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Abstract: Even in the same even-aged forest stand, trees grow differently due to their
own growth capacity, relative spatial conditions and other growth environments. In
this paper, we investigate the growth patterns in an even-aged forest stand by a
Gaussian mixture model (GMM) in order to identify groups of trees for the same
growing process. Given the Richards growth function for the growth process, the
derived coefficients of the function are used as new response variables in the
multivariate GMM for identification of growth patterns. The optimal number of the
grouped growth patterns is searched by minimizing the cross-validation (CV) criterion.
We demonstrate the use of the proposed method to the growth data from a sugi
(Cryptomeria japonica) sample plot in Hoshino village, Fukuoka prefecture, Japan.

The resulted number of the patterns became three in our sample plot.
1. Introduction

Even in the same even-aged forest stand, trees grow differently due to their own
growth capacity, relative spatial conditions and other growth environments. From the
management viewpoint, if these growth differences can be captured, it would be
beneficial to consider them in growth prediction. In this paper, we use a Gaussian
mixture model (GMM; see e.g., Everitt & Hand, 1981) in order to investigate
differences in the growth process in an even-aged forest stand. We focus on the
growth patters in the forest stand.

A clustering method through the GMM has been widely used in several research



fields, including forestry, e.g., Zhang et al. (2004). Since tree growth data are
repeated measures, time interval for measurement sometimes becomes unequal and the
number of measures becomes large. The data over unequal time interval is called
“unbalanced data”, and that with the large number is “high dimensional data”.
Although a multivariate GMM (MGMM) is preferred for clustering, it is inefficient for
the unbalanced and high dimensional data. This is mainly because an estimated
covariance matrix in MGMM becomes singular or sometimes becomes non-obtainable
for the unbalanced or high dimensional data.

In order to overcome the above difficulty, we reduce and equate the dimension of all
data by assuming the Richards growth function (Richards, 1958) for the target growth
data as in Yanagihara and Yoshimoto (2005a), and Yoshimoto et al. (2005). In this
approach, the derived coefficients of the function are regarded as new response
variables in the MGMM for the classification of growth patterns. Since a cluster for
each individual is unknown, we apply the expectation-maximization (EM) algorithm
proposed by Dempster et al. (1977) in order to have the maximum likelihood (ML)
estimators of unknown parameters in the MGMM. The optimal number of the
grouped growth patterns is searched by minimizing the cross-validation (CV) criterion
proposed by Stone (1974). This is because the number of sampled trees is not so large,
so that other information criteria are not appropriate.

The paper is organized as follows: In Section 2, we elaborate the classification
method through MGMM and the method to determine the optimal number of clusters by
minimizing the information criterion, followed by explanation of MGMM applied to the
classification of the growth patterns. In Section 3, we demonstrate the use of the
proposed method for the data obtained from the forest stand owned by Hoshino village

in Fukuoka prefecture, Kyushu, Japan.

2. Theoretical Background

2.1. Classification through MGMM

Let x=(z,,...,x,) be a px1 observation vector of the i-th individual (i=1,...,n),

@/

and x,,...,x, be mutually independent, where n is the sample size, and denotes a

transposition of matrix or vector. Suppose that each individual belongs to one of k



populations (or clusters) II,,...,.II; and the distribution of II;, (j=1,...,k) is the
p-dimensional normal distribution with the mean p; and the variance-covariance matrix
3. It is well known that a probability density function for the case of 2~ N (i, %)
is given by
1)” : 1
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Since we do not know which population the individual belongs to in general, we treat
unknown partition of clusters as a kx 1 random variable vector . Here we assume that
d distributes according to the k-dimensional multinomial distribution MN,(1,p), where
p=(py,...,p,) is the cell probabilities restricted to p, +---+ p, =1. Let d,,...,0, be
kx1 independent random vectors from &, where 6,=(6,,...,8;)" is an index vector
denoting the population for the i-th individual. The following conditional probability

density function of «; given 6, (i=1,...,n) is derived:
k
g(mz;E72 | 61) - ¢(mi;5/6i72) = Z‘S@ﬁb(mi;”pz)a (2]
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where E is a kxp location parameter matrix defined by = = (p,,...,p,) . Since
equation [2] is defined by mixing Gaussian densities, the cell probabilities p is called a
contaminate ratio. Let e; (j=1,...,k) be a kx1 vector such that the j-th element is 1 and

the others are 0. Notice that
P(x, cll,)=P6, =€) =p, (i=1..,nj=1..k). [3]

From equations [2] and [3], a marginal probability density function of z; is given by

f npv'—‘? Eg:l:n'—'72|e ij 17/"']7 [4]

Therefore, a statistical model to identify clusters becomes as follows:

M, :x,..x ~iid flx;p,E,%), [5]
where an abbreviation “i.7.d.” stands for “independently and identically distributed”.
Let us call the model [5] the MGMM with £ clusters.

