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Abstract

In this paper we consider the convergence of the power divergence
family of statistics {Tλ(Y ), λ ∈ R} constructed from the multinomial
distribution of degree k, to chi-squared distribution with k−1 degrees
of freedom. We show that

Pr(Tλ(Y ) < c) = Gk−1(c) + O(n−1+ 1
k )

where Gr(c) is the cumulative distribution function of a chi-squared
variable with r degrees of freedom. In the proof we utilize known
number theory results on the approximation of the number of integer
points in a given set by its volume. Namely, E. Hlawka’s theorem
(1950) about the number of above-mentioned points in a convex set
with a closed smooth boundary.

Key words: E. Hlawka’s theorem, weak convergence, Gaussian curvature,
manifold, approximation by chi-squared distribution, power divergence family
of statistics .
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1 Introduction and the main result

1.1 Introduction

Consider a vector Y = (Y1, . . . , Yk)
T with multinomial distribution Mk(n, π),

i. e.

Pr(Y1 = n1, . . . , Yk = nk) =





n!
∏k

j=1(π
nj

j /nj !), nj = 0, 1, . . . , n (j = 1, . . . , k)
and

∑k
j=1 nj = n,

0, otherwise,

where π = (π1, . . . , πk)
T , πj > 0,

∑k
j=1 πj = 1. From this point on, we will

assume the validity of the hypothesis H0 : π = p. The covariance matrix of
the vector Y is known to equal Ω = (δj

i pi − pipj) ∈ R(k−1)×(k−1). The main
object of the current study is the power divergence family of statistics:

tλ(Y ) =
2

λ(λ + 1)

k∑
j=1

Yj

[(
Yj

npj

)λ

− 1

]
, λ ∈ R,

R e m a r k 1. When λ = 0,−1, this notation should be understood as a
result of passage to the limit.

R e m a r k 2. These statistics were first introduced in [9] and [10] being
denoted by 2nIλ(Y ). Putting λ = 1, λ = −1/2 and λ = 0 we can obtain
the chi-squared statistic, the Freeman-Tukey statistic, and the log-likelihood
ratio statistic respectively.

We consider transformation

Xj = (Yj − npj)/
√

n, j = 1, . . . , k, r = k − 1, X = (X1, . . . , Xr)
T .

Herein the vector X is the vector whose components are reduced to the
lattice,

L = {x = (x1, . . . , xr)T ; x =
m− np√

n
, p = (p1, . . . , pr)T , m = (n1, . . . , nr)T },

where nj are non-negative integers.

R e m a r k 3. The statistic tλ(Y ) can be expressed as a function of X in the
form

Tλ(x) =
2n

λ(λ + 1)

[
k∑

j=1

pj

((
1 +

xj√
npj

)λ+1

− 1

)]
, (1)

and then, via the Taylor’s expansion, transformed to the form

Tλ(x) =
k∑

i=1

(
x2

i

pi

+
(λ− 1)x3

i

3
√

np2
i

+
(λ− 1)(λ− 2)x4

i

12p3
i n

+ O
(
n−3/2

))
. (2)
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We call a set B ⊂ Rr extended convex set, if for for all l = 1, r it can be
expressed in the form:

B = {x = (x1, . . . , xr)
T : λl(x

∗) < xl < θl(x
∗) and

x∗ = (x1, . . . , xl−1, xl+1, . . . , xr)
T ∈ Bl},

where Bl is some subset of Rr−1 and λl(x
∗), θl(x

∗) are continuous functions
on Rr−1. Additionally, we introduce the following notation

[h(x)]
θl(x

∗)
λl(x∗)

= h(x1, . . . , xl−1, θl(x
∗), xl+1, . . . , xr)

− h(x1, . . . , xl−1, λl(x
∗), xl+1, . . . , xr).

It is a known fact that the distributions of all statistics in the family
converge to chi-squared distribution with k − 1 degrees of freedom (see e.g.
[9], p. 443). However, more intriguing is the problem of the estimation of the
rate of convergence to the limiting distribution.

For any bounded extended convex set B J. Yarnold in [1] obtained an
asymptotic expansion, which in [6] was converted to

Pr(X ∈ B) = J1 + J2 + O(n−1). (3)

with

J1 =

∫
· · ·

∫

B

φ(x)

{
1 +

1√
n

h1(x) +
1

n
h2(x)

}
dx, where

h1(x) = −1

2

k∑
j=1

xj

pj

+
1

6

k∑
j=1

xj

(
xj

pj

)2

,

h2(x) =
1

2
h1(x)2 +

1

12

(
1−

k∑
j=1

1

pj

)
+

1

4

k∑
j=1

(
xj

pj

)2

− 1

12

k∑
j=1

xj

(
xj

pj

)3

;

J2 = − 1√
n

∑r

l=1
n−(r−l)/2

∑
xl+1∈Ll+1

· · ·
∑

xr∈Lr[∫
· · ·

∫

Bl

[S1(
√

nxl + npl)φ(x)]
θl(x

∗)
λl(x∗)

dx1, · · · , dxl−1

]
; (4)

Lj = {x : xj =
nj − npj√

n
, nj and pj defined as before};

S1(x) = x− bxc − 1/2, bxc is the integer part x;

φ(x) =
1

(2π)r/2|Ω|1/2
exp

(
−1

2
xT Ω−1x

)
.
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R e m a r k 4. In [1] Yarnold showed that J2 = O(n−1/2).

R e m a r k 5. Using elementary transformations it can be easily shown that
the determinant of the matrix Ω equals

∏k
i=1 pi.

Yarnold also examined this expansion for the most known power diver-
gence statistic, which is the chi-squared statistic. Define Bλ as {x | Tλ(x) <
c}. It is easy to show that B1 is an ellipsoid, which is a particular case of a
bounded extended convex set. J. Yarnold managed to simplify the item (4)
in this simple case and converted the expansion (3) to

Pr(X ∈ B1) = Gr(c)+(N1−nr/2V 1) e−c/2
/ (

(2πn)r
∏k

j=1
pj

)1/2

+O(n−1),

(5)

where Gr(c) is the chi-squared distribution function with r degrees of free-
dom; N1 is the number of points of the lattice L in B1; V 1 is the volume
of B1. Using the result of Esseen [8], he obtained an estimate of the second
item in (5) in the form O(n−(k−1)/k).

M. Shiotani and Y. Fujikoshi in [6] showed that, when λ = 0, λ = −1/2,
we have

J1 = Gr(c) + O(n−1)

J2 = (Nλ − nr/2V λ) e−c/2
/ (

(2πn)r
∏k

j=1
pj

)1/2

+ o(1), (6)

V λ = V 1 + O(n−1).

These results were expanded by T. Read to the case λ ∈ R. In particular
Theorem 3.1 in [10] implies

Pr (Tλ < c) = Pr
(
χ2

r < c
)

+ J2 + O
(
n−1

)
. (7)

This reduces the problem to the estimation of the order of J2.

It is worth mentioning that papers [6] and [10] do not estimate the residual
in (6). Consequently, it was impossible to construct estimates of the rate of
convergence of statistics Tλ to the limiting distribution, grounded on the
simple representation for J2 initially suggested by J. Yarnold.

In this paper for any power divergence statistic we eliminated lapses of
papers [6] and [10] pinpointed in the previous paragraph. Then we con-
structed an estimate for J2 based on the fundamental number theory result
of E. Hlawka [13].

The paper is divided into two parts. In the first one (section 2) we
discuss the possibility to reduce J2 and to convert it to the form (6). At that

5



we accentuate correct estimation of the error of such transformation. In the
second part (section 3) we investigate the applicability of the afore-mentioned
theorem from number theory to the set Bλ.

1.2 The main result

In lemmas 13, 5, and 2 it is shown that Bλ = {x | Tλ(x) < c} is a bounded
extended-convex (strictly convex) set. As it has been already mentioned, in
accordance with the results of J. Yarnold

J2 = O
(
n−

1
2

)
. (8)

For the specific case of r = 2 this estimate has been considerably refined
in [12]:

J2 = O
(
n−

50
73 (log n)

315
146

)
, r = 2.

For future reference we state the theorem, which pivoted the results of
[12].

Theorem 1 (M. N. Huxley, 1993). Let D be a two-dimensional convex set
with area A, bounded by a simple closed curve C, divided into a finite number
of pieces each of those being 3 times continuously differentiable in the follow-
ing sense. Namely, on each piece Ci the radius of curvature ρ is positive (and
not infinite), continuous, and continuously differentiable with respect to the
angle of contingence ψ. Then in a set that is obtained from D by translation
and linear expansion of order M , the number of integer points equals

N = AM2 + O
(
IMK(log M)Λ

)

K =
46

73
, Λ =

315

146
,

where I is a number depending only on the properties of the curve C, but on
the parameters M or A.

Proof. See [4], as well as [3].

In this paper we generalize the estimates of [12] to any dimension. We
utilize proposition 9 of [13].

Theorem 2 (E. Hlawka, 1950). Let D be a compact convex set in Rm with
the origin as its inner point. We denote the volume of this set by A. Assume
that the boundary of this set is an m − 1-dimensional surface of class C∞,
the Gaussian curvature being non-zero and finite everywhere on the surface.

6



Also assume that a specially defined ¿canonicalÀ map from the unit sphere
to D is one-one and belongs to the class C∞. Then in the set that is obtained
from the initial one by translation along an arbitrary vector and by linear
expansion with the factor M the number of integer points is

N = AMm + O
(
IMm−2+ 2

m+1

)

where the constant I is a number dependent only on the properties of the
curve C, but on the parameters M or A.

Proof. see [13], p.25-28.

R e m a r k 6. Providing that m = 2, the statement of theorem 2 is weaker
than the result of Huxley.

The above theorem is applicable in the current paper with M =
√

n.
Therefore, for any fixed λ we have to deal not with a single set, but rather
with a sequence of sets Bλ(n) converging in some sense to the limiting set
B1 when n → ∞. The type of this convergence will be elaborated in the
sequel. At present it is worth noting that the constant I in our case, generally
speaking, is dependent on n. Only having ascertained the fulfillment of the
inequality

|I(n)| 6 C0,

where C0 is an absolute constant, we are able to apply theorem 2 without
a change of the overall order of the error with respect to n. This statement
will be proven in a separate lemma.

In the paper we prove the following important estimate of J2 in the space
of any fixed dimension r > 3.

Theorem 3. For the term J2 from decomposition (7) the following estimate
holds

J2 = O
(
n−1+ 1

r+1

)
, r > 3, (9)

Corollary. For the statistic Tλ(x) denoted by formula (1) it holds that

Pr(Tλ(x) < c) = Gr(c) + O
(
n−1+ 1

r+1

)
, r > 3.

R e m a r k 7. In the case of Karl Pearson chi-squared statistics, i.e. when
λ = 1, using result of Götze for ellipsoids (see [5]) and applying Yarnold’s
arguments from [1] one can show (see [2]) that

Pr(T1(x) < c) = Gr(c) + O
(
n−1

)
, for r > 5.
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2 Reduction of the term J2 to a simplified

form

Let Nλ be the number of lattice points of

L = {x : xj =
1√
n

(mj − npj), mj ∈ Z, j = 1, r}, (10)

in Bλ, i. e. Nλ = #(L ∩Bλ), and V λ is the volume of Bλ.

