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Abstract

Mallows’ Cp statistic is widely used for selecting multivariate linear regression mod-

els. It can be considered to be an estimator of a risk function based on an expected

standardized mean square error of prediction. Fujikoshi and Satoh (1997) have proposed

an unbiased Cp criterion (called modified Cp; MCp) for selecting multivariate linear re-

gression models. In this paper, the unbiased Cp criterion is extended to the case of a

multivariate ridge regression model. It is analytically proved that the proposed criterion

has not only smaller bias but also smaller variance than an existing Cp criterion, and we

show that our criterion has useful properties by means of numerical experiments.
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1. Introduction

Let Y = (y1, . . . , yn)′ be an n × p observation matrix and X be an n × k matrix of

explanatory variables of full rank k. Suppose that j denotes a subset of ω = {1, . . . , k}
containing kj elements, and let Xj denote the n× kj matrix consisting of the columns of

X indexed by the elements of j. Then we consider the following candidate model with

kj explanatory variables:

Y ∼ Nn×p(XjΞj ,Σj ⊗ In). (1.1)
1Corresponding author, E-mail: yanagi@math.sci.hiroshima-u.ac.jp
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We call the model with Xω = X the full model. Then we estimate Ξj by ridge-regression,

i.e.,

Ξ̂j,θ = M−1
j,θ X ′

jY , (1.2)

where Mj,θ = X ′
jXj + θIkj (θ ≥ 0). Notice that Ξ̂j,0 is the ordinary maximum likelihood

estimator of Ξj (or the ordinary least square estimator of Ξj). In the above situation,

optimization of the subset j and the ridge parameter θ is an important problem.

Choosing optimal j and θ so as to minimize a risk function is very well known method

for model selection. In this paper, we consider the expected mean square error (MSE)

of prediction as a risk function. It measures the discrepancy between a predictor of Y

and a future observation, or imaginary new observation. However, we cannot directly

use such a risk function in a real situation, because it includes unknown parameters. In

practice, we use an estimator that is an information criterion, instead of the risk function.

Obtaining an unbiased estimator of the risk function will allow us to correctly evaluate

the discrepancy between the predictor of Y and a future observation, which will further

facilitate the selection of optimal j and θ.

In this paper, we call an estimator of the risk function, based on the expected MSE

of prediction, a Cp criterion, because Mallows’ Cp statistic (Mallows, 1973; 1995) can be

considered to be an estimator of such a risk when the candidate models are univariate lin-

ear regression models. When an observation is univariate, the discrepancy used consists

of the Euclidean distance between the predictor and the future observation. However,

when observation is multivariate, we need to take into account the correlation between

response variables. Hence we have to use the discrepancy based on the Mahalanobis dis-

tance between them, i.e., the expected MSE standardized by the true variance-covariance

matrix of observation. Such a risk function was proposed by Fujikoshi and Satoh (1997).

Since the true variance-covariance matrix is unknown, we must replace it by its estima-

tor. This replacement makes it hard to obtain an unbiased Cp criterion, because the

estimated regression coefficient matrix and the estimated variance-covariance matrix are

not independent, making this case more difficult to handle than the case of a multivari-

ate linear regression model. Nevertheless, we can develop an unbiased Cp criterion even

for the multivariate ridge-regression model by decomposing the residuals sum of squares

into two parts, where the first part depends on the estimated variance-covariance matrix

and the other part is independent of the estimated variance-covariance matrix. Such a
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decomposition can be derived from the formula in Draper and Herzberg (1987). The

definition of our unbiased Cp criterion is very simple, and it is not necessary to carry out

complicated calculus to obtain an unbiased criterion, such as in Hurvich, Simonoff and

Tsai (1998). Moreover, we are able to prove analytically that the proposed criterion has

not only smaller bias but also smaller variance than the existing Cp criterion. We call it

the modified Cp (MCp) criterion, because our unbiased Cp coincides with the criterion in

Fujikoshi and Satoh (1997) when the ridge parameter is 0.

This paper is organized in the following way: In Section 2, we propose the MCp

criterion for the multivariate ridge regression model by using the formula in Draper and

Herzberg (1987). Several mathematical properties of our criterion are shown in Section

3. In Section 4, we examine the performance of the proposed criterion by conducting

numerical simulations. Section 5 contains a discussion and our conclusions. Technical

details are provided in the Appendix.