Regarding parameter estimation, for obtaining ML estimates of p, & and 3, we

would prefer to utilize the following full log-likelihood:
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[6]
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However, we cannot use the full likelihood for estimating p, = and ¥ because 9, is
unobserved. We thus apply the EM algorithm for estimating unknown parameters.
The EM algorithm is widely used algorithm for obtaining the ML estimates from
incomplete data by regarding §, as missing values. In what follows, the estimation

steps of the algorithm for the ML estimates are elaborated:

The EM Algorithm for Obtaining ML Estimates in MGMM

Step 1. We determine the initial clusters for the observations. In our algorithm, this

is specified by the A-means method (MacQueen, 1967) using an determinant as
the cluster criterion. For the detailed description of k-means using the

0 denote

U,

determinant, refer to Yanagihara & Yoshimoto (2005). Let Sfo),..
the given initial partition and the corresponding matrix be A" = (5, ...,5) .
Then the initial contaminate ratio, location and covariance matrices are

determined as follows:

=0 _ (A, A" = (A(OVA(O))—lA(o)/X7 [7]
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where X is an nx k matrix given by X=(z,,...,x,)’, I, is the n-th unit matrix and
1
(p+1)(k+p/2)x1 vector stacking estimates of p, & and X as 0 =

, 1s an nx1 vector with all elements equal to 1. For simplicity, we write
(P vec(B™Y , vech(2")') , where vec(A) operator is to transform a matrix to
a vector by stacking the 1st to the last column sequentially, and vech(B) is an
operator to transform the lower triangle matrix of symmetric matrix to a vector by
stacking the st to the last column (see, Harville, 1997).

Step 2.(Expectation-Step; E-Step): In the m-th repetiton we have p"™ =

(i) B = (il

= and X, respectively. We set 8 = (p\™ vec(E™) vech(Z™)) .

s ™) and 3™ which are estimates of P,

Let 11);’"’) denote an estimated posterior probability in the m-th repetition by
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Then we calculate the following conditional expectation:
Q6| X,0m) = Z Ey., [1og (@, 65,5z,
k M(m Z m))
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where 0 = (p,vec(E)',vech(X)') and D" = diag(w",...,d").

Step 3.(Maximization-Step; M-Step): By maximizing the condltlonal expectation [9],
we obtain estimates of p, = and X in the (m+1)-th repetition. Since p has
the restriction p, +---4+p, =1, the estimates of p, E and ¥ in the
(m+1)-th repetition are obtained by maximizing the following Lagrange

function:

Q0] X,6™) = QO] X,0™)+ A

Ejm—q, [10]

where A is the Lagrange multiplier. For A=0, we have Q,(6|X,0")=
QO] X,0"). Let us set w" = (w",...,0") . From the first order

ngj

condition for equation [10], we have
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When 9"V :(f)(""“) Vec( <’”“)) ,vech(Z" ™)) becomes an optimal

solution, the following equations need to be satisfied:
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where 0, and O, , are px1 vector and px p matrix with all elements equal to 0,
respectively. From the above equations, the Lagrange multiplier A becomes

—n. Therefore, estimates of p, = and X in the (m+1)-th repetition are given

by
A(m+1) 1 tr(ﬁ m))7 Il(jerl) _ } X,’l,b(m),
n ‘ tr(D™)
k [13]
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Step 4.We repeat Steps 2 and 3 if || o™ —p" || /|| p"™ |> a. Otherwise, we

m+1)

regard 6' as an optimal solution for 6 to maximize the marginal

log-likelihood of =z,,...,x

ne

Here a is any given tolerance for convergence.
N !/

Expressing the optimal 8 by 8 = (p’,vec(E),vech(X)'), we calculate the

following estimated posterior probability:

~
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We assign the i-th individual to the population under the highest w,; (j=1,...,k),

[14]

1.€.,

o, = €;, J; = arg max w;. [15]

2.2. Choice of the Number of Clusters

Choice of the number of clusters plays an important role in the classification
through MGMM. Choosing the best number of clusters is equivalent to choosing the
best model among M,,...,M,, where K is the maximum number of clusters in the
analysis. In order to search for the best model, we apply such an idea that a model
fitted to the data well with the small number of parameters is regarded as a “good”
model among all candidates. With this idea, we search for the best model with a
minimum risk defined by the predictive discrepancy between the candidate model M, in

[5] and the true model M, given by
M :z,,...,x, ~iid.p(z), [16]

where ¢ is unknown marginal probability density function of . The one with the

smallest risk is regarded as the best model among all candidate models.