Theorem 4. The item J2 can be expressed in the form

J2 = dn−
r
2 (Nλ − n

r
2 V λ) + O(n−1), (11)

where

d =
1

e
c
2

√
(2π)r

∏k
j=1 pj

.

Before we present the proof for this theorem, let us prove some ancillary
statements.

2.1 Some ancillary facts from differential geometry

Let us first recall some definitions from a course on differential geometry.

Definition 1. r-dimensional manifold is defined as the set

M =
⋃
i

Ui where

Ui
φi↔ Vi ⊂ Rr ∀i.

φi is a one-one and continuous mapping (homeomorphism).

Ui ⊂ U is called a map, and the set of Ui is called a map atlas. For in-
stance, the circle x2 +y2 = 1 is a one-dimensional manifold in R2: U1,2 = {x |
sign(x) = ±1}, U3,4 = {y | sign(y) = ±1}, φ−1

1,2 = (y,±
√

1− y2), φ−1
3,4 =

(x,±√1− x2).
The coordinate system to which φi map subsets Ui is called local. Func-

tions that determine the transformation of coordinates while moving from
one local coordinate system in Rr to another are called transition functions.

Definition 2. r-dimensional manifold M is said to have the smoothness
class of Cm if all transition functions belong to this class. In particular, in
the case when all transition functions are infinitely differentiable it is said
that M ∈ C∞.
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For a more detailed overview of above-mentioned and related notions the
reader should consult chapter 3 of [11].

From the implicit function theorem it follows that the set M = {T (x) =
c} is an n − 1-dimensional manifold in Rn if in the vicinity of each point
P ∈ M we can find a smooth implicit dependence of some coordinate on the
rest n− 1 coordinates.

Theorem 5. Let f : Rn → R1 be a mapping of class C∞, Mc = {x : f(x) =
c}. If the gradient of f is non-zero at each point on the set Mc, then Mc is
a smooth (n− 1)-dimensional manifold of class C∞.

Proof. See [11], ch. 3, §3, theorem 2.

R e m a r k. The assumptions of the theorem are still met if the mapping f
is given on the set Q ⊂ Rn where Q ⊃ Mc.

R e m a r k. As it will be shown in lemma 5 the set Bλ = {x | Tλ(x) < c}
satisfies theorem 5. Thus we can study it with the help of powerful differential
geometry instruments.

2.2 Preliminary lemmas

Lemma 1. There exist such positive coefficients
a1(λ, p), a2(λ, p), . . . , ak(λ, p) and positive numbers c1, c2, . . . , ck that

Tλ(x) > a1 x2
1 + a2 x2

2 + · · ·+ ak x2
k − c1 − c2 − · · · − ck.

Proof. Included in appendix B.

Lemma 2. The set Bλ = {x | Tλ(x) < c} is bounded.

Proof. According to lemma 1 we obtain for any λ ∈ R:

a1 x2
1 + a2 x2

2 + · · ·+ ak x2
k < c + c1 + c2 + · · ·+ ck.

Hence,

∀i |xi| 6
√

c +
∑k

l=1 cl

ai(λ, p)
.

Lemma 3. Let Ω−1 be an inverse matrix to the covariance matrix of Y , and
let the range of coordinates xi be bounded. Then the statistic Tλ(x) can be
expressed as a ¿quadratic formÀ i. e.

Tλ(x) = (Ω−1(n, x)x, x) where

Ω−1
ij (n, x) = Ω−1

ij + O(n−
1
2 ) uniformly in x.
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Proof. With the help of Taylor’s expansion we can obtain a schema that is

analogous to (2), to within O
(
n−

1
2

)
in each item. Since the range of each

coordinate xi is bounded, we can assume the estimate of this error to be
independent from x. Since xk = −(x1 + . . . + xr), we obtain

Tλ(x) =
k∑

i=1

x2
i

(
1

pi

+ O

(
1√
n

))
=

=
r∑

i=1

x2
i

(
1

pi

+
1

pr+1

+ O

(
1√
n

))
+ 2

∑
i<j

xixj

(
1

pr+1

+ O

(
1√
n

))
.

It remains to note that

Ω−1
ij =

{
1
pi

+ 1
pr+1

when i = j,
1

pr+1
when i 6= j.

We will extract just one of the coordinates from equations defining the
sets Bλ and B1. Without compromising generality we will further assume
that x1 is such a coordinate.

Definition 3. Let us name the section of Bλ maximum section with respect
to x1 (maximum with respect to direction e) if the result of an orthogonal
projection of this section to the plane x1 = const (to a plane that is or-
thogonal to the vector e) seen as an r − 1-dimensional set is congruent to
the projection of the whole set to the same plane. At that, obviously, the
projection of the maximum section of the set Bλ is congruent to the set Bλ

1 ,
and for B1 it is congruent to the set B1

1 .

Lemma 4. Let S = {x | T (x) = c} be a smooth n− 1-dimensional manifold
in Rn and e is a certain direction. Then the maximum section with respect
to e can be obtained from the necessary constraint

∂T (x)

∂e
= 0.

If the necessary constraint holds, the sufficient condition for the existence of
(not necessarily single) maximum section would be the simultaneous fulfilment
of the constraints below at any given point P on the section’s boundary.

1. T (x) = c,

2. ∂2T (x)/ ∂e2 > 0,
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3. minimum of T (x) on the line x = P + et is global with respect to t.

Proof. N e c e s s i t y . From definition 3 it follows that the maximum section
is defined by the points on the intersection of the projected set with the family
of projecting lines, which are aligned with a directing vector e. To obtain
the boundary of the maximum section Q it is necessary to extract those lines
of the family that intersect the set only in boundary points. Knowing that
each such line has the form x = x0 + et we can set the task in terms of the
minimization of Tλ(x) on the line.

It is known that the directional derivative at a point P can be calculated
as per the formula

∂T (x)

∂e
=

∂T (x(t))

∂t

∣∣∣∣
t=0

where x(t) is any parameterized space curve that is expressed in the following
form in the vicinity of a point P = x(0)

x(t) = x(0) + et + o(t).

Obviously, for any point on the surface S there exists a corresponding pro-
jective line. Since as stipulated above such a line will intersect the set only
on its boundary, in the vicinity of P on the line it holds that T (x) > c.
Therefore, the function T (x(0) + et) reaches its minimum when t = 0 (not
necessarily strict minimum). Hence,

0 =
d T (x(t))

d t

∣∣∣∣
t=0

=
n∑

i=1

∂T (x(t))

∂xi

× d xi(t)

d t
= grad T (x) e =

∂T (x)

∂e
.

S u f f i c i e n c y .
The fulfillment of the first condition is obvious. The second condition,

together with the necessary one, becomes sufficient for the existence of a
local minimum of the function T (x(0) + et). Indeed, by direct calculations
it is possible to show that

d2 T (x(t))

d t2

∣∣∣∣
t=0

=
∑
i,j

∂2T (x)

∂xi xj

x′i(t)x
′
j(t)

∣∣∣∣∣
t=0

=

= (grad(grad T (x), e), e) =
∂2T (x)

∂e2

∣∣∣∣
x=x(0)

.

If, in addition to the aforesaid, at the point P the third condition holds,
then the corresponding projective line touches S not only in the infinitesimal
vicinity of P , but also globally, i. e. the point belongs to the maximum
section.
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Lemma 5. In the space Rr the set

Tλ(x) = c (12)

is an (r − 1)-dimensional manifold (surface) of class C∞.

Proof. The idea of the proof is due to Zh.Assylbekov. The function Tλ(x)
is defined on the set (13), which is infinitely increasing when n approaches
infinity:

Q = {x : xj > −√npj, j = 1, r, x1 + ... + xr <
√

npr+1}. (13)

Coupled with the boundedness of Bλ, we obtain that beginning with
some fixed N the set (13) fully incorporates the surface (12). Further, we
know that the function Tλ(x) is infinitely differentiable as a superposition
of infinitely differentiable functions. Let us show that the gradient of this
function does not equal zero everywhere on the surface (12). Assume there
exists a point x0 on (12) such that

grad
[
Tλ(x

0)
]

= 0 ⇒ ∂(Tλ)

∂xj

(x0) = 0, j = 1, r

⇔ x0
j√

npj

= −x0
1 + · · ·+ x0

r√
npr+1

, j = 1, r.

We can rewrite the last r equations in the form:



1√
np1

+ 1√
npr+1

1√
npr+1

. . . 1√
npr+1

1√
npr+1

1√
np2

+ 1√
npr+1

. . . 1√
npr+1

...
...

. . .
...

1√
npr+1

1√
npr+1

. . . 1√
npr

+ 1√
npr+1




︸ ︷︷ ︸
C




x0
1

x0
2
...

x0
r


 = 0.

To within a constant the matrix of this system is the inverse for the covariance
matrix Ω. The inverse exists due to remark 5. Consequently, only the vector
x0 = (0, . . . , 0)′ can serve as a solution. But, on the other hand, this point
does not belong to the surface since

Tλ(x
0) = Tλ(0, . . . , 0) = 0 < c.

Summarizing we have
grad [Tλ(x)] 6= 0 (14)

on the whole surface (12).
Applying theorem 5 to the map Tλ we obtain the statement of the current

lemma.
End of proof.
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Now let us define the maximum section of the set Bλ in the direction
of the axis Ox1 from the condition ∂Tλ

∂x1
= 0. It determines a plane in an

r-dimensional space. For T1(x):

T1(x) =
r∑

i=1

x2
i

pi

+
(x1 + · · ·+ xr)

2

pr+1

,
∂T1

∂x1

=
2x1

p1

+
2

pr+1

(x1 + · · ·+ xr) = 0.

Similarly for Tλ(x):

Tλ(x) =
2n

λ(λ + 1)

(
r∑

i=1

pi

[(
1 +

xi√
npi

)λ+1

− 1

]
+ pr+1

[(
1− x1 + · · ·+ xr√

npr+1

)λ+1

− 1

])
=

=
2n

λ(λ + 1)

(
−1 +

r∑

i=1

pi

(
1 +

xi√
npi

)λ+1

+ pr+1

(
1− x1 + · · ·+ xr√

npr+1

)λ+1
)

∂Tλ(x)

∂x1

=
2n

λ




(
1 + x1√

np1

)λ

√
n

−

(
1− x1+···+xr√

npr+1

)λ

√
n


 = 0,

from whence we obtain a condition

(
1 +

x1√
np1

)λ

=

(
1− x1 + · · ·+ xr√

npr+1

)λ

,

which, accounting for the non-negativeness of the expressions in the power
base, gives

x1

p1

+
x1 + · · ·+ xr

pr+1

= 0, (15)

i. e. the same plane as in the case of the chi-squared statistic.

R e m a r k 8. When λ = 0,−1, this plane is obtained via proceeding to the
limit with regard to λ.

