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Abstract

In this paper, we establish asymptotic normality of Powell’s kernel estimator for
the asymptotic covariance matrix of the quantile regression estimator for both i.i.d.
and weakly dependent data. As an application, we derive the optimal bandwidth
that minimizes the approximate mean squared error of the kernel estimator.
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1 Introduction

This paper establishes asymptotic normality of Powell’s (1991) kernel estimator for the

asymptotic covariance matrix of the quantile regression estimator. Let us first introduce

a quantile regression model. Let (Yi,Xi) (i = 1, 2, . . . n) be i.i.d. observations from (Y,X)

where Y is a response variable and X is a d-dimensional covariate vector. The τ -th

(τ ∈ (0, 1)) conditional linear quantile regression model is defined as

QY (τ |X) = X′β0(τ), (1)

where QY (τ |X) = inf{y : P(Y ≤ y|X) ≥ τ} is the τ -th conditional quantile function of

Y given X. Koenker and Bassett (1978) propose the estimator β̂KB(τ) for β0(τ) which

minimizes the objective function

n∑
i=1

ρτ (Yi − X′
iβ), (2)

where ρτ (u) = {τ − I(u ≤ 0)}u is called the check function. It is well known that, under

suitable regularity conditions, β̂KB(τ) satisfies consistency and asymptotic normality; see
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Chapter 4 of Koenker (2005). Letting f(y|x) denote the conditional density of Y given

X = x, the asymptotic covariance matrix of
√

n(β̂KB(τ) − β0(τ)) is given by

J−1(τ)Σ(τ)J−1(τ),

where J(τ) = E[f(X′β0(τ)|X)XX′] and Σ(τ) = τ(1 − τ)E[XX′]. The estimation of the

matrix Σ(τ) is straightforward. However, since the matrix J(τ) involves the conditional

density, its estimation is not a trivial task. Section 3.4 of Koenker (2005) introduces two

approaches to the estimation of the matrix J(τ). The first one, suggested by Hendricks and

Koenker (1992), is a natural extension of the scalar sparsity estimation (Siddiqui, 1960).

On the other hand, Powell (1991) proposes the kernel estimator

ĴP(τ) =
1

nhn

n∑
i=1

K

(
Yi − X′

iβ̂(τ)

hn

)
XiX

′
i,

where β̂(τ) is a
√

n-consistent estimator of β0(τ), hn > 0 is a bandwidth and K(·) is the

uniform kernel

K(u) =

{
1
2

if |u| ≤ 1,

0 otherwise.
(3)

In usual, we take β̂(τ) = β̂KB(τ). He shows that ĴP(τ) is consistent under some regularity

conditions. Especially, he imposes the condition on the bandwidth hn that hn → 0 and

nh2
n → ∞. The recent study by Angrist et al. (2006) shows that ĴP(τ) is uniformly

consistent over a closed interval of τ even when the model is misspecified. However,

to the author’s knowledge, there is no literature that rigorously studies the asymptotic

distribution of ĴP(τ).

This paper establishes asymptotic normality of ĴP(τ) under the conditions that the

conditional density is twice continuously differentiable and that the bandwidth hn is such

that hn → 0 and (n1/2hn)/ log(n) → ∞. The condition on the bandwidth is close to the

one required for proving consistency of ĴP(τ). As an application, we evaluate the approx-

imate mean squared error (AMSE) of ĴP(τ) and derive the optimal hn that minimizes the

AMSE, which is another contribution of this paper. Since the kernel estimator contains the

estimated parameter in the sum, the direct calculation of the mean squared error (MSE)

is infeasible. So the evaluation of the MSE is a complicated task. This paper is the first

result that derives the optimal bandwidth for ĴP(τ) under a certain criterion. In addition,

we extend the results to weakly dependent data.

We now review the literature related to this paper. Koul (1992) discusses the uniform

convergence of the kernel estimator of the error density in a linear model based on the weak

convergence results of the residual empirical processes. Chai et al. (1991), Chai and Li

(1993) and Li (1995) show several important asymptotic results for the kernel estimation of

the error density in a linear model with fixed design when using the least squares method

and the least absolute deviation method to estimate the coefficients. Especially, the latter

two papers show asymptotic normality of the histogram estimator (namely, the estimator

using the uniform kernel) of the error density. Unfortunately, the proof of Lemma 4 in
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Chai and Li (1993), which is a key to their asymptotic normality results, is incorrect.