Let u,,...,u, be px1 independent random vectors from u with the same distribution
of , but independent of X, and U=(w,,...,u,)’. Then we define the risk based on the
predictive Kullback-Leibler (KL) discrepancy (Kullback & Leibler, 1951) between M,
and M by

:—2EE By [log f(u;; p,E,5)) [17]

where E; and E; are the expectation with respect to X and U, respectively, and fis
the marginal density given by [4].

By obtaining an unbiased estimator of R,, we can correctly evaluate the
discrepancy between the data and the model. The simplest estimator of R, is the

sample KL discrepancy function by

—20(0| X) = —2Zlogf P EY)
n [18]
A~ k R .
= nplog2m + nlog | X | —2210g {ZH p; exp(—7; /2)},
i=1

where 72 = (z, — f1,)S "(z, — f1,). Note that the sample KL discrepancy function
underestimates R, generally, so that an information criterion by —2£(6 | X)+ B, is

needed, where Bk is a consistent estimator of the bias given by
B, = R, — Eyx|-20(60| X)|. [19]

Akaike (1973; 1974) evaluated B, by “2 times the number of independent parameters”
and proposed Akaike’s information criterion (AIC) by adding the evaluated B, to the
sample KL discrepancy function, i.e.,
ATC(k) = =200 | X) + (p +1)(2k + p) — 2. [20]
In the above evaluation, if fis not equal to ¢ in [16], AIC has a constant bias. This is
mainly because Akaike derived AIC only under the assumption that ¢ and f are equal.
Takeuchi (1976) revaluated the bias correction term of AIC, (p+1)(2k+p)—2, under the
inconsistency with ¢ and f, and proposed the Takeuchi’s information criterion (TIC) by
his revaluation.
In contrast to AIC and TIC, Stone (1974) proposed the CV criterion in the
following way. Let p , EM and ZA)H be the MLEs of p, & and 3, which are
evaluated from such a sample set consisting of X without its i-th row vector . The

CV criterion is given by



CV(k) = —2) log f(z:p.,E ,5.)
[21]
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where 7 = (z,—f, )E (z, —f, ). Stone (1977) pointed out that the CV
criterion is an asymptotically unbiased estimator for the risk [17]. From the result in
Stone (1977), we can see that TIC and the CV criterion are asymptotically equivalent,
ie., CV=TIC+O,(n"). Therefore, the order of bias of CV is the same as that of TIC.
Yanagihara (2006) however showed that the CV criterion in normal regression models
has smaller bias than TIC by investigating the asymptotic expansions of biases for the
risk [17]. That is, in order to obtain TIC, we must estimate higher-order cumulants, of
which the ordinary estimators tend to underestimate too much even for the moderate
sample size. This results in the fact that TIC tends to have a large bias. By contrast,
we can obtain the CV criterion without estimating higher-order cumulants, so that CV
for selecting the best model is more efficient than TIC and AIC when the sample size is
not so large. Form these points, we use CV for selecting the best number of clusters in

this paper. The following is to determine the best number of clusters:

The Algorithm to Determine the Number of Clusters

Step 1. We determine the maximum number of clusters K.

Step 2. We calculate CV (&), where £ is the number of clusters.

Step 3. We search for £ providing the smallest value of CV as the optimal number of
clusters &, i.e., k,, =argmin,_, , CV(k).

opt? (s}

2.3. Application of MGMM to Classification of Tree Growth Patterns

Let y, be observation from the ¢-th individual tree at the lth time ¢, (i=1,...,n;
[=1,...,q), and let the corresponding vector y, = (yﬂ,...,yiqi)/ be a ¢;x1 vector of the
repeated measurement for the ¢-th individual tree and ¢, = (tﬂ,...,tiqt)’ be a ¢x1
chronological vector of #,, Note that ¢, is the number of observation of the ith
individual tree. Given such growth data, we apply the following non-linear growth

curve model to y;:

Y; :n(ti;/@)+€ia (i:1,...,n), [22]



where n(t;3) is a ¢;x1 mean vector to specify a chronological non-linear trend as a

function of 7(t,;3), i.e.,

1t B)
ne:8) = | [23]
1ty B)
while B=(4,,...,3,)" is a px1 unknown parameter vector, €, = (&,...,&,,) isa gx1

random vector identically and independently distributed according to the ¢-dimensional
normal distribution with the mean 0, and the variance-covariance matrix 3, .

