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Abstract

The asymptotic non-null distributions of the likelihood ratio, Lawley-
Hotelling, and Bartlett-Nanda-Pillai test statistics for the MANOVA pro-
cedure are obtained when both the sample size and the dimension tend
to infinity. These tests are of equal power in the limit. Using the asymp-
totic distributions of the three test statistics, we compare their asymp-
totic power. We derive a simple method for selecting the test of greatest
power.

AMS Subject Classification: Primary 62F05; secondary 62E20
Key Words and Phrases: MANOVA; Likelihood ratio; Lawley-Hotelling;
Bartlett-Nanda-Pillai; Power comparison; Asymptotic distribution

1 Introduction
We consider the multivariate linear model:
Y =XQ+E€,

where Y is the ng X p observation matrix, X is the ng x k design matrix, @
is the k x p matrix of regression coefficients, and &£ is the ng X p error matrix
distributed according to Ny, xp(O, I, ® ¥). We consider the hypothesis

Hy:CQ =0,

where C'is a ¢ X k known matrix of full rank ¢. Among the statistics for testing
Hy, (i) the likelihood ratio statistics, (ii) Lawley-Hotelling’s generalized T2



statistics and (iii) Bartlett-Nanda-Pillai test statistics are well known. These
three test statistics are defined as

(1) |S€|

1S, + Sl (ii) tr(SpS;Y), and (i) tr{Sn(S. + Sn)"'},

where

Sp=QC'{C(X'X)"'C'}'CQ and S. = (Y — XQ)'(Y — XQ)

with Q = (X'X)~'X’Y (Muirhead [3]).

Since the exact distributions of these three statistics are complicated and
not easy to deal with, we need some method to approximate the distributions.
One technique is to use the asymptotic expansions of the distribution functions
when the sample size is large (Anderson [5], Muirhead [3], or Siotani et al [2]).
Tonda et al [4] derived an asymptotic expansion of the null distribution function
for the LR test under the framework:

q:ﬁxed,n—>oo,p—>oo,£—>c€(0,1), (1)
n

where n is the degrees of freedom of the Wishart distribution of S.. Wakaki
et al [1] derived the asymptotic expansions of the null distribution functions
and the non-null limiting distributions for the three test statistics under the
framework of (1). In this paper, we derive the asymptotic expansions of the
non-null distribution functions and the asymptotic powers under the framework
of (1). In Section 2, we introduce the Wakaki, Fujikoshi, and Ulyanov result.
In Section 3, we derive the asymptotic distributions of the three test statistics.
We present a method for selecting the test of greatest power in Section 4.

2 Null distributions

In this section we present the asymptotic expansion of the null distribution
functions and some lemmas (Wakaki et al [1]).

lemma 1. Suppose that Sy and S, are independently distributed accord-
ing to the noncentral and central Wishart distributions W,(q, %, M'M) and
Wpy(n, X), respectively, where M is a q x k matrix. We assume that B and W
are independently distributed according to the noncentral and central Wishart
distributions Wy(p, I, ) and W, (m, I,), respectively, where m = n—p+q and
the noncentrality matrix () is given by

Q=Mx"'M.
The three statistics may then be expressed as

|Se+Sh| |W+B‘7
(ii)  tr(SpS;t) = tr(BW ™),

(iil)  tr(Sp(Se + Sp)~h) = tr(B(W + B) ™).




