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Abstract

We study rate of convergence for approximation of power-divergence
statistics {Tλ(Y ), λ ∈ R}, constructed for n observations of a random
variable Y with three possible outcomes. We prove that

Pr(Tλ(Y ) < c) = K2(c) +O
(
n−100/146(log n)315/146

)
,

where K2(c) is a distribution function of chi-square distribution with
2 degrees of freedom. The proof is based on Huxley (1993) result about
approximation of number of lattice points in large convex bodies.

Key words: approximation, Huxley theorem, curvature, chi-square distribu-
tion, power-divergence statistics.
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1 Introduction and main result

Let Y = (Y1, Y2, Y3)
′ be a random vector with multinomial distribution

M3(n,π), that is

Pr (Y1 = n1, Y2 = n2, Y3 = n3) =


n!
∏3

j=1

(
π
nj
j /nj!

)
nj = 0, . . . , n (j = 1, 2, 3)

and
∑3

j=1 nj = n,

0 otherwise,

where π = (π1, π2, π3)
′, πj > 0,

∑3
j=1 πj = 1. We consider a simple hypoth-

esis H0 : π = p (here p is a fixed vector with non-zero components) under
alternative hypothesis H1 : π 6= p. It is often used in this case a test from
so-called power-divergence family of statistics. It has a form

Tλ(Y ) =
2

λ(λ+ 1)

3∑
j=1

Yj

[(
Yj
npj

)λ
− 1

]
, λ ∈ R,

where p = (p1, p2, p3)
′ , pj > 0 (j = 1, 2, 3) and

∑3
j=1 pj = 1.

R e m a r k 1. If λ = 0 or λ = −1 then T0 and T−1 are defined as the limits
of Tλ when λ→ 0 or λ→ −1 correspondingly.

R e m a r k 2. These statistics were introduced in [1] and [2] and were denoted
by 2nIλ(Y ). If λ = 1, λ = −1/2 and λ = 0 we get Pearson’s chi-square test,
loglikelihood ratio statistic and Freeman-Tukey statistic correspondingly.

Our aim is to get approximation for Pr (Tλ(Y ) < c), where c here and
everywhere below is a positive constant. Since the components of Y are
connected by identity

Y1 + Y2 + Y3 = n,

let us consider variables

Xj = (Yj − npj)/
√
n, j = 1, 3, X = (X1, X2)

T ,

provided that null hypothesis holds. The components of the vector X are
concentrated on the lattice

L = {x = (x1, x2)T ; x = (m− np)/
√
n, p = (p1, p2)T , m = (n1, n2)T },

where nj are non-negative integers.
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We have

Pr (Tλ(Y ) < c) = Pr (Tλ(X1, X2) < c) = Pr
(
X ∈ Bλ)

)
,

where

Bλ = {(x, y) : Tλ(x, y) < c} (1)

and

Tλ(x, y) =
2

λ(λ+ 1)
(np1 +

√
nx)

[(
1 +

x√
np1

)λ
− 1

]

+
2

λ(λ+ 1)
(np2 +

√
ny)

[(
1 +

y√
np2

)λ
− 1

]

+
2

λ(λ+ 1)
(np3 −

√
n(x+ y))

[(
1− x+ y√

np3

)λ
− 1

]
. (2)

The set Bλ is so-called extended convex set. We prove it in Section 3. Now
let us remind

Definition 1. A set B ⊂ R2 is called an extended convex set when it can be
represented in a form:

B = {(x, y) : λ1(y) < x < θ1(y), y ∈ B1}
= {(x, y) : λ2(x) < y < θ2(x), x ∈ B2}.

where B1 ⊂ R, B2 ⊂ R, and λ1, θ1, λ2, θ2 are continuous functions in R.

For the random vector X defined above J.Yarnold in [4] obtained asymp-
totic expansion for a bounded extended convex set B:

Pr(X ∈ B) = J1 + J2 +O(n−1),

where

J1 = J1(B) =

∫∫
B

φ(x)

{
1 +

1√
n
h1(x) +

1

n
h2(x)

}
dx,
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with

h1(x) = −1

2

3∑
j=1

xj
pj

+
1

6

3∑
j=1

xj

(
xj
pj

)2

,

h2(x) =
1

2
h1(x)2 +

1

12

(
1−

3∑
j=1

1

pj

)

+
1

4

3∑
j=1

(
xj
pj

)2

− 1

12

3∑
j=1

xj

(
xj
pj

)3

;

and

J2 = J2(B) =− 1

n

∑
y∈L2

χB1(y)
[
S1

(√
nx+ p1n

)
φ(x, y)

]θ1(y)

λ1(y)

− 1√
n

∫ ∞
−∞

χB2(x)
[
S1

(√
ny + p2n

)
φ(x, y)

]θ2(x)

λ2(x)
dx, (3)

with

L2 = {y : y =
1√
n

(m− np2),m ∈ Z}, (4)

S1(x) = x− [x]− 1

2
and [h(x)]

θ(y)
λ(y) = h(θ(y))− h(λ(y)),

here χA(x) is an indicator function of A; a function φ(x, y) is a probability
density function of standard normal distribution in R2 and θ1, λ1, θ2, λ2 are
continuous functions from definition 1 for the set B.