Since y, = (yﬂ,...,yiql)' is unbalanced and high dimensional data, the generalized
non-linear mixed effect model proposed by Vonesh and Carter (1992) might be
preferable to y, for the growth analysis. The non-linear mixed effect model used for
the forest growth analysis can be found in Fang and Bailey (200), Hall and Bailey
(2001), Garber and Maguire (2003), Leites and Robinson (2004), Yanagihara et al.
(2004), and Yanagihara and Yoshimoto (2005b). When applying the non-linear mixed
effect model to the unbalanced and high dimensional data, the model is computationally
and practically difficult to extend for MGMM. To overcome difficulty, we use the
estimated 3 in each tree as the response variables in MGMM, as in Yanagihara and

Yoshimoto (2005a), and Yoshimoto et al. (2005), i.e.,

~

x, =6 = (Bﬂ?""Bip)/ = argr%iln {yz - n(ti;/gi)}/ {yi - n(ti;ﬁi)}, (i=1..,n).[24]

The growth patterns can be classified only through the estimated parameters, Bl , which
control the shape of growth curves for y,. In our analysis, we use the Richards growth

function, i.e.,

n(t,B) = e’ {1 — exp (—e’jzt)}cxp(m. [25]
Note that the growth curve is constrained to be sigmoid by exponential parameter
transformations. The unknown parameter (05,,5,03) in the original function is
transformed to (e”,e”,e”) in order to extend regions of estimated coefficients from

(0,00) to (—00,00).
3. Numerical Example

We used the growth data obtained from the survey at Hoshino village of Fukuoka



prefecture in Kyushu, Japan. The growth data of thirty trees were obtained. This
study plot is shown in Figure 1. The total number of trees in the study plot was 136.
In Figure 1-1, e and o denote the sampled trees and the remaining trees, respectively.
The size of each circle corresponds to the relative size of DBH at the time of survey,
and the number on the right side of each circle denotes the ID number of trees. Curved
lines in Figure 1-1 are topological contour lines of the area. The area has higher
latitude at the lower left of the figure (near P3) and lower latitude at the upper right of
the figure (near P1). A complete three-dimensional shape of the study plot obtained by
a spatial smoothing is shown in Figure 1-2. In this figure, o denotes the location of
tree and darker color means lower latitude of the area. The contour lines in Figure 1-1
are based on the three-dimensional topography of the study plot in Figure 1-2. To
obtain the growth data of DBH (cm), height (m) and volume (m®), we conducted the
stem analysis (see e.g., Philip, 1994) for the sampled trees.

‘ Please insert Figure 1 around here ‘

Figure 2 shows real growth data of DBH, height and volume. Figure 3 shows the
scatter plots of estimated coefficients of the Richards growth function. In these figures,
the number also denotes the ID number of each tree. From these figures, there seems
to be three clusters in DBH data, no clusters in height data, and two clusters in volume

data.

‘ Please insert Figures 2 & 3 around here ‘

Table 1 gives values of AIC and CV in each candidate model when the maximum
number of clusters K is 4. In the table, the smallest value in each information criterion
is marked in bold. The table implies that based on CV and AIC, 3 and 4 were chosen
as the optimal number of clusters, respectively, in all growth data. Form these results,
it is more likely that AIC overestimates the number of clusters in MGMM when the
sample size is not so large. Therefore, CV can be recommended for determining the

number of clusters in MGMM when the sample size is not so large.

| Please insert Table 1 around here |

Figure 4 shows the optimal cluster partition chosen by the CV criterion. The
optimal number of clusters in each growth data was 3. In the figures, o, A and O
denote the data belonging to the clusters 1, 2 and 3, respectively, and the curved lines
are contour lines of probabilities based on the fitted marginal density function f of

equation [4]. Darker color of a contour line means lower probability. Table 2 shows