Since ∂2T (x)/ ∂x2
1 > 0 holds everywhere, from lemma 4 at the intersec-

tion of plane (15) with the manifold ∂Bλ we have a single maximum section.
We now find the intersection of this plane with the prelimiting and limiting
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sets. For B1 we get

x1 = − p1

p1 + pr+1

(x2 + · · ·+ xr),

p1

(p1 + pr+1)2
(x2 + · · ·+ xr)

2 +
r∑

i=2

x2
i

pi

+
(x2 + · · ·+ xr)

2
(
1− p1

p1+pr+1

)2

pr+1

= c, or

(x2 + · · ·+ xr)
2

(
p1

(p1 + pr+1)2
+

pr+1

(p1 + pr+1)2

)
+

r∑
i=2

x2
i

pi

= c,

1

p1 + pr+1

(x2 + · · ·+ xr)
2 +

r∑
i=2

x2
i

pi

= c. (16)

R e m a r k 9. We would have obtained the same result if we had extracted
the first coordinate from the equation T1(x) = c, which in this case turns
into a quadratic one. The domain of the unrestrained variables (x2, . . . , xr)
in this case is determined by the non-negativeness of the discriminant and
coincides with the interior of the domain defined by the quadratic form (16).

For the set Bλ the projection of the maximum section to the plane x1 = 0,
in accordance with the aforesaid, can be expressed in the form

cλ(λ + 1)

2n
= −1 +

r∑
i=2

pi

(
1 +

xi√
npi

)λ+1

+ p1

(
1− x2 + · · ·+ xr√

n(p1 + pr+1)

)λ+1

+

+ pr+1

(
1−

x2 + · · ·+ xr − p1

p1+pr+1
(x2 + · · ·+ xr)√

npr+1

)λ+1

.

Interestingly, we could express the fourth item in the right-hand side of the
last equality in the same form as the third, and then add the two. We thus
obtain the following for the prelimiting set:

cλ(λ + 1)

2n
= −1+

r∑
i=2

pi

(
1 +

xi√
npi

)λ+1

+(p1+pr+1)

(
1− x2 + · · ·+ xr√

n(p1 + pr+1)

)λ+1

(17)
It luminously holds that

Proposition 1. The equation (17) can be expressed in the form Tλ(x
′) =

c, where x′ = (x2, . . . , xr), p′2 = p2, . . . p
′
r = pr, p′r+1 = p1 + pr+1. The

corresponding limiting equation will obviously be T1(x2, . . . , xr) = c, with the
same set of probabilities as above.

14



This corollary means that the projection of the maximum section of the
set Bλ to the r − 1-dimensional space of variables is the same set Bλ, but
which has a different set of probabilities and independent variables, as well
as is one point ”less dimensional”.

Now the time has come to introduce a complementary notation

Notation.

B̃1
1 :

1

p1 + pr+1

(x2 + . . . + xr)
2 +

r∑
i=2

x2
i

pi

< c− a√
n

,

where a is a constant. Analogously, we define B̃1
l , l > 2.

Lemma 6.

VB̃1
1

= VB1
1
− a(r − 1)

2c
√

n
VB1

1
+ O

(
1

n

)
(18)

Proof. Obviously, the mapping

yi =

√
c

c− a√
n

xi, i = 2, r

converts the set B̃1
1 into the following set

r∑
i=2

y2
i

pi

+
(y2 + . . . + yr)

2

p1 + pr+1

< c.

At that the Jacobian of the map comes in the form

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

√
c− a√

n

c
0 · · · 0 0

0

√
c− a√

n

c
· · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · ·
√

c− a√
n

c
0

0 0 · · · 0

√
c− a√

n

c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

(
c− a√

n

c

) r−1
2

=

=

(
1− a√

nc

) r−1
2

= 1− a(r − 1)

2
√

nc
+ O

(
1

n

)

Now what the lemma states follows from the representation of volume as an
integral with regard to variables (x2, . . . , xr) and the rule of the change of
variables in an integral.

15



Lemma 7.

VBλ
1

= VB1
1

[
1 + O

(
1

n

)]

Proof. In [9] it is shown that

VBλ = VB1 · [1 +
c

24(k + 1)n
{(λ− 1)2[5S − 3k2 − 6k + 4]−

− 3(λ− 1)(λ− 2)[S − 2k + 1]}] + O
(
n−

3
2

)
, S =

k∑
j=1

p−1
j .

Nevertheless, from proposition 1 we know that the set Bλ is self-similar in
the sense that the projection of its maximum section with respect to any
coordinate equals the set Bλ taken with the dimension of one unit lower.
Therefore

VBλ
1

= VB1
1
· [1 +

c

24(r + 1)n
{(λ− 1)2[5S − 3r2 − 6r + 4]−

− 3(λ− 1)(λ− 2)[S − 2r + 1]}] + O
(
n−

3
2

)
, S =

r∑
j=2

1

p′j
.

Lemma 8. There exists such a constant a = a(λ, p, c), that beginning with
some n0

B̃1
1 ⊂ Bλ

1 and V
(
Bλ

1 \ B̃1
1

)
=

a(r − 1)

2
√

nc
· VB1

1
+ O

(
1

n

)

Proof. We choose the constant a in the way that the set B̃1
1 is a subset of

Bλ
1 . Let (x2, . . . , xr) belong to B̃1

1 , and p′ = (p2, p3, . . . , pr, p1 + pr+1). Then

T p′
1 (x2, . . . , xr) < c− a√

n
, (19)

where T p′
1 is the statistic T1 taken for the set of probabilities p′ and variables

(x2, . . . , xr). On the other hand,

T p′
λ (x2, . . . , xr) = T p′

1 (x2, . . . , xr) +
k∑

i=2

(λ− 1)x3
i

3
√

n(p′i)2
+

+
k∑

i=2

(λ− 1)(λ− 2)x4
i

12n(p′i)3
+ O

(
n−

3
2

)
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Substituting inequality (19) we obtain a new inequality of the form

T p′
λ (x2, . . . , xr) < c− a√

n
+

k∑
i=2

(λ− 1)x3
i

3
√

np2
i

+ O

(
1

n

)
6

6 [ xi uniformly bounded ] 6

6 c− a√
n

+
c2(λ, p, c)√

n
+ O

(
1

n

)
< [a = c2 + 1] < c, ∀n > N(λ, p, c)

So we can assert that B̃1
1 ⊂ Bλ

1 . Then

V
(
Bλ

1 \ B̃1
1

)
= VBλ

1
− VB̃1

1
= [ lemma 6 and 7 ] =

=
a(r − 1)

2c
√

n
VB1

1
+ O

(
1

n

)

Now let us estimate the number of lattice points in the difference of theese
two sets (in the space of dimensionality r − 1).

NBλ
1 \B̃1

1
= NBλ

1
−NB̃1

1
=

= n
r−1
2 ·

(
VBλ

1
− VB̃1

1

)
+ αn = O

(
n

r−2
2

)
+ o(n

r−2
2 ).

The last equality is proven in the following lemma

Lemma 9.
αn = o(n

r−2
2 )

Proof. For r = 3 the estimate of the error αn follows from Huxley’s theorem,
and for greater r it follows from Hlawka’s theorem. Indeed, the applicability
of these theorems to B̃1 is obvious, and for Bλ it follows

1. from [12] (when r = 3), and

αn = O
(
n

23
73

)
= o(

√
n);

2. from statement 2 proven in the second part of the present paper (for
any r > 3), and

αn = O
(
n

r−2
2
− 1

2
+ 1

r

)
.

In view of the aforesaid, we obtain a summary lemma

Lemma 10.
NBλ

1 \B̃1
1

= O
(
n

r−2
2

)
(20)
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2.3 The transformation of J2 representation into a sim-
plified form

We will prove theorem 4, if we express J2 in the form (11). Consider one
item of the embracing sum with respect to l in representation (4).

n−
(r−l+1)

2

∑
xl+1∈Ll+1

· · ·
∑

xr∈Lr[∫
· · ·

∫
χBλ

l
(x)[S1(

√
nxl + npl)φ(x)]

θl(x
∗)

λl(x∗)
dx1, · · · , dxl−1

]

(21)

Having expanded the indicator function into a sum of indicator functions
χBλ

l ∩B̃1
l
+ χBλ

l \B̃1
l
, we will split it into two parts. Three cases are possible for

the part that comprises the indicator over the difference of sets.

1. l = 1. The expression (21) consists only of the following sums:

n−
r
2

∑
x2∈L2

· · ·
∑

xr∈Lr

χBλ
1 \B̃1

1
(x)[S1(

√
nx1 + np1)φ(x)]

θ1(x∗)
λ1(x∗)

It has the order O
(

1
n

)
because the number of lattice points in the

difference Bλ
1 \ B̃1

1 , according to lemma 10, has the order O
(
n

r−2
2

)
.

2. l = r. The integration is carried out over the set Bλ
r \ B̃1

r with

the Lebesgue measure O
(
n−

1
2

)
, which, together with the coefficient

n−
(r−l+1)

2 , results in the final order of O
(

1
n

)
.

3. General case: l = t, 1 < t < r. Here not only summation but also
integration has to be carried out. After the integration with respect to
variables x1, . . . , xt follows the summation of the value O(1) over the
lattice with respect to coordinates xt+1, . . . , xr. In this summation only
those points of the lattice are taken that belong to Bλ

x1,...,xt
\ B̃1

x1,...,xt
.

Due to the property of self-similarity (see proposition 1), we can sequen-
tially fix the coordinates x1, . . . , xt and prove that the two obtained
sets have the same structure as their predecessors. Consequently, in
line with lemma 10 the number of points of a corresponding lattice of

dimension r− t in the difference set equals O
(
n

r−t−1
2

)
. Providing for

the coefficient before the item we obtain a part in J2 of the order O
(

1
n

)
.

18



Let us further address to the other item. We transform the expression

[S1(
√

nxl + npl)φ(x)]
θl(x

∗)
λl(x∗)

(22)

in the following way

S1(
√

nθl(x
∗) + npl)(φ(θl(x

∗), x∗)− φ(θ(x∗), x∗)) + d[S1(
√

nθl(x
∗) + npl)−

−S1(
√

nλl(x
∗) + npl)]− S1(

√
nλl(x

∗) + npl)(φ(λl(x
∗), x∗)− φ(λ(x∗), x∗)),

where θ(x∗) and λ(x∗) are analogues of θl(x
∗) and λl(x

∗) for B1. At that
d = φ(θ(x∗), x∗) = φ(λ(x∗), x∗).

R e m a r k 10. Applying Lagrange’s theorem to the function φ in the first and
the hindmost part of the expression obtained, we could reduce the problem
of the estimation of their orders to the estimation of the rate of uniform
convergence of the roots θl(x

∗) and λl(x
∗) (on the set Bλ

l ∩ B̃1
l ). Indeed, the

following holds

Theorem 6. On the set Bλ
l ∩ B̃1

l the following uniform estimates hold:

|θl(x
∗)− θ(x∗)| 6 C

n
1
4

, |λl(x
∗)− λ(x∗)| 6 C

n
1
4

.

Proof. See appendix.

However, if this is the case, then the residual O
(
n−

1
4

)
results in the error

of O
(
n−

3
4

)
in the aggregate representation for J2 after the summation over

all lattice points, belonging to Bλ
l ∩ B̃1

l = B̃1
l . This error turns out to be the

leading term in J2 for all r > 3 if we use Hlawka’s result, which is not helpful
for proving the main theorem of the paper.

Let us change our method and utilize remark 3.

Theorem 7. Expression (22) will take the form

d[S1(
√

nθl(x
∗) + npl)− S1(

√
nλl(x

∗) + npl)] + O
(
n−

1
2

)
.