M. Siotani and Y. Fujikoshi in [3] showed, that for λ = 0 and λ = −1/2
one has:

J1(B
λ) = K2(c) +O(n−1), (5)

J2(B
λ) = (Nλ − nV λ) e−

c
2

/
(2πn)

√∏3

j=1
pj + o(1), (6)

V λ = V 1 +O

(
1

n

)
,

where K2(c) is the distribution function of chi-square distribution with two
degrees of freedom, Nλ is a number of points from the lattice L lying in Bλ,
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V λ is an area of Bλ. These results were extended by T. Read to the case of
arbitrary λ ∈ R. It follows from theorem 3.1 in [2] that

Pr (Tλ < c) = Pr
(
χ2

2 < c
)

+ J2(B
λ) +O

(
n−1
)
,

and for J2(B
λ) the representation (6) holds. Thus, the initial problem to

find rate of convergence for approximation of Pr (Tλ < c) is reduced to the
problem of finding order of J2(B

λ).
Since Bλ is an extended convex set (it will be shown in lemmas 5 and 8),

we can apply Yarnold’s result (see [4], p. 1571) for J2(B
λ) and get:

J2(B
λ) = O

(
n−1/2

)
.

In the present paper we prove a better estimate

Theorem 1. For all λ ∈ R we have

J2(B
λ) = O

(
n−100/146(log n)315/146

)
. (7)

The proof is divided into two main parts. In the first part (see Section 2)
we estimate the order of approximation of J2(B

λ) by first summand in (6).
In the second part (see Sections 3, 4 and 5) we show that Huxley results can
be applied to the set Bλ, and therefore, finally we get the order of J2(B

λ).

2 Expression for J2(Bλ)

Let θ̂1 and λ̂1 be the functions from definition 1 for ellipse
B1 = {(x, y) : T1(x, y) < c} with

T1(x, y) =

(
1

p1

+
1

p3

)
x2 +

2

p3

xy +

(
1

p2

+
1

p3

)
y2

and let B1
1 be domain of definition of the functions.

Lemma 1. Lebesgue measure of a set Bλ
1 \B1

1 is of order O
(
n−1/2

)
.

Proof. Solving an equation
T1(x, y) = c
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with respect to x, we find precise expressions for θ̂1 and λ̂1:

θ̂1(y) = − p1y

p1 + p3

+

√
p1p2p3

√
−y2 + cp2(p1 + p3)

p2(p1 + p3)
,

λ̂1(y) = − p1y

p1 + p3

−
√
p1p2p3

√
−y2 + cp2(p1 + p3)

p2(p1 + p3)
.

Therefore the domain of definition of these functions can be written as :

B1
1 =

[
−
√
cp2(p1 + p3),

√
cp2(p1 + p3)

]
. (8)

In lemmas 5 and 8 below we show that Bλ is a convex set with a smooth
boundary. Therefore, there exist points on Y -axis such that the straight lines
passing through the points and parallel to X-axis are the tangent lines to
the curve defined by Tλ(x, y) = c. These points have the minimal ymin and
maximal ymax values of the second component among all points of the curve.
Thus, these extremal points are the left and right points correspondingly of
an interval Bλ

1 . Since for any x, y ∈ Bλ starting from some n = n(y) we have

∂2Tλ
∂x2

(x, y) > 0,

the function Tλ(x, y) reaches its minimum at the point of tangency when

∂Tλ
∂x

(x, y) = 0.

Solving the equation with respect to y, we get that the points of the curve
Tλ(x, y) = c with second components ymin and ymax lie on the straight line

x = − p1y

p1 + p3

.

Substituting this expression into equation Tλ(x, y) = c, and expanding the
left-hand side by Taylor formula we obtain

ymin = −
√
cp2(p1 + p3) +O

(
n−1/2

)
, ymax =

√
cp2(p1 + p3) +O

(
n−1/2

)
.

Therefore the set Bλ
1 has the form

Bλ
1 =

[
−
√
cp2(p1 + p3) +O

(
n−1/2

)
,
√
cp2(p1 + p3) +O

(
n−1/2

)]
. (9)

Now lemma follows from (8) and (9).
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Put

B1
1− =

[
−
√
cp2(p1 + p3) + n−1/2,

√
cp2(p1 + p3)− n−1/2

]
. (10)

R e m a r k 3. Exactly two points of the lattice L2 lie in a set B1
1 \ B1

1− (see
(4), (8) and (10)).

R e m a r k 4. Lebesgue measure of the set Bλ
1 \ B1

1− is of order O
(
n−1/2

)
(see lemma 1, (8) and (10)).

R e m a r k 5. The set Bλ
1 \B1

1− is a union of no more than two semi-intervals.

Lemma 2. Let θ1 and λ1 be the functions from definition 1 for the set Bλ

(see (1)). There exist constants c1 > 0 and c2 > 0 such that θ1 and λ1 satisfy
the following inequalities∣∣∣θ1(y)− θ̂1(y)

∣∣∣ ≤ c1n
−1/4,

∣∣∣λ1(y)− λ̂1(y)
∣∣∣ ≤ c2n

−1/4 (11)

for all y ∈ Bλ
1 ∩B1

1− and n ≥ N = d(cp2(p1 + p3))
−1e.

Proof. Expanding in the equation

Tλ(θ1(y), y) = c

the left-hand side by powers of n we get

T1(θ1(y), y) +R(y)n−1/2 = c, (12)

with

|R(y)| ≤ c3. (13)

We can solve (12) with respect to θ1(y) and get∣∣∣θ1(y)− θ̂1(y)
∣∣∣ =

√
p1p2p3|R(y)|
√
n

×

∣∣∣∣∣
√
−y2 +

(
c− R(y)√

n

)
p2(p1 + p3) +

√
−y2 + cp2(p1 + p3)

∣∣∣∣∣
−1

. (14)
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It follows from (10) that for all y ∈ B1
1− we have

y2 ≤ cp2(p1 + p3)−
2
√
cp2(p1 + p3)√

n
+

1

n
(15)

By (13) – (15) we obtain for all n ≥ N = [(cp2(p1 + p3))
−1]:∣∣∣θ1(y)− θ̂1(y)

∣∣∣ =

√
p1p2p3c3

c1/4(p2(p1 + p3))1/4
n−1/4. (16)

This implies the first inequality in (11).
We prove similarly the second inequality in (11).
Lemma is proved.

