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Abstract

In this paper, we consider some tests for the multivariate normality based
on the sample measures of multivariate skewness and kurtosis. Sample mea-
sures of multivariate skewness and kurtosis were defined by Mardia (1970),
Srivastava (1984) and so on. We derive new multivariate normality tests by
using Mardia’s and Srivastava’s moments. For univariate sample case, Jar-
que and Bera (1987) proposed bivariate test using skewness and kurtosis. We
propose some new test statistics for assessing multivariate normality which
are natural extensions of Jarque-Bera test. Finally, the numerical results by
Monte Carlo simulation are shown in order to evaluate accuracy of expec-
tations, variances, frequency distributions and upper percentage points for
new test statistics.

Key Words and Phrases: Jarque-Bera test; multivariate skewness; multivari-
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1 Introduction

In statistical analysis, the test for normality is an important problem. This prob-
lem has been considered by many authors. Shapiro and Wilk’s (1965) W-statistic
is well known as the univariate normality test. For the multivariate case, some

tests based on W-statistic were proposed by Malkovich and Afifi (1973), Royston
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(1983), Srivastava and Hui (1987) and so on. Mardia (1970) and Srivastava (1984)
gave different definitions of the multivariate measures of skewness and kurtosis,
and discussed the test statistics using these measures for assessing multivariate
normality, respectively. Mardia (1974) derived exact expectations and variances of
multivariate sample skewness and kurtosis, and discussed their asymptotic distri-
butions. Srivastava’s (1984) sample measures of multivariate skewness and kurtosis
have been discussed by many authors. Seo and Ariga (2006) derived a normaliz-
ing transformation of test statistic using Srivastava’s kurtosis by the asymptotic
expansion. Okamoto and Seo (2008) derived the exact expectation and variance
of Srivastava’s skewness and improved x? statistic defined by Srivastava (1984) for
assessing multivariate normality.

In this paper, our purpose is to propose new Jarque-Bera tests for assessing
multivariate normality by using Mardia’s and Srivastava’s measures, respectively.
For univariate sample case, Jarque and Bera (1987) proposed an omnibus test using
skewness and kurtosis. Improved Jarque-Bera tests have been discussed by many
authors. (see, e.g. Urzia (1996)) But Jarque-Bera test for multivariate sample case
has not been considered by any authors. In Section 2 we describe some properties
of Mardia’s and Srivastava’s multivariate skewness and kurtosis. In Section 3 we
propose new tests for assessing multivariate normality. New test statistics are
asymptotically distributed as y2-distribution under the normal population. These
tests are extensions of Jarque-Bera test. In Section 4 we investigate accuracy of
expectations, variances, frequency distributions and upper percentage points for

multivariate Jarque-Bera tests by Monte Carlo simulation.



2 Multivariate measures of skewness and kurto-
Sis
2.1 Mardia’s (1970) skewness and kurtosis

Let x = (21,22,...,2,) and y = (y1, Y2, ..., Y,)" be random p-vectors distributed
identically and independently with mean vector p = (g1, ft2, ..., ftp)" and covari-
ance matrix 3, ¥ > 0. Mardia (1970) has defined the population measures of

multivariate skewness and kurtosis as

Bun = E [{(& — p)S7Hy — p)}¥*],
Buz =E [{(513 - M)/E_l(m - M)}Q} )
respectively. When p = 1, By1 and [(y2 are reduced to the ordinary univariate

measures. It is obvious that for any symmetric distribution about @, Bar1 = 0.

Under the normal distribution N,(p,X),

Bua =0, Buo=plp+2).

To give the sample counterparts of 31 and Bar2, let ©1, T2, ..., Ty be samples
of size N from a multivariate p-dimensional population. And let  and S be the

sample mean vector and the sample covariance matrix as follows:
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respectively.
Then Mardia (1970) has defined the sample measures of skewness and kurtosis
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respectively.

Mardia (1970, 1974) have given the following Lemma.

Lemma 1 Mardia (1970, 197}) have given the exact expectation of byry, and ex-

pectation and variance of byro when the population is N,(p, X).

p(p+2)

) = DO =1)
Var(bars) = — PP H2IN=3) v 4yv 1),

(N +1)2(N +3)(N +5)
respectively.
Furthermore Mardia (1970) obtained asymptotic distributions of by; 1 and by, 2 and

used them to test the multivariate normality.