Proof. We have

(Ω−1x, x) = Ω−1
11 x2

1 + 2
r∑

j=2

Ω−1
1j x1xj +

r∑
i=2

r∑
j=1

Ω−1
ij xixj.
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|φ(θl(x
∗), x∗)− φ(θ(x∗), x∗)| = 1

(2π)
r
2 |Ω| 12

· e− 1
2

∑r
i=2

∑r
j=1 Ω−1

ij xixj×

×
∣∣∣e− 1

2
(Ω−1

11 θl(x
∗)2+2

∑r
j=2 Ω−1

1j θl(x
∗)xj) − e−

1
2
(Ω−1

11 θ(x∗)2+2
∑r

j=2 Ω−1
1j θ(x∗)xj)

∣∣∣ 6
6 [ Lipschitz property of the exponent ] 6

6 L

(
Ω−1

11 (θ2
l (x

∗)− θ2(x∗)) + 2
r∑

j=2

Ω−1
ij (θl(x

∗)− θ(x∗))xj

)
= O

(
1√
n

)
.

It is possible to estimate the last expression using the relationship derived
from lemma 2,

(Ω−1x, x)|(θ(x∗),x∗) = c, (Ω−1(n, x)x, x)|(θl(x∗),x∗) = c,

Ω−1
ij (n, x)− Ω−1

ij = O(n−
1
2 ).

If we summate the error obtained through the theorem over the lattice
points in the set Bλ

l ∩ B̃1
l (integrate in the appropriate case) and multi-

ply by a corresponding coefficient, we will obtain O(n−1) in the aggregate
representation for J2.

Now it can be seen that the principal part of J2 is a sum-integral of the
form

n−
(r−l+1)

2

∑
xl+1∈Ll+1

· · ·
∑

xr∈Lr[∫
· · ·

∫
χBλ

l
∩ χB̃1

l
(x)[d · S1(

√
nxl + npl)]

θl(x
∗)

λl(x∗)
dx1, · · · , dxl−1

]

Rewriting it as a difference through the use of indicators χBλ
l

and χBλ
l \B̃1

l
and

attributing the sum-integral over the difference of sets to the error, we have

n−
(r−l+1)

2

∑
xl+1∈Ll+1

· · ·
∑

xr∈Lr[∫
· · ·

∫
χBλ

l
(x)[d · S1(

√
nxl + npl)]

θl(x
∗)

λl(x∗)
dx1, · · · , dxl−1

]
+ O(n−1)

Finally, we apply the reasoning on p. 1571-1572, [1] for the chi-squared
statistic to the principal part of the last expression and obtain the item J2

in the form

J2 = (Nλ − n
r
2 V λ) e−

c
2

/
((2πn)r

∏k

j=1
pj)

1
2 + O

(
n−1

)
. (23)

Thus, we obtain the simplified version of J2. End of the first part.
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3 Applicability of Hlawka’s theorem to the

sequence Bλ(n)

On the next step we aim at the estimation of

Nλ − n
r
2 V λ,

taken from (23). To do this we investigate geometric properties of the set
Bλ.

3.1 Convexity of Bλ

Lemma 11. Let a function f(x) be defined and have two derivatives on
a convex set Q. Then the function is strictly convex on Q if the second
differential d2f of this function at all points Q is a positively defined quadratic
form.

Proof. See [7], chapter 14, §7, lemma 2.

Lemma 12. The function Tλ(x) defined by formula (2) is strictly convex on
the set

Q = {x : xj > −√npj, j = 1, r, x1 + ... + xr <
√

npr+1}. (24)

Proof. The idea of the proof is due to Zh.Assylbekov. The set Q is convex
since it is an open r-dimensional pyramid. We compute second-order partial
derivatives of the function Tλ(x):

∂2(Tλ)

∂x2
i

=
2

pi

(
1 +

xi√
npi

)λ−1

+
2

pr+1

(
1− x1 + · · ·+ xr√

npr+1

)λ−1

, i = 1, r, (25)

∂2(Tλ)

∂xi∂xj

=
2

pr+1

(
1− x1 + · · ·+ xr√

npr+1

)λ−1

, i 6= j. (26)

All the above-mentioned derivatives are continuous on Q, that’s why the func-
tion Tλ(x) is two times differentiable on Q. Due to lemma 11 the statement
of the current lemma will be proven if we show that d2(Tλ) is a positively
defined quadratic form. To do this it is sufficient to prove that leading prin-

cipal minors ∆l, l = 1, r of the matrix A =
(

∂2(Tλ)
∂xi∂xj

)
are positive and use

Sylvester’s criterion. We then make use of induction with respect to l:

1. l = 1.

∆1 =
∂2(Tλ)

∂x2
1

> 0 (27)

due to (25) and (13).
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2. Let ∆l−1 > 0. We denote

ai =
2

pi

(
1 +

xi√
npi

)λ−1

, i = 1, r, (28)

b =
2

pr+1

(
1− x1 + · · ·+ xr√

npr+1

)λ−1

. (29)

Observe that ai > 0, b > 0 due to (13). It follows from (25) and (26)
that the matrix A can be rewritten in the form:




a1 + b b . . . b
b a2 + b . . . b
...

...
. . .

...
b b . . . ar + b


 , (30)

and, consequently,

∆l =

∣∣∣∣∣∣∣∣∣

a1 + b b . . . b
b a2 + b . . . b
...

...
. . .

...
b b . . . al + b

∣∣∣∣∣∣∣∣∣
= { from the property of

a determinant} =

∣∣∣∣∣∣∣∣∣

a1 + b b . . . b
b a2 + b . . . b
...

...
. . .

...
0 0 . . . al

∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

Al

+

∣∣∣∣∣∣∣∣∣

a1 + b b . . . b
b a2 + b . . . b
...

...
. . .

...
b b . . . b

∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

Bl

.

(31)

Conducting the decomposition of the determinant Al with respect to
the last row, we obtain:

Al = ∆l−1al > 0 (32)

due to the induction assumption. Subtracting from the first (l − 1)
rows the lth row, we obtain in the determinant Bl:

Bl =

∣∣∣∣∣∣∣∣∣

a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
b b . . . b

∣∣∣∣∣∣∣∣∣
= a1a2 . . . al−1b > 0. (33)
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From (31), (32), and (33) we infer that

∆l > 0.

End of proof.

Lemma 13. The set Bλ is strictly convex.

Proof. The idea of the proof is due to Zh.Assylbekov. See also Lemma 5 in
[12].

We fix some x1 ∈ Bλ, x2 ∈ Bλ, t ∈ [0, 1]. Then Tλ(x1) < c, Tλ(x2) < c.
Due to lemma 12 the function Tλ(x) is strictly convex on Q. Therefore,

Tλ(x1 + t(x2 − x1)) < Tλ(x1) + t(Tλ(x2)− Tλ(x1)) =

= (1− t)Tλ(x1) + tTλ(x2) < (1− t)c + tc = c.

Consequently, x1+t(x2−x1) ∈ Bλ. Repeating this reasoning for an arbitrary
pair of points x1 and x2 taken from the boundary of the set Bλ (i.e. for such
x1 and x2 that Tλ(x1) = c, Tλ(x2) = c), we prove the strict convexity of the
set. End of proof.

3.2 Sufficient conditions for the applicability
of Hlawka’s theorem

Recall that Nλ is the number of lattice points in L that fall into the set Bλ.
Since the lattice L has a step equal to n−

1
2 , we can regard Nλ as the number

of integer points in the set derived from the set Bλ by a linear extension with
the factor

√
n. Thus, in terms of theorem 2 we can consider the linear factor

M =
√

n.
For a start we will show that the condition on the ¿canonicalÀ mapping

can be excluded from those conditions of theorem 2 that require our con-
sideration. The mapping is from Rr to Rr, and it maps each vector u on
the unit sphere to a vector x(u) ∈ Bλ(n) such that the unit normal to the
surface at this point equals u. Obviously, the vector x(u) defined in such a
way is equal to the support vector of the set Bλ(c) in the direction u. We can
assume that all the set is parameterized by points of a unit sphere. At that
the mapping inverse to the ¿canonicalÀ mapping moves the radius-vector of
any point on the surface into the normal vector to the surface at this point.

Since Bλ(c) is a strictly convex set (lemma 11), the ¿canonicalÀ mapping
is one-one. Moreover, the set Bλ(c) is implicitly defined by a function of
class C∞ and, consequently, can be regarded as a level surface . Hence, it
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is possible to define a normal at a point on the surface via a normalized
gradient of the function T λ(x), which in accordance with the aforesaid does
not equal zero and is infinitely smooth. As a result the inverse and initial
¿canonicalÀ mappings are infinitely differentiable in our case.

The following lemma states the requirements that should be satisfied in
order to get rid of the dependence on n in the result of theorem 2.

Lemma 14. Assume that the conditions of theorem 2 are satisfied for B(n),
and, moreover,

1. at every point of the boundary of the set its Gaussian curvature Kn(u)
is located within limits that are independent from n, u and uniformly
separated from zero with regard to these parameters:

0 < K0 6 Kn(u) 6 K1,

2. for any u on the unit sphere the support function Hn(u) of the set B(n)
is uniformly bounded with respect to n and uniformly separated from 0,
i. e.

H1 > Hn(u) > H0 > 0, |u| = 1.

3. Partial derivatives of Hn(u) of any order have a uniform upper bound
with respect to n.

Then ∣∣N − n
r
2 V

∣∣ 6 c · n r
2
−1+ 1

r+1 , (34)

where the constant c does not depend on n.

Proof. The proof almost verbatim reiterates the reasoning in the proof of
proposition 9 of [13]. However, we have to ensure that residual constants will
be bounded uniformly in n. To achieve it we consistently trace estimates in
Satz 1-9. Some short remarks on this process are given below.

Satz 1. Does not involve any residual terms.
Satz 2 (Hilfssatz 1). In the proof of Satz 2 Hlawka introduces additional

parametrization of the unit sphere Em by points of another unit sphere Em−1:

u1 = cos v, uj = sin v · aj(j > 2),
m∑

j=2

a2
j = 1, x = x(v).

At that all the derivatives of functions uj with respect to v are bounded. In
place of functions f and g being used in Hilfssatz 1 the functions fn(v) =
x1(v), gn(v) = Kn(v) · sinm−2 v · cos v, a = 0, b = π are taken. From

24



estimates (14) – (17) in Satz 2 and the reasoning that immediately follows
we can conclude that the estimates

f ′′n(a) 6 −ρ1 < 0, f ′′n(b) > ρ1 > 0,

min
[a+c1,b−c1]

|f ′n(x)| = C1 > 0, max
[a,b]

|f ′′′n (x)| = C2(n) 6 C2

are uniform in n. Let us go on to Hilfssatz 1. First, note the constant C from
Hillfsatz 1 can be regarded as uniformly bounded. Moreover, since Kn(u)
is the sum of all m − 1-dimensional minors of the gessian of the support
function Hn(u), this curvature, together with its derivatives of all orders,
will be uniformly bounded in n. Consequently, the same will hold for gn(v).
That’s why O(e−j) in (6), Hilfssatz 1 can be deemed independent from n.
Tracing the whole proof throughout Hilfssatz 1 makes sure that the order of
errors is nowhere dependent on n. Then we trace the order of errors in Satz
2 in the same way.

Satz 3, Satz 4. All the errors can be regarded as independent from n
providing the requirements of the theorem are fulfilled.