See the remark after the proof of Lemma 1 below. Except for the correctness of the

proof, the differences of the present paper from them are as follows: (i) Chai and Li treat

the estimation of the scalar unconditional error density and the present paper treats the

estimation of the matrix that involves the conditional density. This difference affects the

bandwidth selection. See Section 3. (ii) Chai and Li impose the stringent condition that

the covariate vectors are bounded over all observations. Actually, the boundedness of the

covariate vectors is essential to their proofs. The present paper removes this condition.

(iii) Chai and Li only treat independent data, while the present paper treats both i.i.d.

and weakly dependent data.

The estimation of the innovation density in parametric time series models is studied

by Robinson (1987), Liebscher (1999), Müller et al. (2005) and Schick and Wefelmeyer

(2007). Among them, Liebscher (1999) establishes asymptotic normality of the residual-

based kernel estimator of the innovation density of a nonlinear autoregressive model. He

assumes that the kernel function is Lipschitz continuous (see equation (3.5) of his paper),

which is essential to his proof, while the uniform kernel treated in the present paper is not.

The estimation of the error density in nonparametric regression causes much attention in

recent years. Several authors who address this issue include Ahmad (1992), Cheng (2002,

2004, 2005), Efromovich (2005, 2007a,b) and Liang and Niu (2009). Cheng (2005) and

Liang and Niu (2009) show asymptotic normality of their kernel estimators; both of them

use the uniform kernel when deriving the asymptotic distributions.

The rest of the paper is organized as follows. In Section 2, we prove asymptotic normal-

ity of Powell’s kernel estimator ĴP(τ) for i.i.d. data. In Section 3, we use the asymptotic

distribution to evaluate the AMSE and derive the optimal h that minimizes the AMSE. In

Section 4, we establish asymptotic normality of ĴP(τ) under a weak dependence condition.

In Section 5, we leave some concluding remarks.

We introduce some notations used in the present paper. Let I(A) denote the indicator

of an event A. The symbols “
p→” and “

d→” denote “convergence in probability” and

“convergence in distribution”, respectively. We use the stochastic orders op(·) and Op(·)
in the usual sense. For a real number a, [a] denotes the greatest integer not exceeding a.

For a d × d matrix A = [a1 · · · ad], vec(A) = (a′
1, . . . , a

′
d)

′.

2 Asymptotic normality of Powell’s kernel estimator

In this section, we study the first order asymptotic property of ĴP(τ) for i.i.d. data.

Throughout this paper, we fix τ and suppress the dependence on τ for notational conve-

nience. For example, we simply write β0 for β0(τ). Then, the model (1) may be written

as

Y = X′β0 + U, QU(τ |X) = 0, (4)
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where QU(τ |X) = inf{u : P(U ≤ u|X) ≥ τ}. It should be noted that the distribution of U

generally depends on τ and X. For example, let us consider a linear location scale model

Y = X′θ0 + (X′γ0)ϵ, (5)

where X′γ0 > 0 and ϵ is independent of X. In this model, U corresponds to X′γ0{ϵ −
F−1(τ)}, where F is the distribution function of ϵ. Typically, the model (5) allows for the

heteroscedasticity of U .

We now return to the general model (4). Letting f0(u|x) denote the conditional density

of U given X = x, the matrix J is expressed as E[f0(0|X)XX′]. In order to justify our

asymptotic theory, we impose the following regularity conditions:

(A1) {(Ui,Xi), i = 1, 2, . . . } is an i.i.d. sequence whose marginal distribution is same as

(U,X).

(A2) The conditional density f0(u|x) of U given X = x is twice continuously differen-

tiable with respect to u for each x. Furthermore, there exist measurable functions

Gj(x) (j = 0, 1, 2) such that |f (j)
0 (u|x)| ≤ Gj(x) (j = 0, 1, 2) for every realiza-

tion (u,x) of (U,X), E[(∥X∥2 + ∥X∥4 + ∥X∥5)G0(X)] < ∞, E[(∥X∥2 + ∥X∥3 +

∥X∥4)G1(X)] < ∞ and E[∥X∥2G2(X)] < ∞,

(A3) As n → ∞, hn → 0 and (n1/2hn)/ log(n) → ∞.