Theorem 1 Let byry and byro be the sample measures of multivariate skewness
and kurtosis, respectively, on the basis of a random sample of size N drawn from

Ny(p,%), > 0. Then
N

ZM,1 = —bM,1

6
is asymptotically distributed as x2-distribution with f = p(p + 1)(p + 2)/6 degrees

N
M2 = m(bmz —plp+1))

is asymptotically distributed as N(0,1).

of freedom, and

By making reference to moments of by ; and by o, Mardia (1974) considered

the following approximate test statistics as competitors of zy; and 2y o:

. N prUWNED(NE3)
N{(N+Dp+1) -6} M

ZM,l = —bM71 (21)

6
asymptotically, and

o VN +3)(N +5){(N + Dbarp —pp+ 2)(N — 1)} NOD)  (22)

V8p(p +2)(N =3)(N —p - (N —p+1)
asymptotically. It is noted that zj,, is formed so that E(z}3,,) = f.
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2.2 Srivastava’s (1984) skewness and kurtosis

Let I' = (v1,79,---,7,) be an orthogonal matrix such that I"XI' = D), where
Dy = diag(A1, A2, ..., A,). Note that Ay, Ag, ..., A\, are the eigenvalues of ¥. Then,
Srivastava (1984) defined the population measures of multivariate skewness and
kurtosis by using the principle component as follows:
2
ﬂﬁzli{@@%ﬁﬂ},
Pi=1 )\1,2

Vi —
2 )
/\i

s = Ly Bl )]
Pi=1

respectively, where v; = vix and 6, = v (1 = 1,2,...,p). We note that 8s; =0
and g2 = 3 under a multivariate normal population. Let H = (hq, ho, ..., h,) be
an orthogonal matrix such that H'SH = D,,, where D, = diag(wy,ws, ...,w,) and
w1, ws, ... ,w, are the eigenvalues of S. Then, Srivastava (1984) defined the sample

measures of multivariate skewness and kurtosis as follows:
1 2 _3 N 2
bsy = N—Qpizl{% 2 (v — 5z‘)g} )

bss = = 3w 23 (v — T
S22 — T u)i Vi; — V),
? Npi=i =1 !

respectively, where v;; = hjx;, v; = (1/N) Zjvzl Vij.

Srivastava (1984) obtained the following Lemma:

Lemma 2 For large N, Srivastava (1984) has given the expectations of \/bg1 and

bs1 and expectation and variance of bga when the population is N,(p,X).

6
E( V bs,l) — 07 E(b5,1> - N?

24
E(bg,z) = 3, Var(bgg) = N—p,

respectively.

By using Lemma 2, Srivastava (1984) derived the following theorem:



Theorem 2 Let bg; and bgs be the sample measures of multivariate skewness and
kurtosis by using the principle component, respectively, on the basis of a random

sample of size N drawn from N,(p,%). Then

is asymptotically distributed as x2-distribution with p degrees of freedom, and

N
252 =\ 5y (bs2 = 3)

is asymptotically distributed as N(0,1).

Further Okamoto and Seo (2008) gave the expectation of multivariate sample
skewness bg; without using Taylor expansion. By using the same way as Okamoto
and Seo (2008), we can obtain the expectation and variance of multivariate sample

kurtosis bgo. Hence we can get the following Lemma:

Lemma 3 Forlarge N, we give the expectation of bg1 and expectation and variance

of bsa when the population is N,(p,X).

6N -=2)
Blbs ) = (N +1)(N +3)’
E(bss) = 3<NN—+_11),
Var(bs) = 24 N(N—2)(N —3)

p (N+1)%(N +3)(N +5)

respectively.

By making reference to moments of bg; and bg 2, we consider following approximate
test statistics as competitors of zg; and zgo:

. (N +1)(N +3)

2

asymptotically, and

VPN 4+ 3)(N +5){(N + 1)bg2 — 3(N — 1)}
V24N (N —2)(N — 3)

~N(O0,1)  (24)

* _
2892 =

asymptotically.



3 Multivariate Jarque-Bera tests

In this section, we consider new tests for multivariate normality when the popula-
tion is N,(p, Y). From Theorem 1, we propose a new test statistic using Mardia’s

measures as follows:

baa  (baa —p(p + 2))2}
MJBy =N S ’ )
. { 6 8p(p + 2)

M J By, statistic is asymptotically distributed as X?c 41-distribution.
From Theorem 2, we propose a new test statistic using Srivastava’s measures

as follows:

b bss — 3)2
MJBS:Np{%nL%}.

M J Bg statistic is asymptotically distributed as X;Q) 1-distribution.
Further, by using (2.1) and (2.2), a modified M .JB), is given by

2
* % *
MJB}y = Ziy + 21

In the same as M JB)y;, this statistic M JBj, is distributed as Xfc 41-distribution
asymptotically.
Also, by using (2.3) and (2.4), a modified M .JBg is given by

MBS = 25, + 25,
In the same as MJBg, this statistic MJB% is distributed as X,QQ 1-distribution

asymptotically.

