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Abstract

This paper examines asymptotic expansions of test statistics
for dimensionality and additional information in canonical corre-
lation analysis based on a sample of size N = n+ 1 on two sets of
variables, i.e., x,; p; X1 and x,; p X 1. These problems are related
to dimension reduction. The asymptotic approximations of the
statistics have been studied extensively when dimensions p; and
p are fixed and the sample size N tends to infinity. However, the
approximations worsen as p; and p, increase. This paper derives
asymptotic expansions of the test statistics when both the sam-
ple size and dimension are large, assuming that x, and x, have
a joint (p; + pe)-variate normal distribution. Numerical simula-
tions revealed that this approximation is more accurate than the
classical approximation as the dimension increases.
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1 Introduction

Let x, and x, be two random vectors of p; and p, components with a
joint (py + po)-variate normal distribution with a mean vector p = (., ! )’

and a covariance matrix
= Zuu Zuv
- )
Evu Z’U’U

where >, is a p; X po matrix. Without loss of generality we may assume
p1 < p2. Let py > --- > p,, > 0 be the possible nonzero population canonical
correlations between x, and x,. Note that p% > . > ,01291 > (0 are the
characteristic roots of ¥ 13,,5-153,,. The coefficient vectors av,; and a,; of
the canonical variables are defined as the solutions of

Zuvzgvlzvuaui — p?zuuauw aiuzuuaw - 5ij7
Evuzgjzuvavi = p?zvvaviv a;izvvavj = 51']'7
where 0;; = 1 for ¢« = j, 0 for ¢ # j. Let k be the number of nonzero

canonical correlations p;. Then k = rank(3,,) < p;, and the relationships
between x, and x, can be summarized in terms of the first k& canonical
variates (o, x,, o, x,),i=1,... k.

In canonical correlation analysis, the number of nonzero canonical cor-
relations, defines the dimensionality. Consider the problem of testing the
hypothesis that the smaller p; — k£ canonical correlations are zero, i.e.,

Ho:pp > prp1 =+ =pp, = 0. (1.1)

This problem is related to reducing the dimension of the canonical variables.
Let S be the sample covariance matrix formed from a sample of size N = n+1
of x = (2, x)). Corresponding to a partition of &, we partition S as

S’LLU SU’U
o= ( S S ) |
The following test statistics have been considered (e.g., see Sitotani, Hayakawa

and Fujikoshi (1985)):

p1

p1 p1 T‘Q»
LR=—log [[ 0=}, LH=> BNP= Y} (12

. . 1—7r? .
j=k+1 j=k+1 J jmht1




where r]2- is the sample canonical correlation. Note that r > -+ > 7“2 . > 0Oare
the characteristic roots of S,1S,,S5,.1S,,. Under a large sample framework,

A0 : p; and py are fixed, n — oo, (1.3)

some asymptotic results have been obtained (e.g., see Anderson (2003),
Siotani, et al. (1985)). Note that these results will not work well as di-
mension p; or py increases. In order to overcome this weakness, we study the
asymptotic distributions of these statistics under a high-dimensional frame-
work such that

Al piifixed, py — 00, n—00, M=n—py— 00, (1.4)
pa/n — c € (0,1).

In this paper we also consider asymptotic distributions of test statistics
for a hypothesis concerning the sufficiency of the redundancy of a subset of
variables from each of @, and @,. This problem is related to reducing the
dimension of the original variables. In order to formulate the hypothesis, we
partition @, and @, as x, = (x],x,), @1 : 1 X 1, &3 : @2 X 1, &, = (2, ),
T3:q3x 1, 2y qy x 1 and o, o, Wy, 1y, 2 comfortably:

(83 M
(aui): Qo <Mu>: Ho
oy asz; |’ Ky By |
Quy; My
Y1 i Xi3 Xuig
Y= < Euu Euv ) — ZJ21 E22 Z23 E24
Evu Zvv E31 E32 E33 E34

E41 E42 E43 E44

Note that p; = ¢1+¢2 and ps = g3+q4. Then, the hypothesis of the sufficiency
of ; and x3, as the redundancy of x5 and x4, is formulated as follows:

Hliagi:(), (142':0 (Z:L,/{i)

Let S be the sample covariance matrix formed from a sample of size N = n+1
of (x!,x!). Corresponding to a partition of ¥, we partition S as

Sll 512 Sl?) Sl4

S = ( Suu Suv ) _ 521 322 S23 524
Svu va 531 332 533 534

841 S42 543 S44



To test Hy, we consider the statistic (Fujikoshi (1982)) defined by

Soo12 Souq-
T:\ 215 Su1s | g S0y, (1.5)

842-13 844-13

This is a likelihood ratio statistic. Here, 522.1 = 522 — 52151_11512, 522.13 =
Sag — 52(13)5(_1é)(13)5(13)2, So13) = (S21, Sa3), ete.

Under a large sample framework A0, an asymptotic expansion is obtained
(see Fujikoshi (1982)). However, the result will not work well as dimensions
p1 and ps increase. In order to overcome this weakness, we study asymptotic
expansions of the statistics under a high-dimensional framework such that

A2 p=p+ps— 00, n— oo, (1.6)
m=n—p—oo, p/n—cée(0,1).

Numerical simulations revealed that our approximation becomes more ac-
curate than the classical approximation as the dimension increases. Similar
approximations have been proposed in the MANOVA model and discriminant
analysis. Fujikoshi, Himeno, and Wakaki (2006) derived asymptotic distri-
butions of test statistics for dimensionality under Al. Tonda and Fujikoshi
(2004) derived an asymptotic expansion of the distribution of Wilks’ lambda
statistic A under a high-dimensional framework. Wakaki (2006) derived simi-
lar results for A under a different high-dimensional framework. For examples
of other distributional results in a high-dimensional framework in which both
the dimension and sample size are large, see Bai (1999), Johnstone (2001),
Ledoit and Wolf (2002), and Raudys and Young (2004).