2. Unbiased Cp Criterion

Suppose that the true model of Y is expressed as

Y ∼ Nn×p(Γ∗,Σ∗ ⊗ In). (2.1)

Let P� be the projection matrix to the subspace spanned by the columns of A, i.e.,

P� = A(A′A)−1A′. Then, we suppose that the following assumption is satisfied.

• Assumption: at least the full model includes the true model, i.e., P�ωΓ∗ = Γ∗.

Let Ŷj,θ be the predictor of Y given by Ŷj,θ = XjΞ̂j,θ and U be an n×p random variable

matrix which is independent of Y and has the same distribution as Y . U is regarded as

a future observation or imaginary new observation. As a criterion for the goodness of fit

of the candidate model, we consider the underlying risk function based on the MSE of

prediction, which is proposed by Fujikoshi & Satoh (1997).

R(j, θ) = E∗
�

E∗
�

[
tr

{
(U − Ŷj,θ)Σ

−1
∗ (U − Ŷj,θ)

′
}]

,

where E∗ denotes the expectation under the true model in (2.1). We regard the model

with j(r) and θ(r) which minimizes R(j, θ) as the principal best model. Let Wj,θ be the

residual matrix for the ridge regression, i.e.,

Wj,θ = (Y − Ŷj,θ)
′(Y − Ŷj,θ) = Y ′(In −XjM

−1
j,θ X ′

j)
2Y . (2.2)
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By simple calculation, R(j, θ) can be rewritten as

R(j, θ) = E∗
�

[
tr(Wj,θΣ

−1
∗ )

]
+ 2ptr(M−1

j,θ Mj,0). (2.3)

Therefore we can propose a rough estimator for the risk function by using an estimator

for E∗
�

[tr(Wj,θΣ
−1
∗ )].

Let S be an unbiased estimator of Σ∗ under the full model, defined by S = Wω,0/(n−
k), where Wω,0 is the residual matrix in the full model with θ = 0, i.e., Wω,0 = Y ′(In −
P�ω)Y . By replacing Σ∗ in (2.3) with S, a naive estimator of the risk function can be

defined, i.e., the following Cp criterion:

Cp(j, θ) = tr(Wj,θS
−1) + 2ptr(M−1

j,θ Mj,0). (2.4)

However, Cp(j, θ) has constant bias for R(j, θ) and it is not negligible when the sample

size is small. Hence we try to remove such a bias completely, i.e., our goal is to derive an

unbiased estimator of E∗
�

[tr(Wj,θΣ
−1
∗ )].

Notice that

Wj,θ = Y ′(In − XjM
−1
j,θ X ′

j)Y = Wω,θ + Ξ̂′
ω,θX

′
ωXωΞ̂ω,θ − Ξ̂′

j,θX
′
jXjΞ̂j,θ.

Therefore, it is easy to obtain an unbiased estimator of E∗
�

[tr(Wj,θΣ
−1
∗ )] when θ = 0,

because Ξ̂j,0 and S are independent, and Ξ̂ω,0 and S are also independent. However,

when θ �= 0, it is known that the equation above cannot be used, and that Ξ̂j,θ and S

are not independent, and that Ξ̂ω,θ and S are also not independent. Thus, we have to

develop an alternative plan to obtain an unbiased estimator of E∗
�

[tr(Wj,θΣ
−1
∗ )].

From Draper and Herzberg (1987), we can see that

Wj,θ = Wj,0 + θ2Y ′XjM
−1
j,θ Mj,0M

−1
j,θ X ′

jY . (2.5)

Notice that Wj,0 can be rewritten as Wω,0 + Y ′(P�ω − P�j)Y . From this, Wj,θ in (2.5)

can also be rewritten as

Wj,θ = Wω,0 + Y ′(P�ω − P�j )Y + θ2Y ′XjM
−1
j,θ Mj,0M

−1
j,θ X ′

jY .