From lemma 1, we can deduce the following lemmas.

lemma 2. Let Ty, Ty and Tgyp be expressed as

Tor = —/p (1+ 7;) {logwgie[gﬂ+qlog (1+5L>},
Ton = /p (Z:tr(ShSe_l) - Q) ;
Tenp = /p (1 + %) [(1 + T;) tr{Sn(Se +Su) "'} — (J} :

Then the null distribution of T (G=LR, LH and BNP) may be expanded as

Pr(% <2) = o) - ol {\}5 (24 )
1 (b by L

+§ <02h1(z) + ;hi%(z) + i%%(z))} o (17\/13) ’

where hj(z)’s are the Hermite polynomials given by
hi(z) = z, ho(2) = 2% — 1, h3(z) = 2° — 32,
ha(z) = 2* — 6243, hs(z) = 2° — 102° + 152,
®(z) is the standard normal distribution function and ¢(x) is the density func-

tion of the standard normal distribution. Here the variance o2 and the coeffi-
cients b; are given by

o? = 2q(1+r),

by = (61<1+T)+7“)q(q+1)’

by = 4(01(1+7“)+r)(1+r)q+%(1—7«2)%

by = Gea(1+ 1%+ 1)+ 521 +)%alg + D@ +q+4)

2
t+er(L+7)glg+ 1) (4+r(? + g +12))

1
+§q(q +1)r(6+7(¢®> +q+8)),

4
by, = gbl(l — g+ 2(1+1r*)qg + 8co(1+1r*)qg + 42 (1 +1)3q(¢* + g+ 4)
+8e1q(1+1)*(2+7(¢* + ¢ +4) + 41 +1)rg(3 +r(¢* + ¢ +2)),
1
bﬁ - ib?)),
r = p/m, and a pair of coefficients (c1, ca) is may be defined by
2
1 1 _
(-5 (5) 4 (5)) ©@=1m)
(61,62) = (0,0) (G = LH)
2
<m”+p, (+5) ) (G = BNP).



By using lemma 2, we obtain the following lemma on the Cornish-Fisher
expansion.

lemma 3. Let z, be the upper 100ac % point of the standard normal
distribution, and let

1 bl b3 1 1 bl b2
ZCF(Oé) = Za+ﬁ (U+(23_1)0'3) +; <_2<O_>2+Za02
b1b3 bs ba
—2a(z = 3)" 1 — 7a(27a = 5)(>3)" + 2a(zg — 3)204> .
Then

Pr (iTG < ch(a)> =loato <p\1/13> '

3 Non-null distribution

In this section we derive the asymptotic expansions of the test statistics under
the non-null hypothesis under framework (1).

3.1 Stochastic expansion

Let
m |Se| p 1
17 = — 14+ — log ———— +1 14+ —1 —0
in = (1 5) {lgg gy e (1 D) e el
m W] P 1
= — 1+ — 1 1 1+=—)I,+—Q
”3( +p){°gW+B+°g () o o ‘}
Try = /b —tr(SpSot) —tr (I, + -9
p P
= \/ﬁ{mtr(BI/Vl)—tr<Iq+1Q>},
p p
* — P m -1
Tinp = \/§(1+m>{<1+p>tr[5h(Se+Sh) ]

—tr

1 -t 1
(zq + Q) (zq + Q> }
m—+p P

= v(1+2) {(1 + Z:) [B(W + B)™!]

1 - 1

I+ ——0 I, +-Q .
m+p p

We assume that Q@ = O(p). Let U and V be defined by

vew(le (o)) vevm(teon). e

—tr




Then U and V are asymptotically normally distributed. Let
1
D= \/§<7;BW1 - (Iq+pﬂ)>. (3)

Then D = Op(1) when p — oo, and the three statistics may be expanded in
terms of D as follows:

1
rin = o (1) {wt e (- D) Sl
-1
= ﬁlog Iq—i—m(Iq—&—TQQ) D
"2 VP p
T2 2 1
= tr[AD] — —tr[(AD)?] + O <)
[AD] = 5= {(ADY] + 0, (
Try = VP ;tr(BW ) — tr Iq+§Q
= #(D),
Tpnp = \/17(1+:l>{<1+7;>tr[BW1(Iq+BW1)1}

—tr

1 - 1
I,+—0Q I, + -0
m—+p p
1
— w[A2D] — "2t [A(AD)?] + O ()
[A°D] b [A(AD)T+0p |
where 72 = r/(1+r) and A = {I, + (r2/p)Q} . Then the expansion of T¢;
(G=LR, H, and BNP) is given by

£ tp[AY ir w 2 1
Té =tr[A AD]+\/ﬁt [A (AD)]+O,,(p), (4)

where a pair of coefficients (c¢1,w) may be defined as

(4(#).1) -1

(c1,w) =< (0,-1) (G=LH)
(fm%p,l) (G = BNP).