2 Distributions of tests for dimensionality

In this section we consider the distribution of the three test statistics (1.2)
under framework Al. When we consider the distributions of the statistics in
(1.2),

5 Igl P ’ 75:(7)70)’ P =diag(p1,-- -, Pp1)s
P I,

since the statistics are expressed as functions of the characteristic roots of
S 1SS, LS, without loss of generality we may assume. Let A = nS.
Correponding to a partition of &, we partition A as

Auu AU’U
A= ( Ape Ay ) '
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For our derivation, we use the following properties (see Sugiura and Fu-
jikoshi (1969)):

(a) Aywo ~ Wy, (m, A), where A = I, — P? and m = n — ps.

(b) Let W be the first p; X p; submatrix of A,,. Then, given W, A,, A} Ay, ~
Wy, (p2, A; PWP), and AypA,,) Apy and Ay, are independent.

(¢c) W ~ W, (n,I,), W and Ay, are independent.

Let

62: . ’izl,...,pl.

These are the characteristic roots of Al A, A lA,.. We will derive an

uu-v

asymptotic distribution of a function of ¢§ > ... > (2 that leads to the
asymptotic distribution of a function of 7§ > ... > 72 since r7 = £7 /(14 (7).
Note that without loss of generality, we may assume

(1) Avyr ~ Wy, (m, [p1)-

(2) Let W be the first p; xp; submatrix of A,,,. Then, given W, A, A1 A,, ~
W, (p2, 1p,; TWT), where I = A_%P, and A, A LA, and Ay, are in-
dependent.

(3) W ~ W, (n,I, ), W and A,,., are independent.

Now we consider the perturbation expansion of
_1 1
Q - Auuz-vAuvA;q;lAvuAuu%v'
Let U and V' be the matrices defined by

1 1
U=— AM,A;}AW — (polp, + nl? } and V = ——(Ayyo — mly,),
=1 (1ol ) vl )

respectively. The characteristic function of U can be expressed as
Cy(T) = FElexp(itrTU)]
— Ew [E[exp(itrTU)W]},



where T' is a real symmetric matrix whose (7, j) element is given by (1 +
dij)ti;/2. Here, 6;; is the Kronecker delta, i.e., §; =1, d;; =0 (i # j). The
conditional characteristic function can be evaluated as

Co(T|W) = Elexp(itrTU)|[W]

p2

T2

7 21
p1 \/19—2

. 2 . -1
L TWTT (Ipl - —ZT)
VP2 VP2

1
= exp | ———=itrT(psl,, + nl'? ) T
p( 5 (P21 )

xetr

D2

— otr (—T2 +iy | LTGTT — 23r2T2> x {1+ 0" (1)},
b2

where G = \/LE(W —nl) and the notation of denotes a term that tends to 0
under a high-dimensional framework (1.4). Therefore,

Cu(T) = / Co (TW) (W) dW

= etr (—T2 — 2p%r2T2 — Z%(FTF)Q) x {1+ 0*(1)}.

Similarly, the characteristic function of V' can be expanded as
Cy(T) = etr(=T?%) x {1 +0*(1)}.

Using these results we can expand Cyy (T4, T5) of the joint characteristic
function of V and U as follows:

CV,U(Tla Tz) = E[exp(ztrTl\/ + ’LtI'TQU)]
= CV(Tl) X EW [OU(TQIW)]
n

— etr(—T2)etr (—T2 _oltpep2
e

(FTQI‘)Q)
x{1+ o0"(1)}.
Therefore we obtain the following theorem.

Theorem 2.1 Under assumption Al, each of the elements of U and V 1is
asymptotically and independently distributed as a mormal distribution, more



precisely
v S N(0,2), vy SN0, i# ],

w5 N (0,2 (1 yolly2y 37;*)) L uy SN (o, 1+ ﬁ’yf) i 7.
D2 D2 P2

where 72 = p2/(1 — p?) and % denotes convergence in distribution.

We can write A, Al Ay, and Ay, in terms of U and V as

1
AUUA;)lAvu = D2 (Ipl + Z%FQ) —+ \/p_QU, Auu-v =m (Ipl + ﬁV) , (21)

and hence

Q — A_l/QAuvA;levuA_l/z

uu-v uu-v

1 1\ no_, 1\ 2
= — |7 —V I —Tr Uz |1 —V .
(i gmr) e (i) vt (s )
Therefore, () can be expanded as
D2 1 . n_,
= =, ——=V+0 I —r U
@ = (- gmvron) { (1) + vew)

X (Ip1 — \/%V + OT))

— p2 <]p1 + 21"2)
m P2
+L{\/E— Lyp (1 + ﬁlﬁ) _1p (1 + QPQ) V}
vm lVm 2 m \'" p 2m """ p
+Or. (2.2)

Here, the notation O] denotes a term of the i-th order with respect to
(n~tpyt,m™).

2.1 Null distributions

In this section we consider the null distribution of the three test statistics
under framework Al and

All: pi>->pi>ppy=-=ps =0. (2.3)
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Consider the transformed test statistics of LR, LH and BN P in (1.2) defined
by

TLR:\/_( ){log H (1+62) - k:)log(l—i—%)},

Jj=k+1
Tpn = { Z ;- } (24)
j=k+1
Tpnp = (1+m) <1+m> i b (o1 — k)
BNP = /D2 D p2) A 1+ g; P .

Note that ¢, ... ,éﬁl are the characteristic roots of (), and the three test
statistics are symmetric functions of the last p; — k£ characteristic roots
@ZH, e ,Epl Using the fact that @ has a perturbation expansion as in (2.2),

it can be seen (see Lawley (1956, 1959) and Fujikoshi (1977)) that the last
— k characteristic roots (7, |, ..., £ are the characteristic roots of

D2 1 D2 D2 .
D= Elpl_k + ﬁ ( EUQQ — E‘/Q2> + Ol? (25)

U:{UH U12}7V:{V11 ‘/12}

where

Usi Uz Vor Vao

Usp and Vag are (p; — k) X (p1 — k) matrices.
Using these results we can expand Trg, Ty, and Teyp as follows:

Tin = \/E(l+}%){i{log(l+—+€2 m)}

j=k+1

—(pl—k)log<1+%>}
- (R e B (5B o)

k1
J m

- (142 |

= tr <U22 — U%VYQQ) + OT/Z?




m [ py 1 [ D2 D2 «
Trg = \/p_z{p_Q{E(pl_k)—i_ﬁtr( EUB_EV??)"FOU?}

-1
m m P2 m
T = V2 |1+ — 1+ — (= 14+ — —k
BNP Pz( pz){( p2) (m( pz) (Pl )
1 m —2 P p *
+—= i (1 +p—2) tr (HEQUZQ - 52‘/22)) - (p1 - k’) +Ol/2}
= tr| U —,/@V + O3
22 w2 1/2

Each of the diagonal elements of Usy and Vi is asymptotically distributed
as N(0,2). Therefore, we obtain the following theorem.