From this decomposition, it follows that Wj,θ − Wω,0 and S are independent, because

(In − P�ω)(P�ω − P�j) = On and (In − P�ω)XjM
−1
j,θ Mj,0M

−1
j,θ X ′

j = On are satisfied,
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where On is the n × n matrix with all elements zero. Using these independence results,

we have

E∗
�

[
tr(Wj,θS

−1)
]

= (n − k)E∗
�

[
tr

{
(Wj,θ − Wω,0)W

−1
ω,0 + Ip

}]
= (n − k) {E∗

�
[tr {(Wj,θ − Wω,0)Λ}] + p}

= (n − k) {E∗
�

[tr(Wj,θΛ)] −E∗
�

[tr(Wω,0Λ)] + p} , (2.6)

where Λ = E∗
�

[W−1
ω,0 ]. Since Wω,0 ∼ Wp(n−k,Σ∗), it follows that E∗

�
[Wω,0] = (n−k)Σ∗

and E∗
�

[W−1
ω,0 ] = Σ−1

∗ /(n − k − p − 1) (n − k > p + 1) (see e.g., Siotani, Hayakawa &

Fujikoshi, 1985, p. 74, theorem 2.4.6). Substituting the two expectations into (2.6) yields

E∗
�

[
tr(Wj,θS

−1)
]

=

(
1 − p + 1

n − k

)−1 {
E∗
�

[
tr(Wj,θΣ

−1
∗ )

] − p(p + 1)
}

. (2.7)

It follows immediately from the equation (2.7) that an unbiased estimator of E∗
�

[tr(Wj,θΣ
−1
∗ )]

can be defined by {1− (p+1)/(n− k)}tr(Wj,θS
−1)+ p(p+1). Then, when n− k > p+1

holds, we propose the following unbiased estimator of R(j, θ), which is the modified Cp

criterion:

MCp(j, θ) =

(
1 − p + 1

n − k

)
tr(Wj,θS

−1) + 2ptr(M−1
j,θ Mj,0) + p(p + 1). (2.8)

Notice that MCp(j, 0) coincides with the modified Cp criterion in Fujikoshi and Satoh

(1997), which is the information criterion for selecting multivariate linear regression mod-

els. Hence, it can be seen that our MCp is in fact an extended version of Fujikoshi and

Satoh’s modified Cp.

3. Several Mathematical Properties

In this section, we investigate several mathematical properties of the MCp and Cp

criteria. Let g(j, θ) be a function of j and θ defined by

g(j, θ) = tr(Wj,θS
−1). (3.1)

By using g(j, θ) and Cp(j, θ) in (2.4), MCp(j, θ) in (2.8) can be rewritten as

MCp(j, θ) = Cp(j, θ) − (1 − a) {g(j, θ) − (n − k)p} , (3.2)

where the coefficient a is defined as

a = 1 − p + 1

n − k
. (3.3)
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Notice that the inequality 0 < a < 1 is satisfied, because n− k > p + 1 is true. Thus, the

relation 0 < 1 − a < 1 is also adequate. By substituting this inequality and (A.3) in the

Appendix into (3.2), we obtain the following relationship between MCp and Cp:

Theorem 1. For any distribution of Y , the following inequality is always satisfied:

MCp(j, θ) ≤ Cp(j, θ), (3.4)

with equality if and only if θ = 0 and j = ω.

Theorem 1 shows that MCp is always smaller than Cp, except in the case that the candi-

date model is the full model with θ = 0. In particular, when the candidate model is the

full model and the ridge parameter θ is 0, MCp and Cp are the same criterion.

Recall that the MCp criterion is an unbiased estimator of the risk function in (2.3).

This unbiasedness, together with Theorem 1, leads to another relation between the MCp

and Cp criteria.

Theorem 2. When the distribution of Y is normal and the assumption P�ωΓ∗ = Γ∗ is

satisfied, the following inequality holds:

E∗
�

[MCp(j, θ)] = R(j, θ) ≤ E∗
�

[Cp(j, θ)], (3.5)

with equality if and only if θ = 0 and j = ω.

Theorem 2 shows that MCp(j, θ) is always an unbiased estimator of R(j, θ) and Cp(j, θ)

becomes an unbiased estimator of R(j, θ) when the candidate model is the full model and

the ridge parameter θ is 0. Except for the case where the candidate model is the full

model with θ = 0, it seems that Cp(j, θ) overestimates, when compared to R(j, θ).

Theorem 2 describes biases of the criteria. However, in so far as an information

criterion is an estimator of the risk function, not only bias but also variance is an important

characteristic, and we now consider the variances of the MCp and Cp criteria. Let h(j, θ)

be a function of j and θ defined by

h(j, θ) = tr(M−1
j,θ Mj,θ). (3.6)

Using h(j, θ) and Cp(j, θ), again we can rewrite MCp(j, θ) as

MCp(j, θ) = aCp(j, θ) + 2p(1 − a)h(j, θ) + p(p + 1), (3.7)
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where a is given by (3.3). Since p, a and h(j, θ) are non-stochastic, it seems that variances

of MCp and Cp criteria are related by

V ar[MCp(j, θ)] = a2V ar[Cp(j, θ)].