Satz 5. In equality (3) constants C1 and C2 are uniformly bounded in n.
Satz 6 - Satz 8. These sections prepare the ground for conclusions nar-

rated in Satz 9. We just continue to trace the order of errors.
Satz 9. Hlawka uses the results of previous sections of his paper. He

manipulates with the residuals, which as proven before are not dependent
on n. As a result we obtain inequalities (9), which are translated into the
following equality

Φ(y, t) = V t
m
2 + O

(
t

m(m−1)
2(m+1)

)
, (35)

where V is the m-dimensional volume of the set B(n),
√

t is the order of
linear expansion (M =

√
n), y is the transition vector of the set with respect

to the origin, Φ(y, t) — the number of integer points in the set obtained by
the linear expansion and the transition. Putting m = r, t = n we obtain the
sought after equality (34).

3.3 Fulfillment of sufficient conditions for the sets Bλ(n)

We investigate the fulfillment of lemma-14 requirements for the sets Bλ(n).
First, we look at B1 as the limit of the above-mentioned sets and at the same
time the simplest member of the family Bλ(n).

Lemma 15. The Gaussian curvature of a unit sphere in a multidimensional
space equals one at each point of its surface.
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Proof. Since the Gaussian curvature is an invariant of weight 0 (such known
absolute invariant) with respect to the group of smooth non-degenerate co-
ordinate transformations, it is sufficient to consider a unit sphere in the
multidimensional spherical system of coordinates. We have

x1 = r cos θ1, (36)

x2 = r sin θ1 cos θ2,

x3 = r sin θ1 sin θ2 cos θ2,

. . .

xr−1 = r sin θ1 sin θ2 . . . sin θr−2 cos θr−1,

xr = r sin θ1 sin θ2 . . . sin θr−2 sin θr−1

where θi ∈ [0, π), i = 1, r − 2, and θr−1 ∈ [−π, π). In the new coordinate
system the sphere has a simple representation of r = 1; such value of the
spherical radius determines an unequivocal parametrization of the sphere,
which is obtained from coordinate transformation equations.

The Gaussian curvature at any fixed point u can be calculated via a ratio
of the determinants corresponding to the second and the first forms of the
surface given on the tangent space. Utilizing a simple calculation it can
be proven that the first- form matrix I ∈ R(r−1)×(r−1) for the unit sphere
consisting of elements

Iij = (
∂x

∂θi

,
∂x

∂θj

),

equals the identity matrix. That is to say, Iij = δj
i . Further, the second form

II ∈ R(r−1)×(r−1) consists of elements

IIij = (
∂2x

∂θi∂θj

,n) = −(
∂x

∂θi

,
∂n

∂θj

)

where n is an ¿outward-lookingÀ unit normal vector to the surface at the
given point. The obvious geometrical fact that x is orthogonal to each vector
∂x
∂θi

can be verified by calculating the corresponding scalar product in terms of
the spherical parametrization x = x(θ). Since for the unit sphere ||x|| = 1,
we conclude that the system of vectors

{
∂x

∂θi

i = 1, r − 1,x

}

is orthonormal. Therefore, the normal

n =
[ ∂x
∂θ1

× ∂x
∂θ2

× . . .× ∂x
∂θr−1

]

|[ ∂x
∂θ1

× ∂x
∂θ2

× . . .× ∂x
∂θr−1

]| (37)

26



should be equal to the spherical radius-vector x in modulus. In order to de-
termine whether these vectors have the same orientation we consider the
determinant D(

{
∂x
∂θi

i = 1, r − 1, x
}

). Since any orthonormal system in the

multidimensional space belongs to one and only one of two classes of equiva-
lence (divided by the sign of the determinant of this system), an ¿outward-
lookingÀ unit normal by definition represents the very normal vector that
complements the subsystem ∂x

∂θi
i = 1, r − 1 to a ¿rightÀ basis; a positive sign

of D will mean that n = x, and a negative sign will result in n = −x. We
thus have

D(
∂x

∂θ1

,
∂x

∂θ2

, . . . ,
∂x

∂θr−1

, x) = (−1)r−1 ×D(x,
∂x

∂θ1

,
∂x

∂θ2

, . . . ,
∂x

∂θr−1

) =

=
(−1)r−1

rr−1
× J where J =

D(x1, x2, . . . , xr)

D(r, θ1, θ2, . . . , θr−1)
. (38)

It is known that the Jacobian J of the transition from a spherical coordinate
system to a rectangular coordinate system equals

J = rr−1

r−1∏

k=1

(sin θi)
r−1−k > 0.

Hence, n = (−1)r−1 × x. Substituting into the formula for IIij we obtain

IIij = (−1)rIij, II = (−1)rI, |II| = (−1)r(r−1)|I|.
Keeping in mind that the product of two consecutive natural numbers is
always divisible by two, the Gaussian curvature should equal 1.

End of proof.

Lemma 16. The Gaussian curvature of the set B1 is uniformly separated
from 0.

Proof. The proof is predicated on the fact that B1 is an image of the or-
thogonal transformation (rotation) of an ellipsoid. For the Gaussian curva-
ture is not changed under orthogonal transformations of the surface, it is
sufficient to prove that the curvature is uniformly separated from 0 for a
¿standardÀ ellipsoid

x2
1

a2
1

+
x2

2

a2
2

+ · · ·+ x2
r

a2
r

= 1.

Note that such an ellipsoid can be obtained via a linear transformation of
the unit sphere. The transformation matrix

A = diag(a1, a2, . . . , ar), y = Ax, x ∈ S1(0),
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is obviously non-degenerate.
We then look how the first form changes under a non-degenerate linear

transformation of coordinates. We first notice that the matrix I is a Gram
matrix and therefore can be expressed in the form

I = BBT , B is the matrix of vector coordinates ∂x/ ∂θi written in rows.

After the transformation of A these vectors for a given point become ∂Ax/ ∂θi =
A ∂x/ ∂θi. Hence, we get

I ′ = (BAT )(BAT )T = BAT ABT .

Since B ∈ R(r−1)×r, we are generally not able to decompose the determinant
of the matrix I ′ into the product of determinants A and B. However, for a
unit sphere ( ∂x

∂θi
, ∂x

∂θj
) = δj

i , and that’s why for the ellipsoid I ′ij = AT AIij =

aiajδ
j
i and |I ′| = |A|2|I| = |A|2.

In order to comprehend how the elements of the second form are changed
we in the first place define the notion of a normal in a multidimensional
space. In the space Rm we use the symbol [x1 × x2 × . . .× xk] to denote an
m−k-valent tensor z, the coordinates of which in the simplest case are given
by formulae

zi1i2...im−k
=

∑
j1j2...jk

δj1j2...jki1i2...im−k
xj1

1 xj2
2 . . . xjk

k . (39)

Herein the symbol δf1f2...fs denotes ±1, depending on the evenness of the
number of transpositions necessary to move the permutation of f1, f2, . . . , fs

into the natural permutation. It denotes 0 if the set f1, f2, . . . , fs is either not
a permutation or can not be moved into the natural permutation 1, 2, . . . , s.
The reader should consult book [?] as a detailed source on tensor calculus
and vector products. The operations with the generalized δ are explored in
book [?].

Put m = r, k = r − 1. Then from formula (39) we obtain

zi =
∑

j1j2...jr−1

δj1j2...jr−1ix
j1
1 xj2

2 . . . x
jr−1

r−1 =

=
∑

j1j2...jr−1

(−1)σ(j1,j2,...,jr−1)δj̃1j̃2...j̃r−1ix
j1
1 xj2

2 . . . x
jr−1

r−1

where j̃1, j̃2, . . . , j̃r−1 are ordered ascendingly. Noting that the coordinates
jl are changed on the set {1, 2, . . . , r} \ {i} we come to the symbolical
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determinant (denote the j-th coordinate of the vector xi by xj
i ) of the form

z = (−1)r−1

∣∣∣∣∣∣∣∣∣∣

e1 e2 . . . er

x1
1 x2

1 · · · xr
1

x1
2 x2

2 · · · xr
2

. . . . . . . . . . . . . . . . . . . . .
x1

r−1 x2
r−1 · · · xr

r−1

∣∣∣∣∣∣∣∣∣∣

(40)

Applying this formula to the vectors y = Ax and accounting for the diagonal
property of A, we get

z′i =
∏

k 6=i

ak × zi, ∀i. (41)

Since ∂Ax
∂θi∂θj

= A ∂x
∂θi∂θj

, for the elements of the second form of the transformed

set we have

II ′ij = (A
∂x

∂θi∂θj

,
N ′

|N ′|) =
r∏

k=1

ak × IIij × |N |
|N ′| . (42)

Herein we use N ,N ′ to denote vector products of tangent vectors to the ini-
tial and transformed surfaces respectively. Further, for an arbitrary smooth
r − 1-dimensional manifold we prove the following equality:

|N |2 = det(I). (43)

To accomplish this we make use of the index notation for sums which is
explained in detail, for instance, in [?]. From the definition of the vector
product

|N |2 =

∣∣∣∣∣∣

x2
1 · · · xr

1

. . . . . . . . . . . . . . .
x2

r−1 · · · xr
r−1

∣∣∣∣∣∣

2

+ · · ·+
∣∣∣∣∣∣

x1
1 · · · xr−1

1

. . . . . . . . . . . . . . .
x1

r−1 · · · xr−1
r−1

∣∣∣∣∣∣

2

=

=
r−1∑
i=1

(δi1i2...ir−1i × xi1
1 xi2

2 . . . x
ir−1

r−1 )2 =

= δi1i2...ir−1i × δj1j2...jr−1i × xi1
1 xj1

1 xi2
2 xj2

2 . . . x
ir−1

r−1 x
jr−1

r−1

Then

δi1i2...ir−1i × δj1j2...jr−1i = δ
j1j2...jr−1i
i1i2...ir−1i = δ

j1j2...jr−1

i1i2...ir−1
.

Consider the set of indices (l1, l2, . . . , lr−1) obtained from (1, 2, . . . , r − 1) by
number of transpositions needed to move the permutation (j1, j2, . . . , jr−1)
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into the permutation (i1, i2, . . . , ir−1). When the selection i is fixed, we can
transpose the multipliers xj1

1 , xj2
2 , . . . , x

jr−1

r−1 in each summand in the way that
the selection of their lower indices would spell as l. For one summand we
obtain

δ
j1j2...jr−1

i1i2...ir−1
× xi1

1 xi1
l1

. . . x
ir−1

r−1 x
ir−1

lr−1

The whole sum can be expressed in the index notation:

δl1l2...lr−1 × xi1
1 xi1

l1
. . . x

ir−1

r−1 x
ir−1

lr−1
= δl1l2...lr−1 × (x1, xl1)(x2, xl2) . . . (xr−1, xlr−1) =

= det I

Thus, statement (43) is proven.
We now compare (42) and (43). We get

IIij = |A| × IIij ×
√
|I|√
|I ′| .

Hence,

K ′ =
|II ′|
|I ′| =

|A|r−1|II||I| r−1
2

|I ′| r+1
2

=

= K|A|r−1

( |I|
|I ′|

) r+1
2

= K
|A|r−1

(|A|2) r+1
2

=
K

|A|2 =
1∏r

i=1 a2
i

> 0

Lemma 17. Assume that the manifold B has an unequivocal smooth parametriza-
tion in the spherical m-dimensional system of coordinates

x = r(θ) = (r(θ), θ1, . . . , θm−1).