4 Simulation studies

Accuracy of expectations, variances, frequency distributions and upper percentage
points of multivariate Jarque-Bera tests M JBy;, MJBg, MJB}, and MJBY is
evaluated by Monte Carlo simulation study. Simulation parameters are as follows:
p =3, 10, 20, N = 20, 50, 100, 200, 400, 800. As a numerical experiment, we
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carry out 100,000 and 1,000,000 replications for the case of Mardia’s measures and
Srivastava’s measures, respectively.

From Tables 1-2 and Figures 1-6, expectations of approximate y? statistics
MJBj, and MJBY are invariant for any sample sizes N. That is, M JBj, and
M JBY¢ are almost close to the exact expectations even for small N. However,
accuracy of expectations of MJB); and MJBg is not good especially for small
N. We note that expectations of M.JBj; and MJBg converge on those of y*-
distribution for large N. Hence it may be noticed that both MJBj, and M JBj
are improvements of M JB); and M JBg, respectively.

On the other hand, from Tables 1-2 and Figures 7-12, variances of M JB},
and M JBY are larger than those of M JB)y; and M JBg. To investigate this cause,
we show frequency distributions of multivariate Jarque-Bera tests proposed in this
paper. These results are in Figures 13-24. In figures, fx(x) represents probability
density function (p.d.f.) of y?-distribution. It may be noticed from these figures
that frequencies of M.JB3, and M JBj are closer to p.d.f. of y*-distribution than
those of M J By and M J Bg, respectively. This tendency appears well when sample
size N is small. But the coming off values of M JB};, and M JB¢ are more than
those of M JB); and M JBg. Therefore there is a tendency for variance to become
large.

Finally, in Table 3 and Figures 25-27, we give upper percentage points of
MJB) and MJBj, by using Mardia’s skewness and kurtosis. M .JB); tends to
be conservative. Also MJBj, is closer to the upper percentage points of X? -
distribution even when the sample size N is small. In Table 4 and Figures 28-30,
we give upper percentage points of M.JBg and M JB§ by using Srivastava’s skew-
ness and kurtosis. We note that the tendency is similar to the case using Mardia’s

moments.



5 Concluding remarks

For univariate sample case, Jarque-Bera test is well known as a simple procedure
on practical use. In this paper, we proposed four new test statistics for assessing
multivariate normality. M JB); and M JBg are natural forms of extensions in the
case of multivariate normality tests. But approximations of expectations, frequency
distributions and upper percentage points of M JB); and M J Bg are not good when
the sample size N is small. Also we proposed improved multivariate normality
test statistics M JBj; and MJB%. Hence we improved expectations and upper
percentage points of M JBj; and M.JBg. But variances of M .JBy; and M JBg are
not improved. This problem still remains. It is an future problem. In order to solve
this problem, it may be noted that we have to consider covariance of z},, and z}‘\;,Q
and that of 2§, and zj‘q;. We recommend to use M J B}, and M JBjg from the aspect

of aproximate accuracy of upper percentage points of test statistics especially for

small N.
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Table 1: Expectations and variances of M JB); and M .JBj},.

p | N | E(MJBy) EMJBy,) f+1|Var(MJBy) Var(MJBj3,) 2(f+1)
31 20 8.79 10.98 11 14.40 35.78 22
50 10.00 11.01 11 23.27 36.01 22
100 10.47 11.01 11 24.95 31.67 22
200 10.73 11.00 11 24.27 27.55 22
400 10.83 10.96 11 23.18 24.77 22
800 10.91 10.98 11 22.51 23.27 22
10| 20 189.20 221.02 221 176.65 304.25 442
50 206.90 220.91 221 427.59 558.73 442
100 213.73 220.99 221 482.40 562.74 442
200 217.27 220.96 221 475.28 518.03 442
400 219.12 220.98 221 468.08 490.30 442
800 219.93 220.87 221 454.81 465.84 442
20 | 50 1449.36 1541.18 1541 2447.04 3031.77 3082
100 1493.80 1541.17 1541 3467.95 3934.50 3082
200 1516.99 1541.06 1541 3549.40 3818.71 3082
400 1529.23 1541.37 1541 3406.70 3548.59 3082
800 1534.60 1540.69 1541 3227.97 3208.83 3082
Table 2: Expectations and variances of M JBg and M JB%.
p| N | E(MJBs) EMJBS) p+1|Var(MJBs) Var(MJBE) 2(p+1)
31 20 2.93 4.02 4 5.46 18.25 8
50 3.50 4.01 4 9.06 15.67 8
100 3.73 4.00 4 9.65 13.03 8
200 3.86 4.00 4 9.24 10.87 8
400 3.93 4.00 4 8.74 9.52 8
800 3.96 4.00 4 8.37 8.74 8
10 | 20 8.66 11.08 11 12.14 36.89 22
50 9.91 11.00 11 19.28 31.65 22
100 10.43 11.00 11 21.42 27.98 22
200 10.71 11.01 11 22.08 25.44 22
400 10.86 11.01 11 22.18 23.86 22
800 10.92 10.99 11 22.06 22.90 22
20 | 50 19.09 21.01 21 34.82 56.24 42
100 20.01 21.01 21 39.31 50.83 42
200 20.49 21.01 21 40.99 46.92 42
400 20.75 21.01 21 41.72 44.73 42
800 20.87 21.00 21 41.63 43.13 42
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Table 3: The upper 5 percentage points of M.JBy, and M .JBj,.

