<;

muv

Uy[v;m, B] in (2.14) becomes

o] = % /0 m{ (RLQ[U]# + %Rg,l[v]t(i) exp(—g) 4 é(B[v])?’tS exp(—%cv> }dt,
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where

1 1
Ry 5[] = E{BM — by — byv} and Roq[v] = 5{(3[2}])2 — b3}
Us[v] and Us[v] for each test statistic do not depend on s.
Although we can minimize the bounds obtained in the previous sections with

respect to v numerically, it is sufficient for actual use to calculate the bounds at
v =0.05,0.10,---,0.95

and choose the minimum.
Tables 1, 2 and 3 give the two kinds of bounds,

, 1

BOUND-1 = pmin o (Uh[v] + L[v] + Us[v])  and
1 ~

BOUND-2=  min__—(Ui[v] + L[v] + Us[v]),

v=0.05,---,0.95 27T

the sharp and the simple ones of the second order (s = 2) Edgeworth expansions of
the null distribution functions of the test statistics testing Hy : X1 = Yo, Hy : X =
A, and H, : ¥ = I,,, where the values in the parentheses are the values of v at the
minimum.

Table 1: Error bounds for testing Hy : X1 = Y5 in the case

of s =2
ny =ng = 18 ny = 18,ny = 36
P BOUND-1 BOUND-2 P BOUND-1 BOUND-2
3 | 0.0037 (0.55) | 0.0046 (0.60) || 3 | 0.0035 (0.65) | 0.0046 (0.70)
6 | 0.0013 (0.55) | 0.0016 (0.60) || 6 | 0.0013 (0.65) | 0.0016 (0.65)
9 | 0.0009 (0.60) | 0.0011 (0.60) || 9 | 0.0010 (0.65) | 0.0012 (0.75)
12 | 0.0010 (0.70) | 0.0013 (0.75) || 12 | 0.0012 (0.80) | 0.0017 (0.90)
15 | 0.0037 (0.95) | 0.0125 (0.95) || 15 | 0.0097 (0.95) | 0.0400 (0.95)
ny = ny = 36
P BOUND-1 BOUND-2 P BOUND-1 BOUND-2
3 | 0.0009 (0.45) | 0.0010 (0.45) || 21 * ok % %k %
6 | 0.0003 (0.35) | 0.0003 (0.40) || 24 * % % * ok %
9 |0.0001 (0.35) | 0.0002 (0.35) || 27 * % % 0.0001 (0.55)
12 * ok % 0.0001 (0.35) || 30 | 0.0002 (0.60) | 0.0002 (0.75)
15 * ok % * ok % 33 | 0.0010 (0.95) | 0.0051 (0.95)

The notation “x * *” means the value smaller than 0.00001.

We can see that both p and n — p (or ny — p) are moderately large, the error
bounds are sufficiently small and the simple version of bounds suffices for actual use.

Table 4 gives the error bounds of the second order Edgeworth expansions of the
non-null distribution functions of the test statistic testing Hy : X = I, in the case
that n = 36 and ¥ = A[,,, where A = 0.5 and 2. BOUND-2 are not good in the case
of ¥ = 2I,. One of the reason is that Us[v] in (4.8) gives a uniform bound for I5[v]
with respect to X.
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Table 2: Error bounds for testing Hy : X = A, in the case of

s=2

n = 30 n = 60
p | BOUND-1 BOUND-2 p | BOUND-1 BOUND-2
5 1 0.1417 (0.75) | 0.1506 (0.75) || 10 | 0.0255 (0.55) | 0.0256 (0.55)
10 | 0.0276 (0.60) | 0.0291 (0.60) | 20 | 0.0031 (0.40) | 0.0033 (0.45)
15 | 0.0093 (0.60) | 0.0103 (0.60) | 30 | 0.0008 (0.40) | 0.0009 (0.40)
20 | 0.0052 (0.65) | 0.0062 (0.70) | 40 | 0.0004 (0.45) | 0.0005 (0.45)
251 0.0067 (0.90) | 0.0115 (0.95) | 50 | 0.0004 (0.60) | 0.0006 (0.70)

Table 3: Error bounds for testing Hy : X = I, in the case of

s = 2 under the null hypothesis

n = 30 n = 60
p | BOUND-1 BOUND-2 p | BOUND-1 BOUND-2
5 |1 0.0886 (0.70) | 0.1889 (0.75) || 10 | 0.0186 (0.50) | 0.0289 (0.55)
10 | 0.0196 (0.60) | 0.0325 (0.65) | 20 | 0.0026 (0.40) | 0.0034 (0.45)
15| 0.0074 (0.60) | 0.0113 (0.60) | 30 | 0.0008 (0.40) | 0.0009 (0.40)
20 | 0.0041 (0.65) | 0.0066 (0.70) || 40 | 0.0004 (0.40) | 0.0005 (0.45)
25 | 0.0050 (0.85) | 0.0121 (0.95) | 50 | 0.0004 (0.55) | 0.0006 (0.70)

Table 4: Error bounds for testing Hy : X = I, in the case of
s =2 and n = 36 under the non—null hypotheses
AM=--=X=05 AM=-=X=20

p | BOUND-1 BOUND-2 p | BOUND-1 BOUND-2
6 | 0.0112 (0.50) | 0.1072 (0.60) | 6 | 0.0236 (0.25) | 0.5866 (0.30)
12 | 0.0030 (0.45) | 0.0119 (0.55) | 12 | 0.0068 (0.25) | 0.0937 (0.35)
18 | 0.0014 (0.45) | 0.0032 (0.60) | 18 | 0.0026 (0.30) | 0.0209 (0.40)
24 1 0.0009 (0.55) | 0.0019 (0.65) || 24 | 0.0011 (0.40) | 0.0053 (0.60)
30 | 0.0015 (0.75) | 0.0039 (0.95) || 30 | 0.0008 (0.65) | 0.0034 (0.95)
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