We state some remarks on the conditions. We substantially assume the existence of

the fifth order moment of X, which is slightly stronger than the one assumed in proving

consistency of ĴP. For example, Angrist et al. (2006) assume the fourth order moment of

X to prove (uniform) consistency of ĴP. The first part of condition (A2) is standard in the

(conditional) density estimation literature (for example, see Fan and Yao, 2005, Chapter

5). Unlike the fully nonparametric conditional density estimation, the effect of localization

on the X-space does not work in the present situation. Thus, the latter part of (A2) is

needed to ensure the dominated convergence. Condition (A3) allows for bandwidth rules

such as the rule used in R implementation of the kernel estimation in quantreg package

(Koenker, 2009), the Bofinger (1975) and the Hall and Sheather (1988) rules, although the

latter two bandwidth rules are originally for the scalar sparsity estimation. Powell (1991)

and other authors show consistency of ĴP under the condition that hn → 0 and nh2
n → ∞.

For any fixed matrix A ∈ Rd×d, define

Tn(β) =
1

nhn

n∑
i=1

ZiK

(
Yi − X′

iβ

hn

)
=

1

nhn

n∑
i=1

ZiK

(
Ui − X′

i(β − β0)

hn

)
, (6)

where Zi = tr(AXiX
′
i). We first show asymptotic normality of Tn(β̂). Then, we use the

Cramér-Wold device to derive the asymptotic distribution of ĴP. The proof of asymptotic
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normality of Tn(β̂) consists of series of lemmas. Lemma 1 uses the empirical process

technique to establish the uniform convergence in probability. See, for example, Chapter

2 of van der Vaart and Wellner (1996) for related materials.

Lemma 1. Suppose that conditions (A1)-(A3) hold. Then, for any fixed l > 0, we have

Tn(β) − E[Tn(β)] = Tn(β0) − E[Tn(β0)] + op((nhn)−1/2)

uniformly in ∥
√

n(β − β0)∥ ≤ l.

Proof. We have to show Tn(β0 + n−1/2t) − E[Tn(β0 + n−1/2t)] = Tn(β0) − E[Tn(β0)] +

op((nhn)−1/2) uniformly in ∥t∥ ≤ l. Observe that

h{Tn(β0 + n−1/2t) − Tn(β0)}

=
1

n

n∑
i=1

Zi

{
K

(
Ui − n−1/2X′

it

hn

)
− K

(
Ui

hn

)}

=
1

2

{
1

n

n∑
i=1

ZiI(hn < Ui ≤ hn + n−1/2X′
it)

− 1

n

n∑
i=1

ZiI(−hn ≤ Ui < −hn + n−1/2X′
it)

+
1

n

n∑
i=1

ZiI(−hn + n−1/2X′
it ≤ Ui < −hn)

− 1

n

n∑
i=1

ZiI(hn + n−1/2X′
it < Ui ≤ hn)

}
=:

1

2
{W1n(t) − W2n(t) + W3n(t) − W4n(t)}. (7)

It suffices to show that n1/2h
−1/2
n {Wjn(t) − E[Wjn(t)]} p→ 0 uniformly in ∥t∥ ≤ l for

j = 1, 2, 3, 4. We only prove the j = 1 case since the proofs for the other cases are

completely analogous.

Fix any ϵ > 0. Define U∗
i (t) = ZiI(hn < Ui ≤ hn + n−1/2X′

it). Let σ1, . . . , σn be inde-

pendent and uniformly distributed over {−1, 1} and independent of (U1,X1), . . . , (Un,Xn).