Theorem 2.2 Under assumptions (1.4) and (2.3),

T
=< i) N(07 1)7
ofe;

where G=LR, LH, BNP, and

o = \/2(p1—k) <1—|—%).

2.2 Non-null distribution

In this section we derive the asymptotic non-null distributions of the
three test statistics for dimensionality under the alternative hypothesis:

Ho:py>pppi=-.=pp =0, k<b<p.

For simplicity, we assume that the first b canonical correlations are differ,
ie.,

Al2: pi>->pp > ppyy=...=p; =0. (2.6)

9



This is equivalent to 7§ > --- > 77 > 73, = --- = 75, = 0. Note that
(3,..., 02 are the characteristic roots of AM}UAMA 1 A, which has a per-

turbation expansion in (2.2).

n :
= @ujj—@<1+p2%>vﬂ+01/2, j=k+1,...,b. (2.7)

Further, from (2.6) the last p; — b characteristic roots ¢ ,,..., (2 are the

characteristic roots of

5_ P2 L (e P2y :
Q—mlpl_b+\/m( 2 s mvm)mm, (2.8)

[711 [712 :| |: ‘/11 ‘712 :|
U=| 2 22 v= 2
[ Vo Vi

where

and Uy, and Vay are (p1 — b) X (p1 — b) matrices. Let

p1
Trr = /D2 <1 + p@> {log H (1+6)
2

j=k+1

p1
7 m D2
J=k+1

P1
m m D2 n
Tr =/ — [ p— —= 1—}——2) , 2.9
LH p2{p2 E : j E : m ( pQ% (2.9)

j=k+1 P2 ;57
m m Pl f2
TENP:\/19_2<1+_) (1+ ) ]2
P2 k+1 ]
P2 1 + %

P
m m
-(1+5) 3 pz
j= k+11_|__
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Using (2.7) and (2.8) we can express T} g, T and Ty p as follows.

S 1+ [m( [p p n
T — m o B2 221 2.2
LR Z Do ) pz( mu]] m + s Y;

. n
JEkHL L1+ — | 1+ —7
m

p2j

~ p2~
tr | Usa — 4/ —=V5 O3
+ T( 2~/ 22)+ 1/25
b
* m P2 P2 n o
T, = — s — =1+ —~4 .
LH j:zk;rl{“m(\/mujj m( +p2'7j)vjj>}

x b2 *
+ tr (U22 — “5%2) + 01/2,

p1 (1 + @>2
BNP = Z Pl RV el el (R e

n 2 b2
j=k+1 <1 + p2 (1 + _%2,))
m D2
> P2 .
+ tr (UQQ — —‘/22> + 01/2.
\/ m

Therefore we can combine the above three expressions as

b
* C p2 n
TG = Z dj (ujj — A / E (1 + ])—Q’YJQ) Ujj)

Jj=k+1
i D2 = *
+tr <U22 - —‘/22> + 01/2.
\/ m
where »
1+
m
d; =

- )
1+ 2 <1+—7]2>
m Y2

Here, the notation G and c is used such that

1, when G = LR,
c=1< 0, when G = LH,
2, when G = BNP.

Using Theorems 2.1 and 2.2, we obtain the following theorem.

11

")



Theorem 2.3 Let T}, be the transformed test statistics defined by (2.9),

where G = LR, LH, BNP. Then, under assumptions (1.4) and (2.6),
T*
‘%? li pJ<071%
e’

where

b
*2 2 n o N 4
it = 2 3 dr{(1eanat e 1)

j=k+1

+2(pr — b) (1 + %) .

2.3 Asymptotic power

Based on the asymptotic distributions of the three statistics in Theorem
2.3, we obtain their asymptotic powers. Let 0¢ = T — T¢5. Then

1+ 2 b @nﬁ
i = i | 2 |3 o (1 i)
p2 j=k+1 (1 + —) D2
m
b n’yQ
dra = VP2 Z —]7
= b2
Jj=k+1

o 142 o (1)
m m m
e =i (1 +2) ) 5

2 P2 n
j=k+1 1 4+ == [ 1 4+ —~2
m +m( +P2%)

—(b—k)

We have
Pp = PT(TG > O'G,Za) = PT’(TC*; > 0GRa — (5(;),
where z, is the upper 100 % points of the standard normal distribution.
Using Theorem 2.3, the asymptotic power with a level of significance «

is expressed as
5 - o
lim Pp= lim & (G—UGZ) ,

pa—00 pa—00 lop2
where ® is the distribution function of the standard normal distribution.

Under assumption (1.4),
1 1
12 = P2 =5 — 1 = ¢ > 0.
m n—p L _q
P2 c

12



Therefore, we can obtain ¢ — oo so that the asymptotic power is 1.

3 Distributions of tests for additional infor-
mation

We are interested in the distribution of 7" in (1.5). According to The-
orem 2 in Fujikoshi (1982), 7" under H; is expressed as a product of two
independent variables, i.e.,

T=TxTy, Ti~Ap2g,n—p), To~Aqgsy,q,n—r), (3.1)

where p1 = ¢1 + @2, po = g3 + q4, ¥ = q1 + q3. Here, we denote the distri-
bution of A = |A|/|A + B| by A(p,q,n), where A and B have independent
Wishart distributions W,(n, ) and W,(q, X), respectively. Fujikoshi (1982)
derived an asymptotic expansion for the distribution of 7" under A0. The
approximation can be written as

P(—mlogT < z) = Gg¢(x) + %{Gf+4($) —G(z)} +0(m™?), (3.2)

where p=qg+ @+ +a, r=a+q¢, [ =@ +¢)(g+q) — ags,

1 Lqigs(p—)
=n— - 1) — -\ 1)
1
5= |{at+ @@t —shr e 2iem s mda

+ QQ2C]4{Q1(]2 + @3qs — 391613} —3(qgs)*(p—1)?/f]|.