10



estimated posterior probabilities of all growth data. The highest probability in each
tree is marked in bold, and the corresponding cluster is the one that the tree belongs to.
From the figures and table, we can see that the cluster partition is slightly different
depending upon the growth data. Comparing the clusters for DBH with that for
volume, trees numbers 52, 83, 107 and 127 did not match. As for comparison of DBH
with height, trees numbers 7, 12, 15, 31, 37 and 127 did not match. If the difference in
the growth pattern would be caused by the difference in tree itself, all cluster partition
should have become the same (or very alike). Therefore, we could expect that trees in
the study plot are not different in themselves. Since almost all the highest estimated
posterior probabilities of the growth data were very close to 1, we can conclude that the
resulted clusters were clearly divided. The highest posterior of only the tree of No. 83
in the volume data became slightly low. This was mainly because the data was on the
middle of the centers of cluster 2 and 3. Moreover, from Figure 4, three peaks were
clearly observed in the fitted density function of the DBH data. This resulted in the
fact that the clusters of DBH data were clearly divided into three. Not as clearly as in
the case of DBH data, three peaks in the fitted density function of the volume data were
observed. However, there were only two peaks in the fitted density function of the
height data although the analysis concluded three clusters. This could suggest that the

distribution of x; would not be normal.

| Please insert Figure 4 and Table 2 around here ‘

Finally, we show the cluster partition in the study plot in Figure 5. In the figure, o,
A and m denote the sampled trees belonging to the clusters 1, 2 and 3, respectively.
From the figure, trees belonging to the cluster 3 were observed around the central part
of the study plot. This could imply that the difference in the growth pattern is caused
by geographical and topographical factors.

‘ Please insert Figure 5 around here |

4. Conclusion and Discussion

In this paper, we utilized GMM in order to identify the growth patterns in an
even-aged forest stand. Assuming the Richards growth function for the growth data,
the estimated coefficients of the function were used as the response variables of

MGMM. The number of clusters was chosen by minimizing the CV criterion.

11



Applying the proposed method to our growth data of a sugi plantation forest, we found
that there were three growth patterns in the study plot.

The k-means method is well known as one of clustering methods, and also widely
used in several research fields. This method has an advantage that the cluster partition
is obtained more easily than the clustering method through MGMM proposed here.
By using the A-means method, Yanagihara and Yoshimoto (2005a) analyzed the growth
pattern of the stem volume data which was also used in this paper. The clustering
partition obtained by them was almost the same as our result. However, there is a
disadvantage in this method. When the number of clusters is searched by the k-means
method, we need the information criterion defined under the assumption that the cluster
partition is explicitly assigned. In other words, the cluster partition to be searched is
not treated as random variables. As a result, the problem of choosing the number of
clusters is replaced with the problem of choosing the number of groups in multivariate
analysis of variance (MANOVA) models. Therefore, AIC, TIC or CV in MANOVA
models is used for selecting the number of clusters when we use the A-means method for
the cluster analysis. However, such an information criterion does not work well for
selecting the number of clusters. One reason for this is that the bias-correcting term in
the information criterion is underestimated from the actual value when the MANOVA
model is applied to data partitioned by the k-means method. Yanagihara and
Yoshimoto (2005a) placed a burden on the bias-correcting term by assuming
heteroscedasticity in the MANOVA models. Although such a criterion worked well in
their paper, there is no theoretical guarantee. To the contrary, the clustering method
through MGMM does not have such a disadvantage. Moreover, the clustering method
through MGMM has an advantage to obtain the estimated posterior probabilities as in
Table 2 or the contour lines as in Figure 4. These probabilities were used as likeliness
for classifying the individual to the corresponding cluster. Not to mention, we need to

choose an appropriate method to use according to the purpose of analysis.
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Table 1. Results of information criteria for selecting the number of clusters
Information The number of clusters
Data Criterion 1 2 3 4
DBH Cv 35.12 6.34 0.78 3.96
AIC 33.34 1.47 -10.97 -15.13
. Cv 47.21 5.31 -55.41 -53.74
Height
AIC 41.83 -1.73 -65.87 -69.76
Cv -60.18 -67.67 -75.13 -48.98
Volume
AIC -62.55 -81.18 -99.02 -105.01

The smallest value in each information criterion is marked in bold
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Table 2. Estimated posterior probabilities

DBH Height Volume

ID Cluster | Cluster2  Cluster3 | Cluster ]  Cluster2  Cluster3 | Cluster 1  Cluster2  Cluster 3
7 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00
12 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00
15 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00
31 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00
37 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00
52 1.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00
59 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
62 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
72 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
73 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
76 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
77 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
78 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
83 0.00 1.00 0.00 0.00 1.00 0.00 0.61 0.39 0.00
86 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00
87 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
93 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
96 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
100 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
102 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
104 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
107 1.00 0.00 0.00 1.00 0.00 0.00 0.06 0.94 0.00
111 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
116 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
120 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
126 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
127 1.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
131 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00
133 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
135 1.00 0.00 0.00 1.00 0.00 0.00 0.99 0.01 0.00

The highest probability in each tree is marked in bold.
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Figure 3-2. Scatter plot of response variables (Height)
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