Then its first form can be written in the following way

I =




r2 + ∂2r
∂θ2

1

∂r
∂θ1

∂r
∂θ2

· · · ∂r
∂θ1

∂r
∂θm−1

∂r
∂θ2

∂r
∂θ1

r2 + ∂2r
∂θ2

2
· · · ∂r

∂θ2

∂r
∂θm−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂r

∂θm−1

∂r
∂θ1

∂r
∂θm−1

∂r
∂θ2

· · · r2 + ∂2r
∂θ2

m−1




(44)

Proof. This lemma can be proven by calculating vectors ∂r/ ∂θi in the mul-
tidimensional spherical system of coordinates and then calculating their pair-
wise scalar products.
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Lemma 18. The sets Bλ(n) have an unequivocal smooth parametrization in
the space Rr.

Proof. The proof is grounded on the implicit function theorem and the fact
that there exists a constant s independent from n such that the derivative of
Tλ with respect to the polar radius fulfills the inequality

∂Tλ(x(θ))

∂r
> s

Indeed, expressing the statistic Tλ in the spherical coordinate system and
introducing the aliases

ar+1 =
1

pr+1

, bi =
1

pi

, ai = bi + ar+1, i = 1, r,

we have
∂Tλ

∂r
= 2r(θ) · f(θ1θ2 . . . θr−1) + O

(
1√
n

)

where

f(θ1θ2 . . . θr−1) = a1 cos2 θ1 + a2 sin2 θ1 cos2 θ2 + · · ·

+ ar sin2 θ1 sin2 θ2 . . . sin2 θr−2 sin2 θr−1 +
2

pr+1

r∑

i<j
i,j=1

gij

gi, l+i =





i = 1, l = 1
cos θ1 sin θ1 cos θ2,

i = 1, 1 6 1 < l < r − 1
cos θ1 sin θ1 sin θ2 . . . sin θ1+l−1 cos θl+1,

i = 1, l = r − 1
cos θ1 sin θ1 sin θ2 . . . sin θl−1 sin θl,

i > 1, l = r − i

sin2 θ1 sin2 θ2 . . . sin2 θi−1(cos θi sin θi) sin θi+1 . . . sin θi+l−2 sin θi+l−1,

i > 1, 1 6 l < r − i

sin2 θ1 sin2 θ2 . . . sin2 θi−1(cos θi sin θi) sin θi+1 . . . sin θi+l−1 cos θi+l.

Note that for the sets Bλ(n) the radius-vector r is uniformly separated from
0, and we only have to construct a lower estimate for f .
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Let us turn to the double argument with respect to the angle θ1. Then

f(θ1θ2 . . . θr−1) = a1

(
1 + cos 2θ1

2

)
+ a2

(
1− cos 2θ1

2

)
cos2 θ2 + . . .

+ ar

(
1− cos 2θ1

2

)
sin2 θ2 . . . sin2 θr−2 sin2 θr−1+

+ ar+1 (1− cos 2θ1)×
r−1∑

i=2
l=1, r−i

g′i, i+l + ar+1 sin 2θ1 ×
r−1∑

l=1

g′′1, 1+l.

Herein

g′i, i+l =

{
l < r − i sin2 θ2 . . . sin2 θi−1(sin θi cos θi) sin θi+1 . . . sin θi+l−1 sin θi+l,

l = r − i sin2 θ2 . . . sin2 θi−1(sin θi cos θi) sin θi+1 . . . sin θi+l−2 cos θi+l−1,

(45)

g′′1, l+1 =





l = 1 cos θ2,

1 < l < r − 1 sin θ2 . . . sin θl cos θl+1,

l = r − 1 sin θ2 . . . sin θl−1 sin θl.

(46)

System (46) defines a unit sphere in the space of dimension r−1. It means
that all the equalities that are valid for the coordinates of such a sphere
also hold for the quantities g′′1,1+l (further denoted by x′l+1). In particular,
(x′2)

2 + (x′3)
2 + · · ·+ (x′r)

2 = 1.
After regrouping and applying ai = bi + ar+1 the function f can be

expressed as

f =
ar+1

2
(
1 + cos2 θ2 + · · ·+ sin2 θ2 sin2 θ3 . . . sin2 θr−2 sin2 θr−1

)
+

b1

2
+

+
(

b2

2
cos2 θ2 +

b3

2
sin2 θ2 cos2 θ3 + · · ·+ br

2
sin2 θ2 sin2 θr−2 sin2 θr−1

)
+

+ ar+1

r−1∑

i=2

r−i∑

l=1

g′i, i+l+

+ cos 2θ1[
ar+1

2
(1− cos2 θ2 − · · · − sin2 θ2 sin2 θ3 . . . sin2 θr−2 cos2 θr−1−

− 2
r−1∑

i=2

r−i∑

l=1

g′i, i+l) +
b1

2
−

(
b2

2
cos2 θ2 + · · ·+ br

2
sin2 θ2 . . . sin θr−2 cos2 θr−1

)
]+

+ sin 2θ1

(
ar+1

r−1∑

l=1

g′′1,1+l

)
.
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In the sequel we use the notation

∆ = x′2 + x′3 + · · ·+ x′r,

B = b2 cos2 θ2 + b3 sin2 θ2 cos2 θ3 + . . . + br sin2 θ2 sin2 θ3 · · · sin2 θr−2 sin2 θr−1.

We note that from the definition of B it follows that

0 < min(b1, b2, . . . , br) 6 B 6 max(b1, b2, . . . , br).

To construct the final uniform in n lower estimate for the partial derivative
of the initial statistic we express the function f in terms of all the notational
elements described so far:

ar+1

2
(1 + ∆2) +

b1 + B

2
+ cos 2θ1(

ar+1

2
(1−∆2) +

b1 −B

2
) + sin 2θ1∆ar+1 >

> ar+1

2
(1 + ∆2) +

b1 + B

2
−

−
√(ar+1

2

)2
(1−∆2)2 +

(b1 −B)2

4
+

ar+1

2
(1−∆2)

(
b1 −B

2

)
+ ∆2a2

r+1 >

>
ar+1

2
(1 + ∆2) +

b1 + B

2
−

−
√(ar+1

2
(1 + ∆2)

)2
+

(
b1 + B

2

)2

+
ar+1

2
(1 + ∆2)

b1 + B

2
> s > 0.

We observe that in the last inequality the lower boundary is independent
from n and θ.

Denote the scalar radius-vector of Bλ by rn(θ), and the radius-vector of
B1 by r(θ).

Lemma 19. There exists a uniform (in θ) convergence rn(θ) ⇒ r(θ) and
an analogous uniform convergence for partial derivatives of any order.

Proof. Without loss of generality we discuss only the three-dimensional case
when r = 2. In this case instead of the vector of parameters θ we have only
one parameter to be named t. The proof for higher dimensions mirrors the
one below.

Let rn(t) be the polar radius of the set Bλ, and r(t) be the polar radius
of the set B1. Then it can be proven that

|rn(t)− r(t)| 6 C√
n

(47)
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Indeed, we have

Tλ(rn(t), t) = c = T1(r(t), t), Tλ(r, t) = T1(r, t) + O

(
1√
n

)

At that the error in the second equality is uniform in n due to the limitedness
of the domain of coordinates. We have

T1(rn(t), t)− Tλ(rn(t), t) = O

(
1√
n

)
.

Hence, we can obtain a uniform estimate of the form:

|T1(rn(t), t)− T1(r(t), t)| = |T1(rn(t), t)− Tλ(rn(t), t)| 6 C√
n

.

On the other hand,

T1(rn(t), t)−T1(r(t), t) =
(rn(t) cos t)2

p1

+
(rn(t) sin t)2

p2

+
(rn(t)(cos t + sin t))2

p3

−

−
[
(r(t) cos t)2

p1

+
(r(t) sin t)2

p2

+
(r(t)(cos t + sin t))2

p3

]
=

=

[
cos2 t

(
1

p1

+
1

p3

)
+ sin2 t

(
1

p2

+
1

p3

)
+

sin 2t

p3

]
(r2

n(t)− r2(t))

From the previous lemma we know that the first multiplier is uniformly
lower-bounded (let us denote this multiplier by E and the corresponding
lower bound by E0). We have

|rn(t)− r(t)| 6 C/
√

n

E(rn(t) + r(t))
6 C/

√
n

E0 · r(t) 6 C ′
√

n
.

The last transition follows from the trivial non-negativeness of rn(t) and the
existence of a uniform lower bound for r(t).

Thus, (47) is proven.

We know that the derivatives of solutions rn(t), r(t) are expressed in
terms of the derivatives of an implicit function with respect to its arguments
t and r(t). At that in the denominator we will notice the first derivative with
respect to r of the functionals Tλ(r, t), T1(r, t) to some power, for instance,

r′n(t) = −
∂Tλ(rn(t),t)

∂t
∂Tλ(rn(t),t)

∂r

, r′(t) = −
∂T1(r(t),t)

∂t
∂T1(r(t),t)

∂r
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From what was proven in the previous lemma

∃N : ∀n > N
∂T1(r(t), t)

∂r
> s > 0,

∂Tλ(rn(t), t)

∂r
> s > 0.

In that very lemma it was virtually shown that

∂Tλ(r(t), t)

∂r
=

∂T1(r(t), t)

∂r
+ O

(
1√
n

)
.

Similarly, we can obtain the same for the derivatives with respect to t:

∂Tλ(r(t), t)

∂t
=

∂T1(r(t), t)

∂t
+ O

(
1√
n

)
.

So it can be easily seen that

∂Tλ(r(t),t)
∂t

∂Tλ(r(t),t)
∂r

=
∂T1(r(t),t)

∂t
∂T1(r(t),t)

∂r

+ O

(
1√
n

)
.

Let us work out the difference r′(t)− r′n(t):

∂Tλ(rn(t),t)
∂t

∂Tλ(rn(t),t)
∂r

−
∂T1(r(t),t)

∂t
∂T1(r(t),t)

∂r

=

=

(
∂Tλ(rn(t),t)

∂t
∂Tλ(rn(t),t)

∂r

−
∂Tλ(r(t),t)

∂t
∂Tλ(r(t),t)

∂r

)
+

(
∂Tλ(r(t),t)

∂t
∂Tλ(r(t),t)

∂r

−
∂T1(r(t),t)

∂t
∂T1(r(t),t)

∂r

)

Adding up the smoothness of the functions Tλ(r, t), T1(r, t) with respect to
the combination of their arguments, the boundedness of the domain for (r, t),
and Lagrange’s theorem, we reach the inequality

|r′n(t)− r′(t)| 6 M · |rn(t)− r(t)|+ O

(
1√
n

)
,

which entails the uniform convergence of the first derivatives of the polar
radius. We can prove the uniform convergence for higher-order derivatives
in absolutely the same way.

Corollary 1. There exists a uniform convergence in θ of the Gaussian
curvature of Bλ to the Gaussian curvature of B1.

Proof. The statement follows from formulae (40), (44), formulae for first- and
second-form coefficients and the fact that a determinant is a sum of products
of its elements. The structure of the Gaussian curvature in terms of the
spherical system of coordinates preserves the uniform convergence originating
from the uniform convergence of corresponding radius-vectors.
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Corollary 2. The Gaussian curvature of the sequence Bλ(n) is uniformly
bounded and uniformly separated from zero mirroring the behavior of the
Gaussian curvature of the limiting ellipsoid B1.