Using the symmetrization technique (van der Vaart and Wellner, 1996, Lemma 2.3.7), we

have

ηnP

(
sup
∥t∥≤l

|W1n(t) − E[W1n(t)]| > n−1/2h1/2
n ϵ

)

≤ 2P

(
sup
∥t∥≤l

∣∣∣∣∣ 1n
n∑

i=1

σiU
∗
i (t)

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

4

)
,

where ηn = 1 − (4/(ϵ2hn)) sup∥t∥≤l E[{U∗
1 (t)}2]. Let F0(u|x) denote the conditional distri-
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bution function of U given X = x. Then, we have

sup
∥t∥≤l

E[{U∗
i (t)}2] ≤ E[|Z|2I(hn < U ≤ hn + n−1/2l∥X∥)]

= E[|Z|2{F0(hn + n−1/2l∥X∥|X) − F0(hn|X)}]
≤ ln−1/2E[|Z|2G0(X)∥X∥],

where we have used F0(hn+n−1/2l∥X∥|X)−F0(hn|X) ≤ ln−1/2G0(X)∥X∥. Since nh2
n → ∞,

ηn = 1 − o(1) as n → ∞ and consequently ηn ≥ 1/2 for large n. Thus, for large n,

P

(
sup
∥t∥≤l

|W1n(t) − E[W1n(t)]| > n−1/2h1/2
n ϵ

)
≤ 4P

(
sup
∥t∥≤l

∣∣∣∣∣ 1n
n∑

i=1

σiU
∗
i (t)

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

4

)
.

Let Dn = {(Ui,Xi), i = 1, . . . , n}. Given Dn, at most finite elements are contained in

the functional set {σ(n) 7→ n−1
∑n

i=1 σiU
∗
i (t) : ∥t∥ ≤ l}, where σ(n) = (σ1, . . . , σn), since

every element of the functional set is of the form σ(n) 7→ n−1
∑

i∈{subset of {1,...,n}} σiZi. Let

kn denote the cardinality of this set. Then, there exist kn points tj ∈ {t : ∥t∥ ≤ l}, j =

1, . . . , kn such that

P

(
sup
∥t∥≤l

∣∣∣∣∣ 1n
n∑

i=1

σiU
∗
i (t)

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

4

∣∣∣∣∣ Dn

)

≤
kn∑
j=1

P

(∣∣∣∣∣ 1n
n∑

i=1

σiU
∗
i (tj)

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

4

∣∣∣∣∣ Dn

)
.

It is noted that kn and tj (j = 1, . . . , kn) depend on Dn. Observe that for any ∥t∥ ≤ l,

− |Zi|I(hn < Ui ≤ hn + n−1/2l∥Xi∥) ≤ σiU
∗
i (t)

≤ |Zi|I(hn < Ui ≤ hn + n−1/2l∥Xi∥). (8)

By Hoeffding’s inequality (van der Vaart and Wellner, 1996, Lemma 2.2.7),

sup
∥t∥≤l

P

(∣∣∣∣∣ 1n
n∑

i=1

σiU
∗
i (t)

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

4

∣∣∣∣∣ Dn

)
≤ 2 exp

(
− ϵ2hn

32vn

)
,

where vn = n−1
∑n

i=1 |Zi|2I(h < Ui ≤ hn + n−1/2l∥Xi∥). Hence,

P

(
sup
∥t∥≤l

∣∣∣∣∣ 1n
n∑

i=1

σiU
∗
i (t)

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

4

∣∣∣∣∣ Dn

)
≤ 2kn exp

(
− ϵ2hn

32vn

)
.

We now bound kn. It is not difficult to see that kn is bounded by the cardinality of the

set
{
A ∩ {(U1,X1), . . . , (Un,Xn)} : A ∈ A

}
, where A =

{
{(u,x) : u > h, u ≤ h + x′t} :

h > 0, t ∈ Rd
}
. Application of Lemma 2.6.15 in van der Vaart and Wellner (1996) shows

that the Vapnik-Červonenkis (VC) index VA of A is finite, namely 0 < VA < ∞; see van

der Vaart and Wellner (1996), pp. 135 for the definition of the VC index. Then, Sauer’s
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lemma (van der Vaart and Wellner, 1996, Corollary 2.6.3) implies that kn is bounded by

cnVA−1 for some constant c not depending on Dn. Therefore, we have

P

(
sup
∥t∥≤l

∣∣∣∣∣ 1n
n∑

i=1

σiU
∗
i (t)

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

4

∣∣∣∣∣ Dn

)
≤ 2cnVA−1 exp

(
− ϵ2hn

32vn

)
. (9)

Define

An =

{
vn >

ϵ2hn

32VA log(n)

}
.