Let A be a statistic that is distributed as A(p, ¢, n). Tonda and Fujikoshi
(2004) derived an asymptotic expansion formula of the distribution of A when
q is fixed, n — oo, p — oo with p/n — ¢ € (0,1). For our derivation, we use
their result. Let

—Jog A —
1, — —loEhmme
F
where
n+j 2 p?
mp = log ———— dp = — : —.
g Z n—p+j’ F p;(nﬂ)(n—pﬂ)

13



Then, the characteristic function of 7% can be expanded as

Cr, (1) = {1 + Z Sl (7 Z kSN (i } +o(ph),

where K%a)s are defined by

1 1 1 T2 — 71
o Lo L e 1 ( P 1) <“>) ,
p

VP

1 1 T2 — T
I{%) = 2—) (7'4 + 7173 — '7'(13)) > /{g?) = E (’7’6 + S G ) (33)) ,

q q
_ § : i _ § : i+j
T = WETik, T(ij) = Wy " TikTjk-
k=1 k=1

Here the coefficients 7;; and w; are given by

a; 2+ Q; Q; (4 + 3CL]')
Tyj =  TH T e T2 T Ty
2(1 + ay) 3v2(1+ a;) (14 ay)
3+ 5a; + 2a; (24 ay)? oy

T 60 ta) YT 36(0+a) T dIta,

where a; = p/(n —p+3), d=371,p{(n+j)n—p+j)}"
Wakaki (2006) derived an asymptotic expansion formula of the distribu-
tion of A when all three values of p, ¢ and n tend to infinity with p/n — ¢; €

(0,1) and q/n — c3 € (0,1). For our derivation, we use his result. Let
Ty — —log A —mw,
dw

where my = 7, dZ, = 73,

) _ (s )= (P—Pta\ s (nTtg
e () e ()
S)—ZdJ < j_1>, (s=0,1,...;a > 0),

and ¥ (a) is the polygamma function defined as




Then, the characteristic function of Ty, can be expanded as

3
Cryy () = {1+Zn2a D (it)?- 1+Z/€$42,a)(it)20‘} +o(p™),

a=1

(a)

where Ky, ) — 2 — ,

s are defined by Ky, = Ky =
RE) = 7@ (72— ) (7@)? 0 ()2

Using these results, we can obtain the asymptotic distribution of T in
(1.5) under various high-dimensional frameworks satisfying A2.

3.1 Null distribution under A2

In our framework A2, the conditions ”p — o0” and ”one of ¢1, ¢2, q3, g4 — 00"
are equivalent. Under p; < po, the condition can be realized as one of the
following 12 cases.

(i) q1:fixed, go:fixed, gs:fixed, g4 — oc0. (vii) ¢ — 00, ¢o:fixed, g¢s:fixed, ¢4 — 0.
(i) gq1:fixed, go:fixed, g3 — 00, qy:fixed. (viii) q1 — 00, go:fixed, g3 — 00, g:fixed.
(iii) g1:fixed, go:fixed, g3 — 00, g4 — 00. (iX) ¢ — 00, go:fixed, g5 — 00, g4 — 0.
(iv) ¢qi:fixed, g — o0, gs:fixed, g4 — oco. (x q1 — 00, qu — 00, g3:fixed, g4 — oo.
(v) qi:fixed, go — 00, g3 — 00, gu:fixed. (xi) ¢1 — 00, ga — 00, g3 — 00, qy:fixed.
(vi) g1:fixed, g2 — 00, g3 — 00, g4 — 00. (xii) Q1 — 00, (g — 00, @3 — 00, (4 — OO.

We can obtain an asymptotic expansion of the distribution of 7" in all of the
cases except (ii). Note that even in situation (ii), our approximations are
good based on the numerical simulation.

We have seen that 77 and T have the following asymptotic means and
variances:

E(—logTj) = m;,  Var(—logT}) ~ dj,

and hence
E(—logT) ~ mj 4+ ma, Var(—logT) ~ d,

where d = (d% + d%)_l/Q. Note that m; and d; are given by Tonda and
Fujikoshi (2004) and Wakaki (2006), respectively. Let Ty be the standard-
ization of T" defined by

—logT — (my + my)

Ty = 7
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Noting that Ty = w Ty + w2T2 with w; = d;/d, the characteristic function
Cy(t) of Ty is expressed as

Cry (t) = Cf, (wit) O, (wst),

where T] are defined by the standardization of —log7}. Then the character-
istic function of Ty is expressed by

a=1 a=1
where
rO =Y Ry RO =BT R R =R R RTRY, (3.3)
f® =80+ 70+ RORD + 7PRD, 8O =& &0+ RPRD.
Here /%;O‘)’s are defined by /%j w]a/iy‘), where /iéa)’s are given by Tonda

and Fujikoshi (2004), Wakaki (2006).

Let Ty denote the standardization of 7" under (i), (iii), and (viii), Tuo
under (iv), (vi), and (xi), Tys under (v), Ty under (vii), and (ix), and Tys
under (x) and (xii). For convenience, let (ginf, ¢fiz) be defined by

(,q1)  under ¢4 — oo, q : fixed,

(qu,inm) = {

(q1,q4) under ¢ — 00, ¢4 : fixed.