R e m a r k 6. Similar bounds could be obtained for the functions θ2 and λ2.

Statement 1. We can write J2(B
λ) defined by (3), in the form

J2(B
λ) =

d

n
(Nλ − nV λ) +O(n−3/4), (17)

where d is a positive constant.

Proof. We consider terms in the expression (3) separately:

J2,1 =
1

n

∑
y∈L2

χBλ1 (y)
[
S1

(√
nx+ p1n

)
φ(x, y)

]θ1(y)

λ1(y)
,

J2,2 =
1√
n

∫ ∞
−∞

χBλ2 (x)
[
S1

(√
ny + p2n

)
φ(x, y)

]θ2(x)

λ2(x)
dx. (18)

Then
J2(B

λ) = −(J2,1 + J2,2). (19)

Using identity Bλ
1 = (Bλ

1 ∩B1
1−)
⋃

(Bλ
1 \B1

1−), we can rewrite J2,1 as

J2,1 =
1

n

∑
y∈L2

χBλ1∩B1
1−

(y)
[
S1

(√
nx+ p1n

)
φ(x, y)

]θ1(y)

λ1(y)

+
1

n

∑
y∈L2

χBλ1 \B1
1−

(y)
[
S1

(√
nx+ p1n

)
φ(x, y)

]θ1(y)

λ1(y)
. (20)
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The lattice L2 has a step n−1/2. Therefore, according to Remarks 4 and 5
there are at most O(1) points of the lattice in the set Bλ

1 \ B1
1−. Hence, the

second summand in (20) is of order O (n−1). Then using Lagrange’s formula
we get

J2,1 =
1

n

∑
y∈L2∩Bλ1∩B1

1−

S1

(√
nθ1(y) + p1n

) ∂φ
∂x

(ξ1(y), y)
(
θ1(y)− θ̂1(y)

)
+

1

n

∑
y∈L2∩Bλ1∩B1

1−

S1

(√
nλ1(y) + p1n

) ∂φ
∂x

(ξ2(y), y)
(
λ̂1(y)− λ1(y)

)
+

1

n

∑
y∈L2∩Bλ1∩B1

1−

d
[
S1

(√
nx+ p1n

)]θ1(y)

λ1(y)

+
1

n

∑
y∈L2∩(Bλ1 \B1

1−)

[
S1

(√
nx+ p1n

)
φ(x, y)

]θ1(y)

λ1(y)
,

where ξ1(y) and ξ2(y) are some functions defined on Bλ
1 ∩B1

1−. Additionally
let us write ∑

y∈L2∩Bλ1∩B1
1−

d
[
S1

(√
nx+ p1n

)]θ1(y)

λ1(y)

=
∑

y∈L2∩Bλ1

d
[
S1

(√
nx+ p1n

)]θ1(y)

λ1(y)
−

∑
y∈L2∩(Bλ1 \B1

1−)

d
[
S1

(√
nx+ p1n

)]θ1(y)

λ1(y)

By Remark 4, lemma 2 and boundness of the functions S1 and φ we conclude
that

J2,1 =
1

n

∑
x2∈L2∩Bλ1

d
[
S1

(√
nx+ p1n

)]θ1(y)

λ1(y)
+O

(
n−3/4

)
. (21)

Applying the same arguments to (18), we can rewrite it in the form

J2,2 =
1√
n

∫
Bλ2

d
[
S1

(√
ny + p2n

)]θ2(x)

λ2(x)
dx+O

(
n−3/4

)
. (22)

By (19), (21) and (22) we obtain

− J2(B
λ) =

1

n

∑
y∈L2∩Bλ1

d
[
S1

(√
nx+ p1n

)]θ1(y)

λ1(y)

+
1√
n

∫
Bλ2

d
[
S1

(√
ny + p2n

)]θ2(x)

λ2(x)
dx+O

(
n−3/4

)
. (23)
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Since we have in (23) the same constant d in the sum and integral, we
can apply now the Yarnold’s arguments (see [4]) and get

J2(B
λ) =

d

n

(
Nλ − nV λ

)
+O

(
n−3/4

)
.

The statement is proved.

3 Convexity of the set Bλ

Definition 2. A quadratic form in variables h1, h2, . . ., hm:

Φ(h1, h2, . . . , hm) =
m∑
i=1

m∑
k=1

aikhihk (24)

is called positive definite, when for all values h1, h2, . . ., hm, not equal to zero
simultaneously, the form takes positive values only.

Definition 3. We call a matrix

A =


a11 a12 . . . a1m

a21 a22 . . . a2m

. . . . . . . . . . . . . . . . . . .
am1 am2 . . . amm

 (25)

by matrix of quadratic form (24).

Theorem. (Sylvester’s theorem) In order that a quadratic form (24) with
symmetric matrix (25) is positive definite it is necessary and sufficient that
the main minors of the matrix (25) are positive.

Proof. See e.g. [8], ch. XVII, §102, theorem 102.4.

Lemma 3. Let a function f(x), defined on a convex set Q, be two times
differentiable . In order that the function is strictly convex on the set Q, it is
sufficient that a second differential d2f of the function is a positive definite
quadratic form in all points of Q.

Proof. See e.g. [7], ch.14, §7, lemma 2.
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Lemma 4. The function Tλ(x, y), defined in (2), is strictly convex on a set

Q = {(x, y) : x > −
√
np1, y > −

√
np2, x+ y <

√
np3}.