Let us recall that 0 < a < 1. Consequently, we derive the following theorem.

Theorem 3. For any distribution of Y , the following inequality is always satisfied:

V ar[MCp(j, θ)] < V ar[Cp(j, θ)]. (3.8)

Theorem 3 gives us the surprising result that MCp not only removes the bias of Cp but also

reduces the variance. Furthermore, the inequality (3.8) holds even if the distribution of Y

is not normal. In general, the variance of a bias-corrected estimator is larger than that of

the original estimator (see e.g., Efron & Tibshirani, 1993, p. 138). However, the variance

of our MCp is always smaller than that of Cp, even though MCp is the bias-corrected Cp.

Thus our MCp criterion has a very desirable property.

Previous theorems have described characteristics of our criterion as an estimator of the

risk function. However, in model selection, it is also important which model is chosen by

an information criterion. In particular, since we are correcting the bias in the criterion, we

need to investigate changes in the selected ridge parameter and/or the selected subset of

ω due to this correction of the bias. Let θ̂
(m)
j and θ̂

(c)
j be the ridge parameters minimizing

MCp and Cp criteria respectively, for a fixed j, i.e.,

MCp(j, θ̂
(m)
j ) = min

θ≥0
MCp(j, θ), Cp(j, θ̂

(c)
j ) = min

θ≥0
Cp(j, θ). (3.9)

Suppose that the inequality θ̂
(m)
j < θ̂

(c)
j holds. Then, from (A.5) in the Appendix, we

have h(j, θ̂
(c)
j ) < h(j, θ̂

(m)
j ). Moreover, by applying (3.9) first and then applying (3.4), the

relations MCp(j, θ̂
(m)
j ) ≤ MCp(j, θ̂

(c)
j ) ≤ Cp(j, θ̂

(c)
j ) can be derived. Substituting the two

inequalities into (3.7) yields

MCp(j, θ̂
(m)
j ) = aCp(j, θ̂

(m)
j ) + 2p(1 − a)h(j, θ̂

(m)
j ) + p(p + 1)

> aCp(j, θ̂
(c)
j ) + 2p(1 − a)h(j, θ̂

(c)
j ) + p(p + 1)

= MCp(j, θ̂
(c)
j ),
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because 0 < a < 1 and 0 < 1 − a < 1 are satisfied. However, this result is contradictory

to the result that MCp(j, θ̂
(m)
j ) ≤ MCp(j, θ) for all θ. Consequently, by reductio ad

absurdum, we obtain the following theorem which characterizes the relation between two

ridge parameters determined by the Cp and MCp criteria.

Theorem 4. For any distribution of Y and combinations of X, the inequality θ̂
(m)
j ≥ θ̂

(c)
j

is always satisfied.

Theorem 4 shows that the optimal θ obtained using MCp is not smaller than that de-

termined from Cp for fixed j. In general, the best model obtained from the existing

Cp criterion tends to overfit to the principal best model. Many studies have verified

this characteristic by conducting numerical simulations, e.g., Fujikoshi and Satoh (1997),

Fujikoshi et al. (2003), and Fujikoshi, Yanagihara and Wakaki (2005). For the ridge

regression model, an overfitting means choosing the smaller θ than the principle best θ

MCp(j, θ) has been improved so that this weak point is avoided by correcting the bias.

Theorem 4 gives the relation between the two ridge parameters resulting from the MCp

and Cp criteria. By following the approach above that leads to the proof of Theorem 4,

we can also obtain other inequalities between the best models resulting from the MCp

and Cp criteria as theorems. (We present the proofs in the Appendix, because they are

very similar to the proof of Theorem 4).

Theorem 5. Let ĵ
(m)
θ and ĵ

(c)
θ be subsets of ω minimizing MCp(j, θ) and Cp(j, θ) respec-

tively, for a fixed θ. Then, the relation ĵ
(c)
θ �⊂ ĵ

(m)
θ is always satisfied for any distributions

of Y and ridge parameters. In particular, for a nested model, ĵ
(m)
θ ⊆ ĵ

(c)
θ holds.