Then, m;, d;, Iig»a) are obtained from the following table.

my, d17 Iiga) ma, d27 ’iga)

Tu1 | F(p2,q2,m —p1) | F(Ging, @iz, —7)
Tua | W(p2,q2,n —p1) | F(Qing, qpiz,n — 1)
Ths F(p1;Q4,n— 2) W(Q27Q3;TL—T)
Ty | F(p2,qo,n—p1) | W(ga,q,n—1)
Tus | W(p2, a2, —p1) | Wiga, qi,n —1)

Here, F(a,b, c) and W (a, b, ¢) show that (m;, d;, Iiga)) are defined from (mp, dp, /a'%a))

or (mW,dW,F;W) by substituting (n,p,q) for (a,b,c), respectively. Using
A(p,q,n) = A(q,p,n + q — p), cases (viii) and (xi) can be obtained. Note
that case (v) is obtained by using the fact that

T = Tll X T2/a Tll ~ A(p1>Q47n _pl)v TQI ~ A(Q2,Q37n - T),

Finally, by inverting the characteristic function of T we have the follow-
ing theorem.
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Theorem 3.1 Let T be the normalization of T defined by (1.5). Then, the
null distribution of T can be expanded as

P(Ts < ) = (x) — 6() [ar(2) + as(a)] + o(p™), (3.4)

where G = H1 ~ H5, ®(x) and ¢(x) are the distribution and density function
of the standard normal distribution, respectively and a;(x)’s are defined by

ar(x) = KW + 6P hy(z),  ax(z) = kP hy(z) + kD hs(z) + kO hs(z). (3.5)

Here, h;(z) is the jth Hermite polynomial; in particular, hy(x) = x, he(z) =
2?2 —1, ha(z) = 2% — z, hy(x) = 2* — 62% + 3, hs(x) = 2° — 102® + 15z, and
ks are given by (3.3).

Using the coefficients a;(x)s of the asymptotic expansion (3.4), we can
obtain the Cornish-Fisher expansion. Let z and #(x) denote the percentage
point of the limiting distribution of T; and the corresponding percentage
point of Ty, respectively, that is

P(Tg < t(x)) = @(x), G = H1 ~ Hb5.
Then from (3.4), t¢(x) can be expanded as

1

() = v+ ai(2) + {m(m)aa(as) — Sva () + a2<x>} +o(p™)

=ic(z) +o(p™) (3.6)

4 Simulation results

In this section we compare our high-dimensional approximations (de-
noted as H) with the classical approximations (denoted as C) based on the
asymptotic distribution under a large sample framework such that p; and ps
are fixed and n tends to infinity. The numerical accuracy is studied for the
upper percentage points and the actual test size.

4.1 Null distributions of tests for dimensionality

It is well-known that under the large sample framework, the three statistics

p1

p1 7“2~ p1
—nlog H (1—=73), n Z 1—jr2.’ n Z ri.
j

j=k+1 j=k+1 j=k+1

17



are asymptotically distributed as the y2-distribution with (p; — k)(p2 —
k) degrees of freedom (e.g., see Siotani et al. (1985)). Under the high-
dimensional framework the three statistics T /o are distributed asymptoti-
cally (see Theorem 2.2) as N (0, 1), where o = \/2(p1 — k)(1 + pa/m), G =

LR,LH, BNP. To facilitate, let tc = n""X¢, 4y 4)

1
—_ m

turn = (p = k) log (14+22) +p " (1 + —) Zao
m b2

P _
tra.n = EQ {(pl — k)4 oL X py 1/2Za} )

—1 -1
m _ m
tgNp.H = <1+—) {(p1 — k) +onp ><p21/2 (1+—> Za} )
P2 P2

where X%}n—k)(pz—k‘),a and z, are 100(1 — )% point of the x2-distribution with
(p1 — k)(p2 — k) degrees of freedom and the standard normal distribution,
respectively.

The values of py,n, py; and P were chosen as follows:

(p1 + p2, n); (10,50), (20, 50), (30, 50), (40, 50), (10, 100), (15, 100),
(20, 100), (50, 100), (70, 100), (90, 100)(10, 100),
(30, 200), (50, 200), (80, 200), (100, 200)(120, 200),
(150, 200), (170, 200), (190, 200),

(p1,P) : (3,diag(0.9,0.6,0.0)), (p1,P) : (4, diag(0.9,0.6,0.0,0.0)),

Table 1 shows the estimated upper 5% points based on a Monte Carlo sim-
ulation, the approximated critical points using our method, trr.g, try.m,
tgnp.a, and the classical approximations to. Table 2 shows the correspond-
ing actual test sizes. We are interested in the behavior when the dimension
is large and close to the sample size.

From Tables 1 and 2, the chi-square type approximation t¢, arr.c, @rg.c,
apnp.c performs well when p is less than 20. However, the chi-square type
approximation is poor when p is greater than 20. When p is large, oy r.c and
arpg.c are close to 1 and agyp.¢ is close to 0. The normal type approximation
arr.c, arg.c and agyp.c performs well when the dimension p is close to half
of N. When k = 2, ayy.c performs well when the dimension p close to N.
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Table 1: Upper 5% point
p1 =3, k=2, ,P=diag(0.9,0.6,0.0)

N p  p2 | Simurr trrp | Simury trp.mp | Simupyp tpnp.H | to

50 10 7 0.24** 0.29* 0.28** (.32* 0.23** 0.28% 0.23

50 20 17 0.60** 0.65* 0.83 0.88* 1.30 1.69 | 0.51

50 30 27 1.04 1.11%* 1.83 1.91%* 3.63 5.12 | 0.77

50 40 37 1.71 1.79%* 4.67 4.65* 7.69 11.44 | 1.02
100 10 7 0.12%* 0.14* 0.12** 0.15* 0.09** 0.10% 0.11
100 15 12 0.20%* 0.22%* 0.22*%* (0.24* 0.22** 0.25*% 0.18
100 20 17 0.28** (0.29* 0.32** 0.33* 0.43 0.48% 0.25
100 50 47 0.82 0.84* 1.28 1.28%* 4.10 4.84 | 0.62
100 70 67 1.33 1.38%* 2.82 2.86* 8.82 11.97 | 0.86
100 90 87 2.35 2.41% 9.84 9.73* 15.61 23.85 | 1.09
200 10 7 0.06** 0.07* 0.06** 0.07* 0.04** 0.04* 0.06
200 | 30 27 0.20** 0.21* 0.22** (0.23* 0.34 0.37% 0.19
200 50 47 0.35** 0.36* 0.42 0.43* 1.12 1.23 | 0.31
200 | 80 7 0.61 0.61* 0.83 0.83* 3.65 3.99 | 0.48
200 | 100 97 0.80 0.81* 1.23 1.22%* 6.34 7.13 | 0.60
200 | 120 117 1.04 1.05%* 1.83 1.81* 10.11 11.55 | 0.71
200 | 150 147 1.51 1.53* 3.56 3.54* 16.97 21.03 | 0.87
200 | 170 167 2.01 2.03* 6.52 6.49* 22.15 29.55 | 0.98
200 | 190 187 2.99 3.03* 19.59 19.28%* 26.27 40.06 | 1.09

* Denotes |Simug — tg.g| <

107!, where G = LR,LH, BNP.