Proof. The set Q is convex because it is just an open triangular. Let us
compute partial derivatives of the second order for Tλ(x, y):

∂2Tλ
∂x2

= 2

[
1

p1

(
1 +

x√
np1

)λ−1

+
1

p3

(
1− x+ y√

np3

)λ−1
]
,

∂2Tλ
∂y2

= 2

[
1

p2

(
1 +

y√
np2

)λ−1

+
1

p3

(
1− x+ y√

np3

)λ−1
]
,

∂2Tλ
∂x∂y

=
2

p3

(
1− x+ y√

np3

)λ−1

=
∂2(Tλ)

∂y∂x
.

All computed derivatives are continuous inQ. Therefore, the function Tλ(x, y)
is two times differentiable inQ. By lemma 3 it is sufficient to show that d2(Tλ)
is positive definite quadratic form. By Sylvester’s theorem it is sufficient to
show that main minors of a matrix

A =

(
∂2(Tλ)
∂x2

∂2(Tλ)
∂x∂y

∂2(Tλ)
∂y∂x

∂2(Tλ)
∂y2

)

are positive.
It is clear that for all (x, y) ∈ Q the main first order minor

A1 = ∂2(Tλ)/∂x
2 is positive. The main second order minor equals

A2 =
∂2(Tλ)

∂x2

∂2(Tλ)

∂y2
− ∂2(Tλ)

∂x∂y

∂2(Tλ)

∂y∂x

= 4

[
(ab)λ−1

p1p2

+
(ac)λ−1

p1p3

+
(bc)λ−1

p2p3

]
> 0,

where a = 1 + x/
√
np1 > 0, b = 1 + y/

√
np2 > 0 and

c = 1− (x+ y)/
√
np3 > 0.

Lemma is proved.

Lemma 5. Bλ is a strictly convex set.
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Proof. Fix any

x1 = (x1, y1) ∈ Bλ, x2 = (x2, y2) ∈ Bλ and t ∈ [0, 1].

Then Tλ(x1) < c, Tλ(x2) < c. It follows from lemma 4 that Tλ(x, y) is
strictly convex function on Q. Therefore,

Tλ(x1 + t(x2 − x1)) < Tλ(x1) + t(Tλ(x2)− Tλ(x1))

= (1− t)Tλ(x1) + tTλ(x2) < (1− t)c+ tc = c.

Hence, x1 + t(x2 − x1) ∈ Bλ, and therefore Bλ is convex set. Repeating
these arguments for any pair of points from the boundary of Bλ we get that
the set is strictly convex.

Lemma is proved.

4 Smoothness of the curve Tλ(x, y) = c

Let us consider function

U(r, t) = Tλ(r cos t, r sin t)− c, (26)

on a set

S = (0,+∞)× [0, 2π]

∩ {(r, t) : r cos t > −
√
np1, r sin t > −

√
np2, r cos t+ r sin t <

√
np3}. (27)

Lemma 6. We have

∃s,N : ∀(r, t) ∈ ∂Bλ, n > N
∂U(r, t)

∂r
> s > 0. (28)

Proof. We expand a partial derivative of U in powers of n:

∂U(r, t)

∂r
= 2r

(
cos2 t

(
1

p1

+
1

p3

)
+ sin2 t

(
1

p2

+
1

p3

)
+

2 cos t sin t

p3

)
+ O

(
1√
n

)
.

It is clear that on the boundary of the curve U(r, t) = 0 there exists r1 such
that for all t we have r(t) > r1. Since Bλ is bounded and due to the structure
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of the function U(r, t) infinitely differentiable on (r, t) ∈ [0, r0] × [0, 2π],
the given order O (1/

√
n) of remainder term is uniform with respect to t.

Changing to the double trigonometric variable and then using formula of the
cosine of additional variable we get a lower bound for the derivative

1

2

(
1

p1

+
1

p2

+
2

p3

)
+

√
(1/p1 − 1/p2)2

4
+

1

p2
3

cos(2t+ φ0)

≥ 1

2

(
1

p1

+
1

p2

+
2

p3

)
−

√(
1

2p1

)2

+

(
1

2p2

)2

+

(
1

p3

)2

− 1

2p1p2

>
1

2p1

+
1

2p2

+
1

p3

−

√(
1

2p1

)2

+

(
1

2p2

)2

+

(
1

p3

)2

> 0.

Lemma is proved.

Theorem. (Existence and differentiability of an implicit function) Let a
function F (x, y) be k times differentiable in some neighborhood of a point
(x0, y0) in R2. Assume that a partial derivative ∂F/∂y is continuous at
(x0, y0). If

F (x0, y0) = 0, and
∂F

∂y
(x0, y0) 6= 0,

then for any sufficiently small positive number ε there exists such neighbor-
hood of x0 in R, that in this neighborhood there exists a unique function
y = φ(x) satisfying |y − y0| < ε which is a solution of the equation

F (x, y) = 0,

and φ(x) is continuous and k times differentiable function in the mentioned
neighborhood
of x0.

Proof. See e.g. [10], ch. 1, §1.

Lemma 7. Let (r0, t0) be a point in S where the function U(r, t) equals 0.
Then for any sufficiently small positive number ε there exists a neighborhood
of t0 such that in the neighborhood there exists a unique function r = r(t)
satisfying |r − r0| < ε that is a solution of the equation

U(r, t) = 0,

and r(t) is a continuous and five times differentiable function in the men-
tioned neighborhood of t0.

13



Proof. Let (r0, t0) be a point in S, where the function U(r, t) equals 0. Since
S is an open set, there exists a neighborhood of (r0, t0) lying completely in
S. The function U(r, t) is infinitely differentiable in the mentioned neighbor-
hood. Hence, the partial derivative ∂U/∂r is continuous at (r0, t0). By lemma
6 the partial derivative ∂U/∂r does not equal zero at (r0, t0). Therefore,
U(r, t) satisfies all conditions of the previous theorem at the point (r0, t0).
Thus, the lemma follows from the theorem above.