Using (2) and (3), (4) may be expanded as
TE = tr[AY(AU — VrQV)]) + \jﬁ {cltr[A“’ (AU — \/;QV)z]

—/rtr[AY (AU — /rQV)V]} + O, (;) )

where

1
AQ and K=1,+-9Q.

Q=AK =1, +
T p(l+) p



3.2 The characteristic function

The characteristic function C(¢) of T, is given by
C(t) = Elexp(itT{)] = Elexp(ittr[A¥ AU| — it\/rtr[A“QV])g(U, V)],
where
it 2
UV) = 14+ —{catr[A° (AU — vrQV
9(U, V) \/ﬁ{ 1tr[A ( VrQV)’]

F A (AU — QY)Y + 0, (;) .

Let Z; be a ¢ x p random matrix distributed according to Nyx,(O0,1, ® I,)
and Z; be a ¢ x m random matrix distributed according to Nyyxm (O, Iy ® I),).
Then

1 1 1
U = —72:7Z —\pl, + —=2:Q7 + —01 7] and
\/ﬁ 141 \/7 q ﬁ 1341 \/ﬁ 14
1
vV = ﬁZQZé — mIq, (5)

where 5 is a ¢ X p matrix such that Q,Q] = Q. By using (5), we can rewrite
the characteristic function as

Ct)y = (2m)"aetm)/2 // etr{—; (Iq — ?/’;AW) AV

2it
S+ %A”“le{ - \/ﬁz‘tA“’“}

xetr {—; (Iq + 2%/1‘”62) ZoZh + it\/ﬁAwQ}
Xg(U(Zl),V(Zg))dZ]_dZQ

In addition, we make use of the following transformations:

. —-1/2 B . . —1/2
Z, = (Iq - 2”Aw+1> Z + 2it (Iq - MAW“) A“TI0, ) (6)
VP VP VP
. —1/2
2ut+\/T ~
Zy = (Iq + \/WL{A“Q> Zs. (7)



These transformations imply that

-p/2

c) = (2myowmr2 | - 2L jon

ZthAw ‘_m/Q

xetr { (it) (/PAYQ — /pA~ )
+2(’L't)2 <Iq o MAW+1>1 AerlQAerl}
p VP
« / / etr {_;zz _ ;222;} GU(Z1(2), V (Za(20)))dZ1d %
(Zl ~ Ngxp(O, Ipq) and Zy ~ Noxm (O, Img))
2it 2ty |72
I, — Z= At A
xetr { (it) (/PAYQ — /pA“ )
+2(1':5)2

—p/2

_ % w+1 w+1 w+1
<Iq 7 > A0 }
xElg(U(Z1(21)),V(Z2(Z2)))),

Notice that the Jacobian of the transformations (6) and (7) may be expanded
as

—p/2 —m/2

Aerl

21t 2it\/1

I, — — A¥Q

q \/ﬁ \/m
— otr[(it)(yPA“ ! — BA“Q)etr{(it) (A2 + (A°Q)?)]

4(it)3 1

X <14 tr[A3@ T3 —r2(4° Q)3 —I—O()},
{ 3vPp : (] p

and that the second term of the characteristic function may be expanded as

. . —1
etr 2(Zt)2 (I _ MAw—i-l) Aw+1QAw+1
p \" P

= etr [2(%)%2““;9] {1 + Ll(i\;g)’tr [A?’“’*?’;Q] +0 <;> } .