** Denotes |Simug — t¢| < 107!, where G = LR, LH, BN P.
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p=4, k=2, P =diag(0.9,0.6,0.0,0.0)

N p p2 | Simurr trrm | Simury trg.mp | Simupyp tpnp.H | tC

50 10 7 0.24** 0.29* 0.28** (.32%* 0.23** 0.28% 0.23

50 20 17 0.60** 0.65* 0.83 0.88* 1.30 1.69 | 0.51

50 30 27 1.04 1.11%* 1.83 1.91%* 3.63 5.12 | 0.77

50 40 37 1.71 1.79%* 4.67 4.65* 7.69 11.44 | 1.02
100 10 7 0.12%* 0.14* 0.12** 0.15* 0.09** 0.10% 0.11
100 15 12 0.20%* 0.22%* 0.22*%* (0.24* 0.22** 0.25*% 0.18
100 20 17 0.28** (0.29* 0.32** (0.33* 0.43 0.48% 0.25
100 50 47 0.82 0.84* 1.28 1.28%* 4.10 4.84 | 0.62
100 70 67 1.33 1.38%* 2.82 2.86* 8.82 11.97 | 0.86
100 90 87 2.35 2.41% 9.84 9.73* 15.61 23.85 | 1.09
200 10 7 0.06** 0.07* 0.06** 0.07* 0.04** 0.04* 0.06
200 | 30 27 0.20** 0.21%* 0.22** (0.23* 0.34 0.37% 0.19
200 50 47 0.35** 0.36* 0.42 0.43* 1.12 1.23 | 0.31
200 | 80 7 0.61 0.61* 0.83 0.83* 3.65 3.99 | 0.48
200 | 100 97 0.80 0.81* 1.23 1.22%* 6.34 7.13 | 0.60
200 | 120 117 1.04 1.05%* 1.83 1.81* 10.11 11.55 | 0.71
200 | 150 147 1.51 1.53* 3.56 3.54* 16.97 21.03 | 0.87
200 | 170 167 2.01 2.03* 6.52 6.49* 22.15 29.55 | 0.98
200 | 190 187 2.99 3.03* 19.59 19.28%* 26.27 40.06 | 1.09

* Denotes |Simug — tg.g| < 107!, where G = LR, LH, BN P.
** Denotes |Simug — t¢| < 107!, where G = LR, LH, BN P.
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Table 2: The corresponding actual test size.

p1=3, k=2, ,P =diag(0.9,0.6,0.0)

N P P2 | OLRH CQLRC | ®LH-H OQLH.C | ®BNP-H QBNP-C
50 10 71 0.021 0.070 0.023  0.102 0.017 0.041*
50| 20 17| 0.026 0.155 | 0.035 0.351 0.017 0.016
50 30 27 | 0.024 0.406 0.040* 0.787 0.012 0.001
50 | 40 37| 0.025 0.837 | 0.051* 0.991 0.004 0.000
100 | 10 71 0.023 0.058% 0.025 0.074 0.021 0.046*
100 15 12 | 0.032 0.074 0.035 0.111 0.028 0.043*
100 | 20 17| 0.038 0.097 | 0.042* 0.173 0.032 0.041*
100 50 47 | 0.039 0.465 0.052* 0.845 0.025 0.006
100 | 70 67| 0.026 0.895 | 0.044* 0.998 0.011 0.000
100 90 87 | 0.024 1.000 0.054* 1.000 0.002 0.000
200 10 71 0.024 0.056*% 0.025 0.062 0.024 0.050*
200 | 30 27| 0.034 0.087 | 0.038 0.159 0.031 0.037
200 50 47 | 0.041* 0.168 0.046  0.393 0.035 0.030
200 80 77 | 0.045*% 0.451 0.054* 0.865 0.036 0.018
200 | 100 97 | 0.043* 0.727 0.054* 0.984 0.033 0.007
200 | 120 117 | 0.044* 0.924 0.057* 1.000 0.030 0.002
200 | 150 147 | 0.036  0.999 0.054* 1.000 0.018 0.000
200 | 170 167 | 0.029 1.000 0.053* 1.000 0.009 0.000
200 | 190 187 | 0.026 1.000 | 0.061  1.000 0.003 0.000

* Denotes the approximation in [0.040, 0.060]
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pr=4, k=2, ,P = diag(0.9,0.6,0.0,0.0)

N P P2 | ®LRH QLRC | “%LHH CQLHC | ®BNP-H QBNP-C
50 | 10 7| 0.011 0.072| 0.016 0.114 0.006 0.039
50 | 20 17| 0.023 0.209 | 0.038 0.502 0.011 0.019
50 | 30 27| 0.022 0.623 | 0.053* 0.948 0.008 0.004
50 | 40 37| 0.034 0979 | 0.092 1.000 0.007 0.000
100 | 10 71 0.009 0.061 | 0.012 0.078 0.007 0.044*
100 | 15 12| 0.018 0.078 | 0.022 0.131 0.014 0.039
100 | 20 17| 0.025 0.115| 0.032 0.214 0.018 0.040%*
100 | 50 47 | 0.028 0.684 | 0.051* 0.975 0.017 0.008
100 | 70 67| 0.033 0.990 | 0.063 1.000 0.016 0.000
100 | 90 87| 0.039 1.000 | 0.109  1.000 0.007 0.000
200 | 10 7| 0.011 0.051% 0.012 0.058* 0.010 0.044*
200 | 30 27| 0.029 0.110 | 0.035 0.221 0.024 0.042*
200 | 50 47 | 0.035 0.244 | 0.043* 0.572 0.028 0.031
200 | 80 77| 0.041* 0.676 | 0.055* 0.982 0.032 0.020
200 | 100 97 | 0.037 0.925 | 0.054* 1.000 0.025 0.009
200 | 120 117 | 0.041* 0.996 | 0.063 1.000 0.027 0.003
200 | 150 147 | 0.036 1.000 | 0.062  1.000 0.019 0.000
200 | 170 167 | 0.036 1.000 | 0.076  1.000 0.014 0.000
200 | 190 187 | 0.045* 1.000 | 0.126  1.000 0.007 0.000