Lemma 8. For the curve
Tλ(x, y) = c (29)

there exists four times differentiable parametrization in the form

x = x(t) = r(t) cos t, y = y(t) = r(t) sin t

for t ∈ [0, 2π].

Proof. By lemma 5 the set Bλ = {(x, y) : Tλ(x, y) < c} is convex. Moreover,
the origin of coordinates lies in Bλ, because Tλ(0, 0) = 0 < c. Therefore, for
any t0 ∈ [0, 2π] a half-line starting from the origin under angle t0 to X-axis
intersects the curve (29) in one point (x0, y0) only. Let us turn to the polar
system of coordinates:

x = r cos t, y = r sin t.

Then the point (x0, y0) turns into (r0, t0) where r0 =
√
x2

0 + y2
0. Since (x0, y0)

lies on the curve (29), we have

U(r0, t0) = Tλ(r0 cos t0, r0 sin t0)− c = Tλ(x0, y0)− c = 0.

Therefore, by lemma 7 in some neighborhood of t0 there exists a unique
function r = r(t) as the solution of U(r, t) = 0. Moreover, r(t) is continuous
and five times differentiable in this neighborhood. Let

x(t) = r(t) cos t, y(t) = r(t) sin t.

Then in the indicated neighborhood of t0 we have

Tλ(x(t), y(t)) = Tλ(r(t) cos t, r(t) sin t) = U(r(t), t) + c = c,

and x(t), y(t) are continuous and five times differentiable functions in this
neighborhood. Therefore, they are four times continuously differentiable in

14



the neighborhood, and hence they give the desired parametrization of the
curve (29) in the neighborhood of t0.

Since we choose t0 arbitrarily, the desired parametrization exists on the
whole interval [0, 2π].

Lemma is proved.

Corollary 1. Radius of curvature of the curve (29) is non-zero on the entire
curve.

Proof. Let x(t), y(t) be parametrization of the curve (29) from lemma 8. We
show that

(x′(t))2 + (y′(t))2 6= 0 for all t ∈ [0, 2π]. (30)

In fact, assume that there exists t0 ∈ [0, 2π] such that (x′(t0))
2+(y′(t0))

2 = 0.
Then

r′2(t0) + r2(t0) = 0.

Therefore,

r(t0) = 0 ⇒

{
x(t0) = 0,

y(t0) = 0.
⇒ Tλ(x(t0), y(t0)) = 0,

which contradicts the fact that x(t), y(t) is a parametrization of the curve
(29).

Furthermore, according to the formula for radius of curvature we have

ρ =
((x′)2 + (y′)2)3/2

x′y′′ − y′x′′
, (31)

which, together with (30), implies the statement of this corollary.

Definition 4. A curve {x(t), y(t)}, t ∈ [a, b] is called smooth, when the
functions x(t), y(t) are smooth on [a, b].

Definition 5. A smooth curve {x(t), y(t)}, t ∈ [a, b] is called regular, when
vector (x′(t), y′(t))T does not equal zero everywhere on [a, b].

Definition 6. A parameter l of a curve {x(l), y(l)} is called natural, if the
length of the curve equals (b1 − a1) as l runs from a1 to b1 > a1.
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Lemma 9. 1) If l ∈ [a, b] on the curve {x(l), y(l)} is a natural parameter,
then √

(x′(l))2 + (y′(l))2 = 1

at all points where continuous derivatives x′(l), y′(l) exist.
2) For any regular curve there exists a natural parameter.

Proof. See e.g. [9], ch. 1, §1, lemma 2.

Corollary 2. Radius of curvature of the curve (29) is continuous on the
curve.

Proof. Let x(t), y(t) be the parametrization of the curve (29) from lemma 8.
Now we show that

x′y′′ − y′x′′ 6= 0 for all t ∈ [0, 2π]. (32)

At first, we prove that (x′′)2 + (y′′)2 6= 0 everywhere on [0, 2π]. Assume that
just the opposite is true, that is for some t0 ∈ [0, 2π] we have:

(x′′(t0))
2 + (y′′(t0))

2 = 0.

Then using expressions for x(t) and y(t) from lemma 8 we get:

4(r′(t0))
2 + (r′′(t0)− r(t0))2 = 0,

and hence, {
r′(t0) = 0,

r′′(t0) = r(t0).
(33)

Furthermore, by differentiating twice the identity

U(r(t), t) = 0

at point t0 and taking into account (33) we get

2r2(t0) sin2 t0

p1 (1 + r(t0) cos t0/
√
np1)

1−λ +
2r2(t0) cos2 t0

p2 (1 + r(t0) sin t0/
√
np2)

1−λ

+
2(−r(t0) sin t0 + r(t0) cos t0)

2

p3 (1− (r(t0) cos t0 + r(t0) sin t0)/
√
np3)

1−λ = 0. (34)
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Here the denominators of each fraction are positive due to the domain of
definition for U(r, t) (see (27)). Therefore, each of the summands in (34) is
equal to zero. Consequently,

cos t0 = sin t0 = 0,

but this contradicts the Pythagorean trigonometric identity. Thus,

(x′′)2 + (y′′)2 6= 0

everywhere on the curve.
From lemma 8 and (30) we conclude that the curve (29) is regular and due

to lemma 9 allows natural parametrization of the form x = χ(l), y = γ(l). It
can be shown that in this case the vectors (χ′, γ′)T , (χ′′, γ′′)T are also non-
zero everywhere on l ∈ [0, L] where L is the length of the curve (29) (it can
be easily shown by the rule of contraries using the fact that the mapping
l : [0, 2π]→ [0, L] defined by the formula

l(t) =

∫ t

0

√
x′2(τ) + y′2(τ)dτ (35)

is smooth and invertible). But then lemma 9 implies

χ′2(l) + γ′2(l) = 1.