Theorem 6. Let ĵ(m) and θ̂(m) be j and θ minimizing MCp(j, θ), and let ĵ(c) and θ̂(c) be

the values of j and θ minimizing Cp(j, θ). Then, the inequality θ̂(m) ≥ θ̂(c) or the relation

ĵ
(c)
θ �⊂ ĵ

(m)
θ are always satisfied for any distributions of Y .

4. Numerical Study

We evaluate the proposed criterion applied numerically to the polynomial regression

model, Y ∼ Nn×p(Γ∗,Σ∗ ⊗ Ip), with p = 2, n = 20, k = 12 and ω = {1, · · · , 12} where
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Γ∗ = XωΞ∗,

Ξ∗ = δ

(
1 2 3 0 · · · 0
1 4 9 0 · · · 0

)
′, Σ∗ =

(
1 0.52

0.52 1

)
,

Xω =

⎛
⎜⎝

x1,1 x1,2 · · · x1,k
...

...
...

...
xn,1 xn,2 · · · xn,k

⎞
⎟⎠ and Z =

⎛
⎜⎝

z1 z2
1 · · · zk

1
...

...
...

...
zn z2

n · · · zk
n

⎞
⎟⎠ .

Each column vector of the design matrix Xω is given by standardization of the correspond-

ing column vector of Z. The first column vector of Z is generated from the independent

uniform distribution on (−1, 1). Note that the candidate models are nested and Xj is

the submatrix consisting of the first j columns of Xω. In a sense, the subindex j is the

degree of a polynomial here.

Since by our criterion, MCp is derived as an estimator of the MSE of prediction, we

compare the related four criteria: MCp, Cp, the cross-validation (CV) criterion (Stone,

1974) and the generalized cross validation (GCV) criterion (Craven & Wahba, 1979), on

the following three points, (i) the probabilities or frequencies of selected models, (ii) the

expectation value of the selected ridge parameter, (iii) the MSE of prediction. Here, CV

and GCV criteria can be formally defined by

CV(j, θ) =
n∑

i=1

((Y − Ŷj,θ)S
−1(Y − Ŷj,θ)

′)ii

{1 − (XjM
−1
j,θ X ′

j)ii}2
,

GCV(j, θ) =
tr(Wj,θS

−1)

{1 − tr(M−1
j,θ Mj,0)/n}2

,

(4.1)

where (A)ii denotes the (i, i)th element of a matrix A. We selected both the candidate

model and the ridge parameter, and the MSE of the prediction as np + E∗
�

[tr{(Γ∗ −
Ŷĵ,θ̂)Σ

−1
∗ (Γ∗ − Ŷĵ,θ̂)

′}]. Those properties were evaluated by Monte Carlo simulation with

1,000 iterations under two types of true model, 1) δ = 0, or a constant model, 2) δ = 2.0, or

a third degree polynomial model. In the former case, smaller degree polynomial models

estimated by larger ridge parameters should be selected, conversely, the third degree

polynomial model estimated by smaller ridge parameters should be selected in the latter

case.

As the result of the simulation study, our MCp criterion was much improved, compared

to the original Mallows’ Cp criterion in the sense of the MSE of prediction. Although

the MSE was almost the same for the MCp and CV criteria, MCp selected preferable

candidate models more often than CV in both of the cases 1) when larger ridge parameters
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were required, 2) when ridge parameters were not as necessary, or the usual least square

estimator without ridge parameters was sufficient. The performance of the GCV criterion

might be located in between that of the CV and Cp criteria. Therefore we conclude

that the MCp criterion is the best criterion among those four criteria in the sense of

MSE prediction and the probability of selecting preferable candidate models for a ridge

regression model.

5. Conclusion and Discussion

In this paper, we have proposed an unbiased Cp criterion, denoted as MCp. The MCp

criterion is an unbiased estimator of the risk function based on the expected standardized

MSE of prediction when the distribution of Y is normal and P�ωΓ∗ = Γ∗ is satisfied.

One of advantages of the MCp criterion is that its definition is very simple. Furthermore,

we have proved analytically that the MCp criterion has smaller variance than the Cp

criterion. In addition, the optimal ridge parameter obtained using MCp is always at least

as large as that resulting from Cp for fixed j, and the best subset of ω obtained by using

MCp is not included in the best subset obtained from use of Cp. In numerical studies,

we demonstrated that the MCp criterion is more effective than the Cp criterion and the

formal CV and GCV criteria.