* Denotes the approximation in [0.040, 0.060]
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4.2 Additional information

The Cornish-Fisher expansion of the large sample approximation (3.2) is
well known. The expansion is obtained by using an alternative form of (3.2)
written as

P(-mlogT <) = Gy(x) + g;(x)—zpn(a) + O(m™),  (41)

where g¢(z) is the density function of the chi-square variable with f degrees
of freedom and coefficient p;(z) is defined by

52

i=1 jlf+2j—1)

Similarly let
P(—mlogT < t(x)) = G4().

Then the Cornish-Fisher expansion can be written in the same way as in
(3.6), that is,

H)_x+iwm)+0mf%

=%+m %). (4.2)

Uxto tg = my +my + d x tg(x) where

For comparison, let to = m™
G=H1~ Hb5.

Table 3 gives the upper 5% of the points based on a Monte Carlo simula-
tion (Simu), and the approximated critical points of our method, tg ~ tys,
and the classical approximations t49. Table 4 gives the corresponding actual
test sizes. We are interested in the behavior when the dimension is large and
close to the sample size.

From Tables 3 and 4, the chi-square type approximation t¢, ac performs
well when p is less than 8. In contrast, the chi-square type approximations
are poor when the smallest of g1, ¢2, g3, and ¢4 is large. When p is large, the
normal type approximation tg, ~ tgs, ag; ~ ays performs better than the
chi-square type approximation. Furthermore, when the sample size is much
larger than the dimension, the performance of the normal type approxima-
tion is similar to that of a large sample approximation. In particular, the
approximation tgs, ays is the best of these approximation for all cases.
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Table 3: Upper 5% point

N| p ¢ ¢ g3 q4| Simu tc  tm1  tmw2  tmz  tmsa  tms
50 8 2 2 2 2 0.47 0.47* 0.47% 047* 047* 047* 047*
50 | 48 2 2 2 42 | 13.12 10.36 12.78 13.08* 12.94 12.88 13.17*
50 | 48 2 2 42 2 8.97 655 860 893* 877 8.62 8.95*
50 | 48 2 2 22 221205 10.14 11.63 11.93 11.78 11.72 12.02*
50 | 48 2 22 2 22 ]31.83 2870 31.52 31.88* 31.52 31.52 31.89*
50 | 48 2 22 22 213075 27.75 30.37 30.74* 30.52 30.37 30.74*
50 | 48 22 2 2 22130.68 27.75 30.37 30.59* 30.37 30.52 30.74*
50 | 48 22 2 22 2 110.79 10.21 10.53 10.82* 10.58 10.58 10.86%*
50 | 48 12 12 12 12 | 28.05 27.69 27.61 27.97* 27.62 27.62 27.98*
100 8 2 2 2 2 0.22 0.22* 0.22% 0.22* 0.22* 0.22* (.22*
100 | 48 12 12 12 12 6.81 6.88* 6.81*% 6.82* 6.81* 6.81* 6.82*
100 | 88 2 2 42 42 7.98 7.55 7.96* T7.98% 7.98* 7.97* 8.00*
100 | 88 2 42 2 42 | 42.28 40.69 42.22*% 42.28* 42.22* 42.22* 42.28*
100 | 88 2 42 42 2 141.22 39.69 41.14* 41.19* 41.18* 41.14* 41.19*
100 | 88 42 2 2 42| 41.20 39.69 41.14* 41.15*% 41.14* 41.18*% 41.19*
100 | 88 42 2 42 2 6.90 6.83* 6.87* 6.89* 6.87* 6.87f* 6.89*
100 | 96 24 24 24 24 |51.66 5145 51.39 51.58* 51.39 51.39 51.59*
100 | 98 2 2 2 92 |16.10 10.92 15.72 16.04* 15.90 15.83 16.13*
100 | 98 2 2 92 21 10.41 6.26 10.06 10.41* 10.26 10.09 10.44*
100 | 98 2 32 32 32| 15.13 15.15* 15.14* 15.14* 15.14* 15.14* 15.14*
100 | 98 32 2 32 32| 45.60 41.89 45.12 45.34 45.12 45.28 45.50*

* Denotes the approximation in Simu + 10~7.
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N P @1 @ g3 qa| Simu tc tH1 tHo2 tH3 tH4 tHs
200 8 2 2 2 2 0.11 0.11%* 0.11%* 0.11%* 0.11%* 0.11%* 0.11%*
200 9% 24 24 24 24 12.87 12.99 12.87* 12.87* 12.87* 12.87* 12.87*
200 | 144 36 36 36 36 36.49 37.42 36.51* 36.52* 36.51* 36.51* 36.52*
200 | 148 2 2 2 142 5.76 5.61 5.76* 5.76* 5.76* 5.76* 5.76*
200 | 148 2 2 142 2 3.12 3.03* 3.12% 3.12% 3.12% 3.12% 3.12%
200 | 148 2 2 72 72 4.85 4.82%* 4.85* 4.85* 4.85* 4.85%* 4.85*
200 | 148 2 72 2 72 48.12 47.65 48.10* 48.11* 48.10* 48.10* 48.11*
200 | 148 2 72 72 2 47.24 46.78 47.21%  47.22%  47.22%  A47.21*% 47.22%*
200 | 148 72 2 2 72 47.20 46.78 47.21%  47.21*% 47.21*% 47.22*%  47.22%
200 | 148 72 2 72 2 3.95 3.95% 3.94* 3.94* 3.94* 3.94* 3.94*
200 | 158 2 52 52 52 52.22 51.50 52.18* 52.19* 52.18* 52.18* 52.19*
200 | 158 52 2 52 52 33.82 33.91* 33.83* 33.83* 33.83* 33.84* 33.84*
200 | 188 2 2 92 92 10.76 9.06 10.70* 10.73* 10.73* 10.72* 10.75*
200 | 188 2 92 2 92 | 104.51 97.34 104.46* 104.53* 104.46* 104.46* 104.53*
200 | 188 2 92 92 2 1103.36 96.24 103.23 103.29* 103.28* 103.23 103.29*
200 | 188 92 2 2 92 | 103.28 96.24 103.23* 103.24* 103.23* 103.28* 103.29*
200 | 188 92 2 92 2 9.48 8.63 9.47* 9.50* 9.48* 9.48* 9.50*
200 | 188 2 62 62 62 95.03 &8.41 95.00* 95.07* 95.01* 95.00* 95.07*
200 | 188 62 2 62 62 66.62 64.23 66.55* 66.56* 66.55* 66.59* 66.61*
200 | 192 48 48 48 48 98.99 99.11 98.84 98.94* 98.84 98.84 98.94*
200 | 198 2 2 2 192 | 18.942 11.09 18.576 18.896* 18.767 18.689 18.999*
200 | 198 2 2 192 2 111.914 6.008 11.491 11.846* 11.692 11.52 11.871%*