Differentiating this identity with respect to l we obtain:

χ′(l)χ′′(l) + γ′(l)γ′′(l) = 0,

and, consequently, the vectors (χ′, γ′)T and (χ′′, γ′′) are orthogonal. There-
fore, the determinant∣∣∣∣χ′(l) χ′′(l)

γ′(l) γ′′(l)

∣∣∣∣ 6= 0 ⇔ χ′(l)γ′′(l)− γ′(l)χ′′(l) 6= 0. (36)

Thus, since l(t) defined in (35) is one-to-one mapping, (32) holds. Hence,
using the formula for the radius of curvature (31) we obtain the statement
of the corollary.

Corollary 3. The radius of curvature on the curve (29) is twice continuously
differentiable with respect to the tangent angle everywhere on that curve.
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Proof. Let χ = χ(l), γ = γ(l) be a natural parametrization of the curve (29).
Then it follows from lemma 8 and from the smoothness and invertibility of
the mapping (35) that χ(l) and γ(l) are four times continuously differentiable
functions. Further, let ρ be the radius of curvature of the curve (29) and ψ
be a tangent angle. Then

dρ

dψ
=
dρ

dl

dl

dψ
= ρ

dρ

dl
=

1

2

dρ2

dl
=

1

2

d

(
(χ′2+γ′2)

3

(χ′γ′′−γ′χ′′)2

)
dl

=
3

2

(χ′2 + γ′2)
2

(2χ′γ′′ + 2γ′χ′′)

(χ′γ′′ − γ′χ′′)2 − (χ′2 + γ′2)
3

(χ′γ′′′ − γ′χ′′′)
(χ′γ′′ − γ′χ′′)3 . (37)

Due to the smoothness of the functions χ(l) and γ(l) and property (36) we
conclude that the radius of curvature ρ is continuously differentiable every-
where on the curve (29).

Similarly,

d2ρ

dψ2
=

d

dψ

(
dρ

dψ

)
=

1

2
ρ
d
(
dρ2

dl

)
dl

(38)

Without giving the exact formula for the second derivative with respect to
the tangent angle it can be easily seen that the derivative is continuous due
to the constraints imposed on χ(l), γ(l) and the fact that in the denominator
of the resultant expression we will again get χ′γ′′−γ′χ′′ raised to some power.

Corollary is proved.

5 Applying Huxley’s theorem to the set Bλ

Theorem 2. (Huxley, 1993) Let B be a Euclidean plane domain of area A,
bounded by a simple closed curve C, composed of finitely many pieces Ci,
which are three times continuously differentiable in the following sense. The
radius of curvature ρ is continuous and non-zero on each piece Ci, and ρ
is continuously differentiable with respect to the tangent angle ψ. Let MB
denote the set formed by expanding B linearly by a factor M . Then for any
isometric embedding of MB in the Euclidean plane the number of integer
points (m,n) in MB is

AM2 +O
(
IM46/73(logM)315/146

)
, (39)
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where I is a number depending on the curve C, but not on M or on the
embedding of MB.

If in addition the pieces Ci are four times differentiable, in the sense that
ρ is twice continuously differentiable with respect to tangent angle ψ, then we
may take

I =
∑
i

min
Ci

(
1 +

1

ρ2

(
dρ

dψ

)2
)−69/146

ρ46/73 (40)

+
∑
i

∫
Ci

(
1 +

|ρ d2ρ/dψ2|
ρ2 + (dρ/dψ)2

)

×

(
1 +

1

ρ2

(
dρ

dψ

2)2
)−69/146 ∣∣∣∣ dρdψ

∣∣∣∣ ρ−33/73dψ,

provided that M is so large that the bounds

M >
1

ρ
and

1

ρ64

∣∣∣∣ dρdψ
∣∣∣∣53

6 M11(logM)387/8

hold piecewise on each curve Ci.

Proof. See [5, theorems 5 and 6, pp. 294–295 ].

Now we prove lemma which shows that in our case I from theorem 2 is
bounded from above by some constant not depending on n. It is necessary to
note that in 2003 Huxley slightly improved the result of theorem 2. However
the form of I in the improved result is such that it cannot be applied in our
case.

Lemma 10. For a sufficiently large n the radius of curvature ρ of the bound-
ary ∂Bλ is bounded from above and separated from zero uniformly with respect
to n; its first and second derivatives with respect to the tangent angle ψ are
uniformly bounded from above.

Proof. We recall that the radius of curvature and its derivatives are given by
formulae (31), (37), and (38). We use the parametrization in polar coordi-
nates from lemma 8. In this case

ρ =
(r2(t) + r′2(t))3/2

|2(r′(t))2 + r2(t)− r′(t)r′′(t)|
, (41)
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whereas the derivatives with respect to the tangent angle are expressed anal-
ogously, and expression

2(r′(t))2 + r2(t)− r′(t)r′′(t) (42)

will appear in the denominator.
Let us denote rn(t) the polar radius on ∂Bλ and r(t) the polar radius on