Davies, Neath and Cavanaugh (2006) showed that MCp(j, 0) is the minimum unbiased

estimator of R(j, 0) when the candidate model is the true model in the case of p = 1.

Moreover, from the asymptotic expansion of the bias in Fujikoshi, Yanagihara and Wakaki

(2005), it seems that the effect of non-normality on the bias of MCp(j, 0) is very small; its

order is merely O(n−2) even under non-normality, when P�ωΓ∗ = Γ∗ is satisfied. Hence,

we can expect that our MCp(j, θ) also has similar good properties.

When the observations are univariate, the risk function does not need to be standard-

ized by the true variance-covariance matrix and in this case, an unbiased estimator is easy

to obtain. This unbiased estimator may almost be equivalent to the criterion proposed

by Li (1986). However, when observations are multivariate, the standardization results

in difficulty deriving an unbiased estimator. For this case, there has been no unbiased

estimator of the risk based on the expected standardized MSE of prediction for multi-

variate ridge regression models. On the other hand, we can guess that an estimator of

the risk function may be able to be derived easily by use of the CV method as in (4.1),
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even when the observations are multivariate. However, in the multivariate case, an esti-

mated variance-covariance matrix for the standardization should also be constructed by

the jackknife method, as well as by using the predictor of Y . Then, the GCV criterion

cannot be strictly defined and the CV criterion will have constant bias (see Fujikoshi et

al., 2003). Therefore, for the selection of a multivariate ridge regression model, MCp will

not be supplanted by the other criteria at present.

There have been many studies concerned with correction of the bias of an information

criterion. However, in almost all cases the resulting papers have reported only on the bias

correction and have not discussed the difference in variable selection, by comparison of

the original criterion and the theoretically improved version. In contrast, this paper does

consider changes in the selected model due to correcting the bias.

From the many viewpoints mentioned above, we consider that the results in our paper

are useful, and thus we can recommend use of the MCp criterion instead of the Cp criterion

for model selection for multivariate ridge regression models.

Appendix

A.1. Properties of the function g(j, θ)

Let Pj be a kj × kj orthogonal matrix such that

P ′
jMj,0Pj = Dj = diag(dj,1, . . . , dj,kj ), (A.1)

where dj,α (α = 1, . . . , kj) are eigenvalues of Mj,0, and let zj,1, . . . , zj,kj be n × 1 vectors

such that (zj,1, . . . , zj,kj)
′ = P ′

jX
′
jY S−1/2. By using zj,α and dj,α (α = 1, . . . , kj), we can

write g(j, θ) in (3.1) as

g(j, θ) = tr(Y ′Y S−1) − 2

kj∑
α=1

‖zj,α‖2

dj,α + θ
+

kj∑
α=1

‖zj,α‖2dj,α

(dj,α + θ)2
. (A.2)

Since dj,α > 0 and θ ≥ 0 hold, we have

∂

∂θ
g(j, θ) = 2θ

kj∑
α=1

‖zj,α‖2

(dj,α + θ)3
≥ 0,

with equality if and only if θ = 0 or θ → ∞. Therefore, we can see that g(j, θ) is a strictly

monotonic increasing function of θ ∈ [0,∞]. This result implies that g(j, θ) ≥ g(j, 0) with
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equality if and only if θ = 0. Notice that P�ω − P�j is positive definite except when

j = ω. Therefore, we obtain

g(j, 0) = tr(Wj,0S
−1) = (n − k)p + tr{Y ′(P�ω − P�j )Y S−1} ≥ (n − k)p = g(ω, 0),

with equality if and only if j = ω. Results obtained in this subsection are summarized in

the following theorem.

Theorem A.1. The function g(j, θ) is a strictly monotonic increasing function of θ ∈
[0,∞] for fixed j, and has the following lower bound:

g(j, θ) ≥ (n − k)p, (A.3)

with equality if and only if θ = 0 and j = ω.

A.2. Monotonicity of the function h(j, θ)

Notice that the function h(j, θ) in (3.6) can be rewritten as

h(j, θ) =

kj∑
α=1

dj,α

dj,α + θ
, (A.4)

where dj,α (α = 1, . . . , kj) are the eigenvalues of Mj,0, which are defined by (A.1). From

the equation (A.4), we have the following theorem.