I, +




Next, in order to calculate the expectation E[g(U(Z1(Z1)), V(Z2(Z2)))], we use
the stochastic expansions of U and V thus:

1 -~ - 1 - 1 ~
it ~ = it~ ~ 2t 1
+%A‘”+1212{+%212{A“’+1 ;A‘”+1Q+ p Zloaet 1o, (\/ﬁ>
~ 44t 1
= U +2itA + LA“’“Q + O, (\/ﬁ) ,
1 -~ - \f zt\f 1
V = —27, é—f[ - A“’QZ Z2 ZZQA“’Q+O
Vi VP
- 1
= V = 2it\/rA*Q + O ()
"\vp
where
7 I 1 1 - 1 1 1 Y 1 - 1
U= %lelf\/ﬁfq+%2191+%fllzl and V= ﬁ 2 27\/7%111.

Then we derive the following expansion:
9(U(Z1(21)), V(22(Z5)))
it W ATT ATT w YO
-1+ = {cltr [A AUAU + rA“QVQV

+4(it)2 AT (Iq + %Q + TK2>2 — VrAY AUQV
—VTAYQV AU — 4it/r A2 +2 (Iq + %Q + rK2> QV

+4it A%+ (I + ;Q+TK2) ] Vrtr [A“AUV VA QV?
+2it A%+ (I + 2 + TK2> — 2it\/rA*TIQU + 2itr A% Q?V

—4(it)*r A TQ (Iq + ];Q + TK2>:| } +0, (;) :

We note the following basic formulas for the statistics U and V:

E[tr(U)] = 0,
Elte(V)] = 0,
Elte(V?)] = alg+1),
E[tr(A¥AUAU)] = tr(A7%) + tr(A)tr(AY) + 2tr (AQJ”";Q) ,
+ tr(A (AH“ >+tr(A1+“’)tr (A;Q>’
E[tr(Aka/Qf/)] = tr(4¥ +tr(Q)tr(AYQ),
Btr(A“QV?)] = tx(A® >+qtr<A Q).



By using the formulas, we obtain the following expectation:

Elg(U(Z1(21)),V(Z2(Z2))] = 1 + ip{(it)af +(it)%az} + O(p™"),

N
where
* 24w 2 2
a; = ciqtr|A Iq—i—;?Q—i—rK
1
+(1 4 7)gtr[ATTY K] 4 tr[ATT]tr [APQ} } + (1 + ¢)tr[A°Q],
9 2
CL;: = 4011’;1‘ A4+3w (Iq —|— *Q —+ TK2> ]
p

2
+4rtr {A”?’“Q (Iq + =0+ rKQH :
p
Consequently, we can see that the characteristic expansion may be expanded

" C(t) = exp {(it)zazf} {1 + L (it + (”)Bb;)} o C’) |

VP
—2(1+w) 1 2
(2tr (Iq + ”Q) (Iq + 204, (Iq + Q) )
P P P

where

>1/2

Ox =
b = aj,
4 P, —3(1+w) 3 1 3
by = ax+ =tr (I +Q> L+=Q-—72(I,+=Q )
3 3 3 q p q p q p

3.3 Expansions of the non-null distribution

Using the inversion formula of the characteristic function, we obtain the asymp-
totic expansion of the distribution function of T¢.

Theorem 4.

Pr(2 <)~ o -o {5 (B4 Bne) o (2),

where o, and the coefficients b;f ’s are as given above.

4 The selection of the test of greatest power

In this section, we compare the asymptotic power of the three test statistics.

Let
dg =Ta —T¢,



then the power function of Tg may be expressed as

1 T - 1
P = Pr(Tg > ozcr(a)) + O () = Pr ( N ”CF(O‘)‘SG> +0 () .
P (™ O« p

If the order of €2 is larger than /p, the asymptotic power is 1 since ¢ /0. — oo,
while if the order of €2 is smaller than /p, the asymptotic power is a since
dg — 0 and o, — 0. Therefore we assume Q = O(,/p). Then, coefficients in
the asymptotic expansion may be expanded as

O—z_ 1 — Tw)tr 1
%= g+ 21— (Q)+O<p>,

1 1 1
AIﬁO(ﬁ)’ K“O(ﬁ)’ QI{’+O<\/§>’
1 1 1
i=o+0(L). Gmmro(5). w=nro(Z).
1
b52b3+0(@)'

These equations yield the asymptotic expansion of the characteristic function
as

C(t) = exp {(it)2022} {1 + ;ﬁ(itbl + (it)%bs + (it)3b3)} +0 (;)

where 2(1 )
—rw

by = ——t1(9Q).