∂B1; the values r′(t), r′′(t), r′n(t), r′′n(t) being similarly defined. Note that the
exact expression of (42) for the limiting set is separated from 0. In fact, this
is an ellipse rotated around the origin with the axes a(p̄, c), b(p̄, c). For the
simplest ellipse of the form

x2

a2
+
y2

b2
= 1,

we substitute our parametrization and obtain

r(t) =

(
cos2 t

a2
+

sin2 t

b2

)−1/2

=

(
1

2

(
1

a2
+

1

b2

)
+

cos 2t

2

(
1

a2
− 1

b2

))−1/2

,(43)

r′(t) =
sin 2t

2

(
1

a2
− 1

b2

)(
1

2

(
1

a2
+

1

b2

)
+

cos 2t

2

(
1

a2
− 1

b2

))−3/2

, (44)

r′′(t) =

((
1

a2
− 1

b2

)
cos 2t ·

(
1

2

(
1

a2
+

1

b2

)
+

cos 2t

2

(
1

a2
− 1

b2

))
+

3

4

(
1

a2
− 1

b2

)2

sin2 2t

)

×
(

1

2

(
1

a2
+

1

b2

)
+

cos 2t

2

(
1

a2
− 1

b2

))−5/2

=

(
1

a2
− 1

b2

)2

·
(

3

4
− cos2 2t

4
+
b2 + a2

b2 − a2

cos 2t

2

)
×
(

1

2

(
1

a2
+

1

b2

)
+

cos 2t

2

(
1

a2
− 1

b2

))−5/2

. (45)

We see that r(t) is bounded:

√
2

(
1

a2
+

1

b2
−
∣∣∣∣ 1

a2
− 1

b2

∣∣∣∣)−1/2

> r(t) >
√

2

(
1

a2
+

1

b2
+

∣∣∣∣ 1

a2
− 1

b2

∣∣∣∣)−1/2

.

(46)
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Now for (42) we have(
1
2

(
1
a2

+
1
b2

)
+

cos 2t
2

(
1
a2
− 1
b2

))−3

︸ ︷︷ ︸
A

[
sin2 2t

2

(
1
a2
− 1
b2

)2

+
(

1
2

(
1
a2
− 1
b2

)
+

cos 2t
2

(
1
a2
− 1
b2

))2

− 1
2

(
1
a2
− 1
b2

)2

·
(

3
2
− cos2 2t

2

+
b2 + a2

b2 − a2
cos 2t

)]
= A−3

(
1
4

(
1
a2

+
1
b2

)2

− 1
4

(
1
a2
− 1
b2

)2
)

=
1

a2b2A3
> 0.

Since in polar coordinates the rotation is reduced to the transformation
t := t+ c, and the upper estimate can be made independent from t, we have
proved that expression (42) for B1 is separated from zero. It is natural to
anticipate that the prelimiting set Bλ possesses the same property, at least
starting from some number N , uniformly in t.

In the appendix (lemma 11) we prove the uniform convergence

rn(t) −−−→
n→∞

r(t).

We know that the derivatives of solutions rn(t), r(t) are expressed through
the derivatives of an implicit function with respect to its arguments t and
r(t). Moreover, the denominator will contain the first derivative with respect
to r of the functions Tλ(r, t) and T1(r, t) raised to some power. For instance,

r′n(t) = − ∂Tλ(rn(t), t)

∂t

/
∂Tλ(rn(t), t)

∂r
, r′(t) = − ∂T1(r(t), t)

∂t

/
∂T1(r(t), t)

∂r

From lemma 6

∃N : ∀n > N
∂T1(r(t), t)

∂r
> s > 0,

∂Tλ(rn(t), t)

∂r
> s > 0.

Moreover, in lemma 6 we essentially proved the following uniform estimate

∂Tλ(r(t), t)

∂r
=
∂T1(r(t), t)

∂r
+O

(
1√
n

)
.

With similar reasoning we can obtain the same result for the derivatives with
respect to t:

∂Tλ(r(t), t)

∂t
=
∂T1(r(t), t)

∂t
+O

(
1√
n

)
.
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Therefore, it is easy to see that

∂Tλ(r(t), t)

∂t

/
∂Tλ(r(t), t)

∂r
=
∂T1(r(t), t)

∂t

/
∂T1(r(t), t)

∂r
+O

(
1√
n

)
. (47)

∂Tλ(rn(t), t)

∂t

/
∂Tλ(rn(t), t)

∂r
=
∂T1(rn(t), t)

∂t

/
∂T1(rn(t), t)

∂r
+O

(
1√
n

)
.

Let us expand the difference r′n(t)− r′(t):

∂Tλ(rn(t), t)

∂t

/
∂Tλ(rn(t), t)

∂r
− ∂T1(r(t), t)

∂t

/
∂T1(r(t), t)

∂r

=

(
∂Tλ(rn(t), t)

∂t

/
∂Tλ(rn(t), t)

∂r
− ∂Tλ(r(t), t)

∂t

/
∂Tλ(r(t), t)

∂r

)
+

(
∂Tλ(r(t), t)

∂t

/
∂Tλ(r(t), t)

∂r
− ∂T1(r(t), t)

∂t

/
∂T1(r(t), t)

∂r

)
.

Since the fraction ∂T1(r,t)
∂t

/∂T1(r,t)
∂r

is a smooth function independent from n,
with non-zero denominator, and since variables (r, t) change in a bounded
domain, we can apply (47) to get by Lagrange’s theorem the following in-
equality

|r′n(t)− r′(t)| 6 M · |rn(t)− r(t)|+O
(
1/
√
n
)
.

This implies the uniform convergence of the first derivatives of polar radius.
Similar arguments show the uniform convergence of the derivatives of higher
order.

It follows from formulae (43),(44), (45), and (46) that the derivatives of
the polar radius on ∂B1 are bounded from above, and that the polar radius
itself is bounded from both sides. Moreover, the term (42) is separate from
0. It is clear from the asymptotic properties of rn(t) and its derivatives that
the same statements are valid for the polar radius rn(t) (together with its
derivatives) of ∂Bλ, at least starting from sufficiently large N , uniformly in
t. Now the statement of the lemma follows from the above arguments and
formulae (41), (37), and (38).