Theorem A.2. The function h(j, θ) is a strictly decreasing function of θ ∈ [0,∞] for

fixed j. Therefore, we have the following relation:

h(j, θ2) < h(j, θ1), (when θ1 < θ2). (A.5)

Let Xj1 = (Xj x) be an n × (kj + 1) matrix, where x is an n × 1 vector which is

linearly independent of any row vectors of Xj . From the formula for the inverse matrix

(see e.g., Siotani, Hayakawa & Fujikoshi, 1985, p. 592, theorem A.2.3), we have

M−1
j1,θ =

(
M−1

j,θ − M−1
j,θ X ′

jxx′XjM
−1
j,θ /cj,θ −M−1

j,θ X ′
jx/cj,θ

−x′XjM
−1
j,θ /cj,θ 1/cj,θ

)
, (A.6)

where cj,θ = θ + x′(In − XjM
−1
j,θ X ′

j)x. Let bj,1, . . . , bj,kj be such that (bj,1, . . . , bj,kj )
′ =

P ′
jX

′
jx. By using bj,α and dj,α (α = 1, . . . , kj), we can write cj,θ as

cj,θ = θ + x′x −
kj∑

α=1

b2
j,α

dj,α + θ
. (A.7)
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By partially differentiating the equation (A.7), we can see that cj,θ is a monotonic de-

creasing function of θ. This implies that cj,θ ≥ cj,0 = x′(In − P�j )x. Notice that

x′(In − P�j)x > 0 because P�jx �= x. Hence it follows that cj,θ > 0. Moreover, from

(A.6), h(j1, θ) is given by

h(j1, θ) = h(j, θ) +
1

cj,θ
x′(In −XjMj,θX

′
j)

2x. (A.8)

By applying a similar expression in (A.7), we have

x′(In − XjMj,θX
′
j)

2x = x′x − 2

kj∑
α=1

b2
j,α

dj,α + θ
+

kj∑
α=1

b2
j,αdj,α

(dj,α + θ)2
.

The above equation leads to

∂

∂θ
x′(In − XjMj,θX

′
j)

2x = 2θ

kj∑
α=1

b2
j,α

(dj,α + θ)3
≥ 0,

with equality if and only if θ = 0 or θ → ∞. Therefore, we can see that x′(In −
XjMj,θX

′
j)

2x is a strictly monotonic increasing function of θ ∈ [0,∞]. From this result,

we obtain

x′(In − XjMj,θX
′
j)

2x ≥ x′(In −XjMj,0X
′
j)

2x = x′(In − P�j )x > 0.

Notice that cj,θ > 0. Substituting the above inequality into (A.8) yields h(j1, θ) > h(j, θ)

when Xj1 = (Xj x). By means of similar calculations, we obtain the following theorem.

Theorem A.3. For fixed θ, the following relation on h(j, θ) can be derived:

h(j1, θ) < h(j2, θ), (when j1 ⊂ j2). (A.9)

A.3. Proofs of Theorems 5 and 6

First, we give the proof of Theorem 5. Recall that ĵ
(m)
θ and ĵ

(c)
θ are j minimizing

MCp(j, θ) and Cp(j, θ) respectively, for fixed θ. Then, we have

MCp(ĵ
(m)
θ , θ) = min

j⊆ω
MCp(j, θ), Cp(ĵ

(c)
θ , θ) = min

j⊆ω
Cp(j, θ). (A.10)

Suppose that the inequality ĵ
(c)
θ ⊂ ĵ

(m)
θ holds. Then, from (A.9) in the Appendix, we

derive h(ĵ
(m)
θ , θ) < h(ĵ

(c)
θ , θ). Moreover, by applying (A.10) first and then applying (3.4),

13



MCp(ĵ
(m)
θ , θ) ≤ MCp(ĵ

(c)
θ , θ) ≤ Cp(ĵ

(c)
θ , θ) are obtained. Notice that 0 < a < 1 and

0 < 1 − a < 1. Substituting the two inequalities into (3.7) yields

MCp(ĵ
(m)
θ , θ) = aCp(ĵ

(m)
θ , θ) + 2p(1 − a)h(ĵ

(m)
θ , θ) + p(p + 1)

> aCp(ĵ
(c)
θ , θ) + 2p(1 − a)h(ĵ

(c)
θ , θ) + p(p + 1)

= MCp(ĵ
(c)
θ , θ).