* Denotes the approximation in Simu + 1071
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Table 4: The corresponding actual test size.

Nl p ¢1 ¢ g q ac  apgl Qg2 Qa3 04 Qs
50 8 2 2 2 2 | 0.051* 0.052* 0.051* 0.052* 0.052* 0.051*
50 | 48 2 2 2 42 10.502 0.072 0.052* 0.059* 0.063 0.047*
50 | 48 2 2 42 21 0.472 0.075 0.052* 0.062 0.073 0.051*
50 | 48 2 2 22 2210.281 0.080 0.057* 0.068 0.074 0.052*
50 | 48 2 22 2 22 10.420 0.065 0.048* 0.065 0.065 0.048*
50 | 48 2 22 22 210.389 0.071 0.051* 0.063 0.071 0.051*
50 | 48 22 2 2 22 10.383 0.066 0.055% 0.066 0.057* 0.047*
50 | 48 22 2 22 21 0.097 0.067 0.049* 0.064 0.064 0.046*
50 | 48 12 12 12 12 ]0.070 0.074 0.054* 0.074 0.074 0.053*
100 8 2 2 2 2 | 0.049* 0.049* 0.049* 0.049* 0.049* 0.049*
100 | 48 12 12 12 12 ] 0.037 0.050* 0.050* 0.050* 0.050* 0.050*
100 | 88 2 2 42 42| 0.147 0.053* 0.050* 0.050* 0.051* 0.048*
100 | 88 2 42 2 42 10.293 0.055* 0.050* 0.055* 0.055* 0.050*
100 | 88 2 42 42 21 0.270 0.056* 0.052* 0.053* 0.056* 0.052*
100 | 88 42 2 2 42 1 0.275 0.054* 0.053* 0.054* 0.051* 0.051*
100 | 88 42 2 42 2 1 0.061 0.056* 0.052* 0.055* 0.055*% 0.052*
100 |96 24 24 24 24| 0.059* 0.063 0.053* 0.063 0.063 0.053*
100 | 98 2 2 2 92 10.961 0.075 0.053* 0.061 0.067 0.048*
100 | 98 2 2 92 2 10.923 0.072 0.050* 0.058* 0.070 0.048*
100 | 98 2 32 32 32| 0.046* 0.048* 0.048* 0.048* 0.048* 0.048*
100 | 98 32 2 32 320467 0.071 0.061 0.070 0.064 0.053*

* Denotes the approximation in [0.040, 0.060]
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N P @1 G g3 Q4 ac  apgr a2 g3 OF4 Qs
200 8 2 2 2 2 | 0.055* 0.055* 0.055* 0.055* 0.055*% 0.055*
200 96 24 24 24 24 | 0.026 0.049* 0.049* 0.049* 0.049* 0.049*
200 | 144 36 36 36 36 | 0.003 0.048* 0.048* 0.048*% 0.048* 0.047*
200 | 148 2 2 2 142 | 0.117 0.051* 0.051* 0.050* 0.051* 0.050*
200 | 148 2 2 142 2 10.104 0.052* 0.051* 0.051* 0.052* 0.051*
200 | 148 2 2 72 72 1 0.064 0.053* 0.052* 0.052* 0.052* 0.051*
200 | 148 2 72 2 72 1 0.124 0.053* 0.052* 0.053* 0.053* 0.052*
200 | 148 2 72 72 21 0.121 0.055* 0.053* 0.053* 0.055* 0.053*
200 | 148 72 2 2 72 1 0.118 0.049* 0.049* 0.049* 0.048* 0.048*
200 | 148 72 2 72 2 | 0.050* 0.053* 0.052* 0.053* 0.053* 0.052*
200 | 158 2 52 52 52 | 0.171 0.054* 0.053* 0.054* 0.054* 0.053*
200 | 158 52 2 52 52 | 0.041* 0.049*% 0.048* 0.048* 0.048* 0.048*
200 | 188 2 2 92 92 | 0.722 0.057* 0.053* 0.053* 0.055* 0.051*
200 | 188 2 92 2 92 1 0.991 0.054* 0.049* 0.054* 0.054* 0.049*
200 | 188 2 92 92 2 10.992 0.057* 0.053* 0.054* 0.057* 0.053*
200 | 188 92 2 2 92 | 0.990 0.053* 0.052* 0.053* 0.050* 0.049*
200 | 188 92 2 92 21 0.301 0.052* 0.048* 0.051* 0.051* 0.048*
200 | 188 2 62 62 62 | 0.988 0.053* 0.048* 0.052* 0.053* 0.048*
200 | 188 62 2 62 62 | 0.422 0.054* 0.053* 0.054* 0.052* 0.051*
200 | 192 48 48 48 48 | 0.043* 0.057* 0.052* 0.057* 0.057* 0.052*
200 | 198 2 2 2 192 | 1.000 0.076 0.054* 0.062 0.068 0.047*
200 | 198 2 2 192 2| 1.000 0.080 0.054* 0.063 0.077 0.052*

* Denotes the approximation in [0.040, 0.060]
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