In what follows we utilize the Hausdorff metric that measures the distance
between two sets A and B. Recall the definition:

haus(A,B) = r ⇔
{

A ⊂ B + Sr(0),

B ⊂ A + Sr(0).

Lemma 20. The support functions Hn(ψ) of the manifolds Bλ(n) are uni-
formly bounded and uniformly separated from 0 on a unit sphere |ψ| =
1.

Proof. The proof consists of proving two substatements.

1. The sequence Bλ(n) converges in the Hausdorff metric to the lim-
iting ellipsoid B1, and there exists a positive constant d such that
haus(Bλ(n), B1) 6 d√

n
.

2. For the support function H of the manifold B1 it holds that

H1 > H(ψ) > H0 > 0, |ψ| = 1.

Providing these substatements are proven, we can take advantage of the
inequality widely known in optimal control theory

|HA(ψ)−HB(ψ)| 6 |ψ| × haus(A,B). (48)

We will thereby obtain the uniform in n estimate for the difference of the
support functions as needed.

The statement of point 2 becomes obvious if we take into account that
the ellipsoid B1 includes 0 as its inner point. In this case we are able to find
a ball Sr(0) fully incorporated into B1. That is,

H(ψ) > HSr(0)(ψ) = r|ψ| = r > 0

on a unit sphere. On the other hand, the upper estimate follows from the
boundedness of the ellipsoid, i. e. the possibility to insert it into a ball of
some fixed radius.

Let us prove point 1. Conducting the reasoning similar to the one in
lemma 8 we obtain that there exist such constants a1 and a2 independent
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from n that the sets

B̃1 :
(x1 + . . . + xr)

2

pr+1

+
r∑

i=1

x2
i

pi

< c− a1√
n

, (49)

B̂1 :
(x1 + . . . + xr)

2

pr+1

+
r∑

i=1

x2
i

pi

< c +
a2√
n

(50)

are in the following relationships with each other

B̃1 ⊂ Bλ ⊂ B̂1. (51)

On the other hand, there exist such d > 0 that

B̂1 ⊂ B1 + S d√
n
(0), B1 ⊂ B̃1 + S d√

n
(0). (52)

Consider, for instance, the first of these relationships. In the sequel we use
the following matrix rule for sets: AB = {y = Ax | x ∈ B}. We have

B̂1 =

√
c + a2√

n

c
EB1 = B1 +

a2

2c
√

n
EB1 + O

(
1

n

)
EB1.

Since B1 is bounded, there exists such b > 0 that

B̂1 ⊂ B1 +
a2b

2c
√

n
S1(0). (53)

It remains to require the fulfillment of the inequality on d:

d√
n

> a2b

2c
√

n
.

Under this requirement the right part (53) will be embedded into the right
part of (52), which is what we strive to prove.

In summary for some constant d simultaneously

Bλ ⊂ B̂1 ⊂ B1 + S d√
n
(0), B1 ⊂ B̃1 ⊂ Bλ + S d√

n
(0),

which proves point 1 completely.

We have ascertained the first two requirements of lemma 14. Now let us
check the requirement regarding partial derivatives of the support function
Hn(ψ).
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Lemma 21. All partial derivatives of the function Hn(ψ) are uniformly in
n upper bounded.

Proof. The uniform boundedness of first-order partial derivatives follows
from the boundedness of the set Bλ(c) and the equalities

∂Hn(ψ)

∂ψi

= xi(ψ)

where xi(ψ) is the i-th component of the image of the special mapping from
a unit sphere to Bλ(c) suggested above. The equalities hold due to general
convex body theory and are proven, for instance, in [14], p. 58.

Derivatives of second and higher orders of the function Hn(ψ) can be
therefore considered derivatives of the components of the vector x. From
optimal control theory it is known that the vector x(ψ) represents a solution
of the following optimization problem

r∑
i=1

xiψi → max, (54)

Tλ(x) = c. (55)

We use Lagrange’s method to seek conditional extrema with fixed ψ and λ.
Everywhere in what follows we will assume that λ 6= 0. For the case λ = 0
the reasoning is similar. We have

L =
r∑

i=1

xiψi + β(Tλ − c),

∂L

∂xi

= ψi + β · ∂Tλ

∂xi

= 0,
∂L

∂β
= Tλ − c = 0

Hence we obtain a system of r + 1 non-linear equations with respect to the
dependent variables x1, . . . , xr, β and independent variables ψ1, . . . , ψr.




F1(x1, . . . , xr, β, ψ1, . . . , ψr) = 0,

F2(x1, . . . , xr, β, ψ1, . . . , ψr) = 0,

. . .

Fr(x1, . . . , xr, β, ψ1, . . . , ψr) = 0,

Tλ(x1, . . . , xr)− c = 0

(56)

Herein

Fi =

(
1 +

xi√
npi

)λ

−
(

1− x1 + · · ·+ xr√
npr+1

)λ

+
ψiλ

2β
√

n
. (57)
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It is clearly seen that all functions of the system, together with all their
partial derivatives, are infinitely differentiable on the set Bλ(c). Without
loss of generality we consider partial derivatives of the dependent variables
with respect to ψ1. To obtain them we differentiate all equations of the
system with respect to ψ1 and in what follows we will use these equations to
simplify the reasoning and summary results. Denoting

a =
1

pr+1

(
1− x1 + x2 + . . . + xr√

npr+1

)λ−1

, bi =
1

pi

(
1 +

xi√
npi

)λ−1

, i = 1, r,

(58)

ci =

(
1 +

xi√
npi

)λ

−
(

1− x1 + x2 + . . . + xr√
npr+1

)λ

, t =
1

2β
, (59)

taking into account

ci = − ψiλ

2
√

nβ
, i = 1, r,

and cancelling the common multiplier −tλ√
n

out of the last (differentiated)
equation, we obtain a system of linear equations over

y = (
∂x1

∂ψ1

,
∂x2

∂ψ1

, . . . ,
∂xr

∂ψ1

,
∂t

∂ψ1

)T

of the following form




a + b1 a · · · a ψ1

a a + b2 · · · a ψ2

. . . . . . . . . . . . . . . . . . . . . . . . . . .
a a · · · a ψr

ψ1 ψ2 · · · ψr 0







∂x1

∂ψ1
∂x2

∂ψ1

...
∂xr

∂ψ1
∂t

∂ψ1




=




−t
0
...
0
0




. (60)

Each component of a solution to this system is a quotient of the determinant
of the matrix that is derived by substituting the right column into columns of
the coefficient matrix and the coefficient matrix determinant (name them J ′

and J respectively). Higher-order partial derivative components are obtained
by differentiating the equations of system (60). Final formulae would be more
complex, but similar in structure to the simplest case of the ratio J ′

J
. Namely,

we get a fraction with a polynomial over J, J ′ and their derivatives in the
numerator and with a power of J in the denominator.
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The determinant of the coefficient matrix can be calculated by decom-
posing it into a sum of determinants.

−J(1, 2, . . . , r) =

=

∣∣∣∣∣∣∣∣∣∣

a a · · · a −ψ1

a a + b2 · · · a −ψ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a a · · · a + br −ψr

ψ1 ψ2 · · · ψr 0

∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣

b1 a · · · a −ψ1

0 a + b2 · · · a −ψ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 a · · · a + br −ψr

0 ψ2 · · · ψr 0

∣∣∣∣∣∣∣∣∣∣

.

From this recurrent relationship

−J(1, 2, . . . , r) = −
(

b1J(2, 3, . . . , r) + a

r∏
i=2

bi

(
ψ2

1

a
+

r∑
j=2

(ψ1 − ψj)
2

bj

))
,

(61)

J(r) =

∣∣∣∣
a + br −ψr

ψr 0

∣∣∣∣ (62)

we get

−J(1, 2, . . . , r) =
r∑

i=1

ψ2
i

∏

k 6=i

bk + a ·
∑

16l<m6r

(ψl − ψm)2 ·
∏

k 6=l
k 6=m

bk.

We know that

a
n→∞→ 1

pr+1

, bi
n→∞→ 1

pi

,

r∑
i=1

ψ2
i = 1. (63)

Consequently, |J | is uniformly in n separated from 0.
The determinant J ′ can in turn be expressed in the form (the right part

is inserted into the j-th column):

J ′ = (−t)(−1)1+j ·

∣∣∣∣∣∣∣∣∣∣

a a + b2 a · · · a a ψ2

a a a + b3 · · · a a ψ3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a a a · · · a a + br ψr

ψ1 · · · ψj−1 ψj+1 · · · ψr 0

∣∣∣∣∣∣∣∣∣∣

(64)

Note that due to (63) the determinant in the right part of the last equality
is uniformly bounded in n and ψ.

To finalize the proof of the uniform boundedness of the partial derivatives
we equate functions Fi from (57) to zero according to system (56):

t = −
√

nci

λψi

, ∀i = 1, r. (65)
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Further, we slice the compact set K :
∑r

i=1 ψ2
i = 1 in the way described

below. Consider some infinitesimal ε1 > 0 and the vicinity U(ε1,ψ) = {ψ ∈
K | |ψ1| 6 ε1}. Put S1 = UC(ε1,ψ). Within the set SC

1 = U(ε1,ψ) we
consider another vicinity U(ε2, ψ) = {ψ ∈ K | |ψ2| 6 ε2} and denote by S2

the intersection SC
1 ∩UC(ε2,ψ). Continuing this process we can construct the

sets S1, S2, . . . , Sr, the process being finite because at least one component
of the vector ψ is not close to zero. Since the union of all Si covers the unit
sphere K, it is sufficient to validate the uniform boundedness of the partial
derivatives on each Si, and then unite the results.

Since on Si the inequality |ψi| > εi holds uniformly in n, we are able to
make use of the i-th equality in (65) and formula (59) in order to obtain

|J ′| 6
√

nci

λψi

C1 6 C2

εi

.

From this and the inequality |J | > C3 > 0, proved above follows the state-
ment of the lemma.

From what was proven above we can formulate the following summary
statement.

Proposition 2. All the conditions of lemma 14 are fulfilled for the sequence
of sets Bλ(n).

This is to wrap up the second part of the current paper. We now can go
on to proving the main result encapsulated in theorem 3.

4 Summarizing the point

From corollary 2 to lemma 19, lemma 20, and lemma 21 it follows that we
can apply lemma 14 to the sets Bλ(n). Substituting (34) into (23) we obtain
estimate (9).
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A Proof of root convergence estimate

Theorem 8. On the set Bλ
l (c)∩B̃1

l (c) (mentioned in remark 10) the following
uniform estimates hold:

|θl(x
∗)− θ(x∗)| 6 C

n
1
4

, |λl(x
∗)− λ(x∗)| 6 C

n
1
4

.

Proof. Without loss of generality consider the root θl(x
∗) with l = 1 denoted

by θn(x∗) in what follows. We have Tλ(x) = T1(x) + O
(

1√
n

)
; therefore

T1(θn(x∗), x∗) + O
(

1√
n

)
= c. Since

θ(x∗) =
− 1

pk
· (x2 + . . . + xr) +

√
D

1
p1

+ 1
pk

, D = c−
r∑

i=2

x2
i

pi

− (x2 + . . . + xr)
2

p1 + pk

,

for θn(x∗) we obtain a similar expression:

θn(x∗) =
− 1

pk
· (x2 + . . . + xr) +

√
Dn

1
p1

+ 1
pk

, Dn = D + O

(
1√
n

)
.