5 7 ()

By the inversion formula of the characteristic function, we obtain

Pr (ZG < z) — B(2) - 6(2) {\}5 (il 4 %hl(z) + 3%’;@(2))} +0 (;) .

On the other hand, under the assumption Q = O(,/p), ¢ may be expanded as

@ s oty o (L
6G_\/pt(9)+p\/§t(9)+o<p)'

10



Consequently, the power function of T becomes

T 1 (b b:
Pe = P<f>2a 7\/> (Q)+f{0+(zi_l)o§
1 224(1 —Tw) 2(1 — rw) 1

= 1-9 (za - U\l/ﬁtr(Q)) + %qb (za - U\I/ﬁtr(Q))
X {cltr(QQ) + % {za _ tr(Q)}

op o\p
bs {aii%“(m - U%p (tr(Q))z}
8 o)} o)
_ -9 (za _ U\l/ﬁtr(Q)) + ;ﬁqz) (za 7 r(Q ))
X{ \f(Zr—l—l)(r—i—l)tr(Q){Qza \f tr(Q )}
+e {Ulptr(Q2) + q%a (tr(Q))* — ;\Z/D]‘;tr(ﬂ)}} +0 C,) :

The difference of the asymptotic power of LR, LH and BN P becomes

ﬁz»( = ) { S on(0) 4 ()" - e (@)}

Hence we obtain the following theorem.

Theorem 5. Let g(n,p,q,) be defined as

1/2
n—p+q L)+ L teraon? 220 |
9n.p.q. ) = (2q(n+q)) (ptr<m+qp<t <Q>>) 2 w(0),

If g(n, p, q,Q) > 0, then the asymptotic power of Ty is greatest and if
g(n,p,q,Q) <0, then the asymptotic power of Tgnp is greatest.

By the above theorem, the sign of g(n, p, ¢, Q) is important. If tr(Q) is large,
the power of Tz becomes large. Therefore, it does not matter which of T g,
Trm and Tpnp we choose. If tr(Q) is small, then g(n,p, ¢, ) < 0. In this case,
the asymptotic power of T yp is greatest.

We checked this result by numerical simulation. The values of n, p, Q) were
chosen as follows:

(n,p) = (40, 10), (40, 20), (40, 30), (80, 20), (80, 40), (80, 60),
diag() = (3,2), (5,5).

11



Table 1: The asymptotic power of Ty g, Trg and Tpyp

diag(?) | n | p | Ter | Tom | Tenp
(3,2) 40 | 10 | 0.154 | 0.151 | 0.155
20 | 0.100 | 0.098 | 0.102
30 | 0.074 | 0.072 | 0.076
80 | 20 | 0.119 | 0.119 | 0.119
40 | 0.085 | 0.084 | 0.086
60 | 0.068 | 0.066 | 0.068
(5,5) 40 | 10 | 0.307 | 0.307 | 0.312
20 | 0.177 | 0.165 | 0.178
30 | 0.107 | 0.097 | 0.113
80 | 20 | 0.224 | 0.218 | 0.226
40 | 0.131 | 0.127 | 0.134
60 | 0.091 | 0.086 | 0.091

In this simulation, we firstly obtained the upper 5 percent points by using
100,000 samples generated by Monte Carlo simulation under the null hypoth-
esis. Next, we calculated the power of Tz from the upper 5 percent point and
Monte Carlo simulation under the non-null hypothesis. For this simulation
also, Tsnp had greatest power.
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