Corollary 4. For sufficiently large n the set Bλ satisfies the conditions of
theorem 2 with M =

√
n.
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6 Proof of the main result

We recall that Nλ is a number of points from the lattice L in the set Bλ.
Since the lattice has 1/

√
n as a step, we can regard Nλ as a number of integer

points in the set
√
nBλ, which is a linear expansion of the set Bλ with the

coefficient
√
n. Because of Corollary 4 we can apply theorem 2 to the set Bλ

with the linear factor
√
n.

Note that in our case I from theorem 2 depends on n. However, it is
bounded. This fact follows from the upper bound

I(n) 6 min
C
ρ46/73 +

∫
C

1 +
∣∣∣ d2ρdψ2/ρ

∣∣∣
ρ33/73

∣∣∣∣ dρdψ
∣∣∣∣ dψ

and lemma 10. Consequently, we can disregard this constant in the calcula-
tion of the error order and get from theorem 2

Nλ − nV λ = O
(
n46/146(log n)315/146

)
. (48)

It remains to substitute (48) into (17), and we obtain (7).
This proves theorem 1.

R e m a r k 7. We proved the uniform convergence of the polar radius rn(t)
and its derivatives to their limits. We also proved that rn(t) are separated
from zero uniformly with respect to n. Hence, the expressions under the signs
of integration and min in (40) converge uniformly. Therefore, by Lebesgue
theorem not only is I(n) bounded, but it also converges to IB1 .
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A Proof of the uniform convergence of polar

radii

Lemma 11. Let rn(t) and r(t) be the polar radii of the sets Bλ and B1

correspondingly. Then we have

|rn(t)− r(t)| 6 C√
n
.

Proof. We have

T1(rn(t), t)− T1(r(t), t) 6 |T1(rn(t), t)− Tλ(rn(t), t)|
+ |Tλ(rn(t), t)− Tλ(r(t), t)|+ |Tλ(r(t), t)− T1(r(t), t)|.

It follows from Taylor’s formula that Tλ(r, t) = T1(r, t) +O (1/
√
n), and the

error is uniform in n due to the boundedness of the domain of definition.
Therefore,

|T1(rn(t), t)−Tλ(rn(t), t)| = O

(
1√
n

)
, |Tλ(r(t), t)−T1(r(t), t)| = O

(
1√
n

)
.

Moreover, Tλ(rn(t), t) = c = T1(r(t), t), and the second summand can be
expressed in the form

|Tλ(r(t), t)− T1(r(t), t)| = O

(
1√
n

)
.

On the other hand,

T1(rn(t), t)−T1(r(t), t) =
(rn(t) cos t)2

p1

+
(rn(t) sin t)2

p2

+
(rn(t)(cos t+ sin t))2

p3

−
[

(r(t) cos t)2

p1

+
(r(t) sin t)2

p2

+
(r(t)(cos t+ sin t))2

p3

]
=

[
cos2 t

(
1

p1

+
1

p3

)
+ sin2 t

(
1

p2

+
1

p3

)
+

sin 2t

p3

]
(r2
n(t)− r2(t)).

From lemma 6, we know that the first multiplier is uniformly separated
from 0 (let us denote this multiplier by E and the corresponding lower bound
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by E0). Hence, since there is a lower bound for r(t), we have

|rn(t)− r(t)| = O

(
1

E(rn(t) + r(t))
√
n)

)
= O

(
1

E0r(t)
√
n

)
= O

(
1√
n

)
.

Lemma is proved.

References

[1] N. A. C. Cressie, T. R. C. Read (1984). Multinomial goodness-of-
fit tests, Journal of the Royal Statistical Society, Series B, Vol 46, No. 3
(1984), pp. 440-464.

[2] T. R. C. Read (1984). Closer asymptotic approximations for the dis-
tributions of the power divergence goodness-of-fit statistics., The Annals
of Mathematical Statistics, 36, Part A, p. 59-69.

[3] M. Siotani and Y. Fujikoshi, Asymptotic approximations for the
distributions of multinomial goodness-of-fit statistics, Hiroshima Math.
J., 14 (1984), 115–124; Technical report of the Hiroshima statistical
research group (1980).

[4] J. K. Yarnold, Asymptotic approximations for the probability that
a sum of lattice random vectors lies in a convex set, The Annals of
Mathematical Statistics 1972, Vol. 43, No. 5, 1566–1580.

[5] M. N. Huxley, Exponential sums and lattice points II, Proceedings of
London Mathematical Society (3) 66 (1993) 279-301.

[6] M. N. Huxley, Exponential sums and lattice points III, Proceedings
of London Mathematical Society (3) 87 (2003) 591-609.

[7] V. A. Ilyin, E. G. Pozdnyak. Foundations of Mathematical Analysis
(in Russian), Part I. Moscow: FIZMATLIT, 2002.

[8] V. A. Ilyin, G. D. Kim. Linear algebra and analytical geometry. (in
Russian) Moscow: Moscow State University, 1998.

25



[9] Taymanov I. A. Lectures on differential geometry. (in Russian) – M.-
Izhevsk: Reseach centre ”Regular and chaotic dynamics”; The Institute
of Computer Science Research, 2006.

[10] M. M. Vainberg, V. A. Trenogin. Bifurcation theory of nonlinear
equations. (in Russian) Moscow: Nauka, 1969.

26


	Introduction and main result
	Expression for J2(B)
	Convexity of the set B
	Smoothness of the curve T(x,y) = c
	Applying Huxley's theorem to the set B
	Proof of the main result
	Proof of the uniform convergence of polar radii