p | N [MJBy MJB;; x3.,(0.05)
3] 20| 1580 2207 19.68
50 | 18.67  21.76 19.68
100 | 1943 21.17 19.68
200 | 19.71  20.61 19.68
400 | 19.64  20.09 19.68
800 | 19.63  19.85 19.68
10| 20| 21242 252.35 256.68
50 | 243.03  262.64 256.68
100 | 252.04  262.59 256.68
200 | 254.98  260.40 256.68
400 | 256.16  258.97 256.68
800 | 256.33  257.74 256.68
20 | 50 | 1535.31 1637.63  1633.44
100 | 1594.99 1649.32  1633.44
200 | 1618.15 1646.28  1633.44
400 | 1627.42 1641.72  1633.44
800 | 1629.50 1636.56  1633.44

Table 4: The upper 5 percentage points of M JBg and M JBg.

p | N [MJBs MJBj x2,,(0.05)
30 20| 681 11.24 9.49
50| 842 1058 9.49
100 | 898  10.16 9.49
200 | 928  9.90 9.49
400 | 939  9.71 9.49
800 | 945  9.60 9.49
10| 20| 15.03 2250 19.68
50 | 17.86  21.37 19.68
100 | 18.87  20.76 19.68
200 | 19.34 2033 19.68
400 | 1954 20.05 19.68
800 | 19.60 19.86 19.68
20| 50| 2979 34.84 32.67
100 | 31.35  34.06 32.67
200 | 3208 33.48 32.67
400 | 3241  33.13 32.67
800 | 3249 3286 32.67
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M JBj§ for p =20, N = 50. MJB% for p =20, N = 200.

16



Upper 5 percentile
23r

Upper 5 percentile

270
22+ 260. /\-\__\
21) a— : —
.
200 250}
19+ 240¢
—‘—A]]B\[ —-— ‘\[JB'\[
18 - MJBi, 230+ - MJB},
17y =+ Fract value 290! =+ Fract value
16}
15 : : : ; 210 . ‘ ‘ ‘
0 200 400 600 800 0 200 400 600 800
Sample size Sample size
Figure 25: The upper percentiles of Figure 26: The upper percentiles of

M JBy; and MJBj, for p = 3.

Upper 5 percentile

M JBy and M JBj, for p = 10.

Upper 5 percentile

1650 /\_\‘\’ 11.5¢
16307 o . : * 10’5!
1610+
95 La_a n n é ——a
1590+
- MJBy 8.5+t —— M.JBs
1570| -~ MIB;, J;
—+— Fract value 7.5 = MJB;
1550 vact ) o - Exact value
1530 ‘ ‘ ‘ 65 ‘ ‘ ‘ ‘
200 400 600 800 0 200 400 600 800
Sample size Sample size
Figure 27: The upper percentiles of Figure 28: The upper percentiles of

M JBy and M JBj, for p = 20.

Upper 5 percentile

MJBg and M JB% for p = 3.

Upper 5 percentile

23 35,
22 r 34 L
21+
33+
20r, , — — " 3
19¢ 32}
181 ~ M.JBg 31l - MJBs
171 = MJBj - MJBj
16L —+ [ract value 30t —+ Fract value
15 ‘ ‘ : ; 29 : : : ;
0 200 400 600 800 0 200 400 600 800
Sample size Sample size
Figure 29: The upper percentiles of Figure 30: The upper percentiles of

MJBg and M JBj for p = 10.
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