Then it not too difficult to measure the root difference

|θn(x∗)− θ(x∗)| =
(

1

p1

+
1

pk

)
|
√

Dn −
√

D| 6
C√
n√

Dn +
√

D
=

=

C√
n√

c−∑r
i=2

x2
i

pi
− (x2+...+xr)2

p1+pk
+

√
c−∑r

i=2
x2

i

pi
− (x2+...+xr)2

p1+pk
+ O

(
1√
n

) 6

6 [ we reside on the set B̃1
1(c), see definition in section 2] 6

6
C√
n

√
a√
n

+

√
a√
n

+ O
(

1√
n

) 6
C√
n√
a√
n

= O
(
n−

1
4

)
.

End of proof.
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B Obtaining a lower estimate for the func-

tional Tλ(x)

Lemma 22. There exist positive coefficients
a1(λ, p), a2(λ, p), . . . , ak(λ, p) and positive constants c1, c2, . . . , ck such that

Tλ(x) > a1 x2
1 + a2 x2

2 + · · ·+ ak x2
k − c1 − c2 − · · · − ck.

Proof. From remark 1 we have

Tλ(x) =
2n

λ(λ + 1)

[
k∑

j=1

pj

((
1 +

xj√
npj

)λ+1

− 1

)]
, λ 6∈ {0, 1}; (66)

T0(x) = 2n
k∑

j=1

pj

(
1 +

xj√
npj

)
ln

(
1 +

xj√
npj

)
; (67)

T−1(x) = −2n
k∑

j=1

pj ln

(
1 +

xj√
npj

)
. (68)

Case λ 6∈ {−1, 0}. Let us consider a fuction of one variable

f(x) =
2np

λ(λ + 1)

((
1 +

x√
np

)λ+1

− 1

)
(69)

It is defined for all x ∈ D = (−√np,
√

n(1− p)), which follows from inequal-
ities

∀i = 1, k xi > −√npi, x1 + x2 + · · ·+ xk <
√

npk,

leading to inequalities

∀i = 1, k xi <
√

n(1− pi).

At that f(0) = 0, and

f ′(x) =
2
√

n

λ

(
1 +

x√
np

)λ

, sign(f ′(x)) = sign(λ); (70)

f ′′(x) =
2

p

(
1 +

x√
np

)λ−1

, f ′′(x) > 0 ∀λ; (71)

lim
x→−√np

f(x) =

{
− 2np

λ(λ+1)
, λ > −1,

+∞, λ < −1;
(72)

lim
x→√n(1−p)

f(x) =

(
1

pλ+1
− 1

)
2np

λ(λ + 1)
. (73)

43



We seek a function of the form

Ψ(x) = ax2 + bx− c : c > 0, a = a(λ, p) > 0, b = b(λ, n), (74)

f(x) > Ψ(x), ∀x ∈ (−√np,
√

n(1− p)), ∀n. (75)

From the analysis for f(x) it follows that the search for Ψ(x) splits into two
cases: in the first one where λ > 0 the initial function strictly increases on the
whole segment whereas in the second one where λ < 0 it strictly decreases in
the same manner. In the sequel, for simplicity we will be dealing with both
cases simultaneously

Given the strict convexity of f(x) we can formulate sufficient conditions
for the function Ψ(x) in the form:

when λ > 0





a) Ψ(0) = −c, c > 0

b) Ψ(−√np) 6 −2np
λ(λ+1)

c) 0 < Ψ′(x) 6 f ′(x), x ∈ R+ ∩D, ∀n
d) Ψ′′(x) > 0;

when λ < 0





a) Ψ(0) = −c, c > 0

b) Ψ(
√

n(1− p)) 6 −2np
λ(λ+1)

(
1− 1

pλ+1

)

c) 0 > Ψ′(x) > f ′(x), x ∈ R− ∩D, ∀n
d) Ψ′′(x) > 0.

We conduct further argumentation as follows. Inequalities Ψ′(x) > 0, Ψ′′(x) >
0 define a convex quadratic trinomial, whose apex is located to the left of 0
when λ > 0 and to the right of 0 when λ < 0. From type-a) conditions we can
determine the constant term of the quadratic trinomial. It is an infinitesimal
number. Since the decomposition of f ′(x) in the Taylor series when λ 6= 0
has the form

f ′(x) =
2
√

n

λ
+

2x

p
+

(λ− 1)x2

√
np2

+ · · · ,

from c) we can conclude that b(n) 6 2
√

n
λ

when λ > 0 (b(n) > 2
√

n
λ

when
λ < 0). Condition c) can in turn be rewritten as

sign(λ)φ(x) = sign(λ)(f ′(x)− ψ′(x)) > 0, ∀x ∈ Rsign(λ) ∩D,

and for its fulfillment we stipulate that

φ(0) > 0, φ′(x) = (f ′′(x)− ψ′′(x)) > 0 ∀x ∈ Rsign(λ) ∩D.

The first of the conditions is already fulfilled due to previously imposed
restrictions on b(n). The second one is equivalent to the non-negativeness of
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the minimum of φ′(x) on the given domain x ∈ Rsign(λ) ∩D. At that in case
λ < 0 we consider the minimum on the whole D for simplicity. We obtain
the following conditions on a(λ, p):

when λ > 1 a 6 1

p
, when λ < 1 a 6 1

pλ
.

Let us see what condition b) gives us. We have the inequality on b(n):

b(n) > a
√

np +
2
√

n

λ(λ + 1)
− c√

np
, when λ > 0

b(n) 6 c√
n(1− p)

− a
√

n(1− p)− 2
√

np

λ(λ + 1)(1− p)

(
1− 1

pλ+1

)
=

=
c√

n(1− p)
− a

√
n(1− p) +

2
√

n(1− pλ+1)

λ(λ + 1)(1− p)

1

pλ
, when λ < 0,

and can require neglecting the minute c that

b(n) > 2
√

n

λ

(
1

λ + 1
+

apλ

2

)
, when λ > 0

b(n) 6 2
√

n

λ

(
1− pλ+1

(λ + 1)(1− p)pλ
− aλ(1− p)

2

)
, when λ < 0.

Comparing in each of the two cases lower and upper estimates for b(n), we
can come to a conclusion that the necessary b(n) exists if and only if the
following additional inequalities hold a(λ, p):

a 6 2

pλ

(
1− 1

λ + 1

)
=

2

p(λ + 1)
, when λ > 0;

a 6 2

λ(λ + 1)pλ(1− p)2
(1− pλ − λpλ + λpλ+1) = θ(p, λ), when λ < 0.

Now we can summarize and give the inequalities sufficient for the fulfill-
ment of conditions a)-c) for each fixed λ.

for λ > 1 ,

a 6 1
p
, a 6 2

p(λ + 1)
, b(n) 6 2

√
n

λ
, b(n) > 2

√
n

λ

(
1

λ + 1
+

apλ

2

)
;

for λ ∈ (0, 1] ,

a 6 1
pλ

, a 6 2
p(λ + 1)

, b(n) 6 2
√

n

λ
, b(n) > 2

√
n

λ

(
1

λ + 1
+

apλ

2

)
;

for λ < 0 ,

a 6 1
pλ

, a 6 θ(p, λ), b(n) > 2
√

n

λ
, b(n) 6 2

√
n

λ

(
1− pλ+1

(λ + 1)(1− p)pλ
− aλ(1− p)

2

)
.
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We put b(n) = 2
√

n
λ

. For a per each λ we choose the stronger of the two in-
equalities and set a equal to the value that turns this inequality into an
equality. Obviously, when λ ∈ (0, 1), we have 2

p(λ+1)
> 1

pλ . Moreover,

θ(p, λ) > 1
pλ when λ < 0. Indeed, the comparison of the last two values

is equivalent to the comparison of 0 with Q(p) = 2(1− pλ − λpλ + λpλ+1)−
λ(λ + 1)(1− p)2. At that

lim
p→0

Q(p) =

{
−∞, λ ∈ (−1, 0),

∞, λ < −1
(76)

Q(1) = 0, Q′(p) = 2λ(λ + 1)(1− p)(1− pλ), (77)

so that Q(p) is positive when λ < −1 and negative when λ ∈ (−1, 0).
Ultimately, we obtain

a(λ, p) =





2
p(λ+1)

, λ > 1,
1
pλ , λ ∈ (0, 1],
1
pλ , λ < 0;

(78)

b(λ, n) =
2
√

n

λ
; (79)

Ψ(x) = a(λ, p)x2 + b(λ, n)x− c. (80)

Case λ = −1. In this case

f(x) = −2np ln

(
1 +

x√
np

)
, f(0) = 0

f ′(x) =
−2
√

n

1 + x√
np

< 0,

f ′′(x) =
2

p
(
1 + x√

np

)2 > 0,

It follows that we can act in accordance with the algorithm for λ < 0. At
that b(λ, n) = −2

√
n, and

a = min( lim
λ→−1

θ(p, λ), lim
λ→−1

1

pλ
) = min(

2

1− p

(
1 +

p ln p

1− p

)
, p) = p.
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Case λ = 0. In this case

f(x) = 2np

(
1 +

x√
np

)
ln

(
1 +

x√
np

)
, f(0) = 0, lim

x→−√np
f(x) = 0

f ′(x) = 2
√

n

(
ln

(
1 +

x√
np

)
+ 1

)
,

f ′′(x) =
2

p + x√
n

> 0,

f(
√

n(1− p)) = 2n ln
1

p
.

The function f(x), unlike in previously considered situations, has an interior
extremum (miminum) on D at the point x =

√
np(1

e
− 1), which is equal to

−2np
e

. Due to the decomposition of the derivative f ′(x) we can take b(n) =
2
√

n. Let us consider the difference

Z(x) = f(x)−Ψ(x).

With given b(n)

Z ′(x) = 2
√

n ln

(
1 +

x√
np

)
− 2ax, Z ′(0) = 0

Z ′′(x) = 2(
1

p + x√
n

− a) > 2− 2a on D.

We require that a 6 1. Then the second derivative Z ′′(x) will be positive
when x ∈ (−√np,

√
n(1− p)) making the first one increase on this interval.

Consequently, the extremum (0, Z(0)) will function as the single minimum.
In that Z(0) = c > 0, Z(x) > 0 holds on D. Making a = 1 we obtain

Ψ(x) = x2 + 2
√

nx− c.

Summary λ ∈ R.

a(λ, p) =

{
2

p(λ+1)
, λ ∈ [1,∞),

1
pλ , λ ∈ (−∞, 1);

(81)

b(λ, n) =

{
2
√

n
λ

, λ 6= 0

2
√

n, λ = 0.
(82)

Ψ(x) = a(λ, p)x2 + b(λ, n)x− c. (83)

We recall that the above-mentioned lower-bound polynomials are found
for each pair (xi, pi), i = 1, k. To obtain an aggregated below estimate
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it remains to sum over i taking into account that the dependence on n is
encapsulated in the coefficient b(λ, n), which is not dependent on i. Therefore

∑
i

b(λ, n)xi = b(λ, n)
∑

i

xi = 0.

End of proof for the lemma.
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