However, this result is contradictory to MCp(ĵ
(m)
θ , θ) ≤ MCp(j, θ) for all j. Consequently,

by reductio ad absurdum, the statement in Theorem 5 is correct.

Next, we give the proof of Theorem 6. Let us recall that θ̂(m) and ĵ(m) are θ and j

minimizing MCp(j, θ), and let θ̂(c), ĵ(c) be θ, j minimizing Cp(j, θ). Then, we have

MCp(ĵ
(m), θ̂(m)) = min

j⊆ω,θ≥0
MCp(j, θ), Cp(ĵ

(c), θ̂
(c)
j ) = min

j⊆ω,θ≥0
Cp(j, θ). (A.11)

Suppose that the inequalities θ̂(m) < θ̂(c) and ĵ(c) ⊂ ĵ(m) hold. Then, from (A.5) and (A.9)

in the Appendix, we have h(ĵ(c), θ̂(c)) < h(ĵ(m), θ̂(m)). Moreover, by applying (A.10) first

and then applying (3.4), the inequalities MCp(ĵ
(m), θ̂(m)) ≤ MCp(ĵ

(c), θ̂(c)) ≤ Cp(ĵ
(c), θ̂(c))

are obtained. Notice that 0 < a < 1 and 0 < 1− a < 1. Substituting the two inequalities

into (3.7) yields

MCp(ĵ
(m), θ̂(m)) = aCp(ĵ

(m), θ̂(m)) + 2p(1 − a)h(ĵ(m), θ̂(m)) + p(p + 1)

> aCp(ĵ
(c), θ̂(c)) + 2p(1 − a)h(ĵ(c), θ̂(c)) + p(p + 1)

= MCp(ĵ
(c), θ̂(c)).

However, this result is contradictory to MCp(ĵ
(m), θ̂(m)) ≤ MCp(j, θ) for all θ and j.

Consequently, by reductio ad absurdum, it follows that the statement of Theorem 6 is

correct.
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Table 1. The frequencies of selected models, the expectation value of selected ridge

parameters, the MSE of prediction for 1,000 repetitions under the true model with δ = 0,

or a constant model.

MCp Cp CV GCV

j freq. E[θ̂j] freq. E[θ̂j] freq. E[θ̂j] freq. E[θ̂j]
1 639 82.9 430 70.7 513 75.7 496 76.4
2 130 83.7 140 68.0 152 74.5 152 75.3
3 25 84.1 38 67.1 48 74.9 42 76.8
4 24 84.9 26 66.6 40 76.2 37 77.6
5 13 84.7 24 66.4 29 77.4 20 77.6
6 17 85.0 34 66.6 24 78.3 27 78.0
7 15 85.0 32 65.8 14 77.9 21 77.7
8 14 85.6 36 65.0 11 78.6 26 78.2
9 12 85.4 22 64.6 15 78.3 16 78.3
10 14 85.3 39 64.1 21 78.4 23 78.6
11 21 85.1 46 64.4 23 78.3 30 77.9
12 76 85.3 133 65.0 110 78.0 110 78.1
MSE 42.9 46.6 42.9 44.1

Table 2. The frequencies of selected models, the expectation value of selected ridge

parameters, the MSE of prediction for 1,000 repetitions under the true model with δ = 2.0,

or a third degree polynomial model.

MCp Cp CV GCV

j freq. E[θ̂j] freq. E[θ̂j] freq. E[θ̂j] freq. E[θ̂j]
1 0 0.01 0 0.01 0 0.00 0 0.15
2 0 0.02 0 0.01 0 0.00 0 0.21
3 757 0.01 520 0.01 614 0.02 612 0.01
4 80 0.04 98 0.02 153 0.03 109 0.03
5 36 0.06 56 0.03 85 0.08 58 0.03
6 18 0.07 48 0.03 50 0.12 45 0.04
7 15 0.05 32 0.02 27 0.09 25 0.03
8 15 0.06 31 0.03 14 0.13 24 0.03
9 9 0.06 28 0.03 10 0.12 18 0.03
10 13 0.06 38 0.03 6 0.15 24 0.03
11 23 0.07 57 0.03 12 0.16 36 0.04
12 34 0.07 92 0.03 29 0.17 49 0.03
MSE 48.8 52.0 48.9 50.3
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