Using (9) and the obvious inequality, we have

P

(
sup
∥t∥≤l

∣∣∣∣∣ 1n
n∑

i=1

σiU
∗
i (t)

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

4

)

≤ P(An) + 2cnVA−1E

[
exp

(
− ϵ2hn

32vn

)
I(Ac

n)

]
≤ P(An) + 2cn−1.

To show that P(An) → 0, it suffices to show that

log(n)h−1
n vn

p→ 0.

By Markov’s inequality, for any δ > 0,

P

(
vn >

hnδ

log(n)

)
≤ δ−1 log(n)h−1

n E[|Z|2I(hn < U ≤ hn + n−1/2l∥X∥)]

≤ lδ−1n−1/2 log(n)h−1
n E[|Z|2G0(X)∥X∥] → 0,

where we have used n1/2hn/ log(n) → ∞. Therefore, we complete the proof.

Remark 1. The proof of Lemma 4 in Chai and Li (1993) states that the cardinality of

the functional set {σ(n) 7→ n−1
∑n

i=1 σiI(an < ei < an + hi) : 0 < hi ≤ bn} is bounded

by (n + 1), where {ei} is arbitrarily fixed, an is the bandwidth such that an → 0 and

bn = Cn−1/2. However, this statement is incorrect. For example, if an < ei < an + bn for

i = 1, . . . , n, the cardinality of the functional set is 2n.

Remark 2. It is not possible to directly apply Theorem II 37 in Pollard (1984) to obtain

the uniform convergence result of Lemma 1 since Zi is not bounded random variable.

Instead of relying on Lemma II 33 in Pollard (1984), we use the explicit bound (8) when

using Hoeffding’s inequality in the proof of Lemma 1.

Lemma 2. Suppose that conditions (A1)-(A3) hold. Then, for any fixed l > 0, we have

E[Tn(β)] = E[Tn(β0)] + O(n−1/2)

uniformly in ∥
√

n(β − β0)∥ ≤ l.
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Proof. We have to show E[Tn(β0 + n−1/2t)] = E[Tn(β0)] + O(n−1/2) uniformly in ∥t∥ ≤ l.

Using the relation

E[Tn(β)] − E[Zf0(0|X)]

= E

[
Z

∫
K(u − h−1

n X′(β − β0)){f0(uh|X) − f0(0|X)}du

]
= hE

[
Z

∫
uK(u − h−1

n X′(β − β0))ghn(u|X)du

]
,

where ghn(u|x) = (uhn)−1{f0(uhn|x) − f0(0|x)} for u ̸= 0 and ghn(0|x) = 0, the absolute

value of the difference E[Tn(β0 + n−1/2t)] − E[Tn(β0)] is evaluated as∣∣∣∣hE

[
Z

∫
u{K(u − n−1/2h−1

n X′t) − K(u)}ghn(u|X)du

]∣∣∣∣
≤ hE

[
|Z| · G1(X)

∫
|u{K(u − n−1/2h−1

n X′t) − K(u)}|du

]
, (10)

where we have used |ghn(u|x)| ≤ supu |f
(1)
0 (u|x)| ≤ G1(x). Using the identity

I(|u − v| ≤ 1) − I(|u| ≤ 1) = {I(1 < u ≤ 1 + v) − I(−1 ≤ u < −1 + v)}I(v > 0)

+ {I(−1 + v ≤ u < −1) − I(1 + v < u ≤ 1)}I(v < 0),

we have ∫
|u{I(|u − v| ≤ 1) − I(|u| ≤ 1)}|du

=

{∫ 1+v

1

udu +

∫ −1+v

−1

|u|du

}
I(v > 0)

+

{∫ −1

−1+v

|u|du +

∫ 1

1+v

|u|du

}
I(v < 0)

≤ 2(1 + |v|)|v|.

Since nh2
n → ∞, n−1/2h−1

n ≤ 1 for large n. Therefore, the right hand side of (10) is bounded

by

ln−1/2E [|Z|G1(X)(1 + l∥X∥)∥X∥]

for any ∥t∥ ≤ l. This yields the desired result.

Lemma 3. Under conditions (A1)-(A3), we have

(nhn)1/2{Tn(β0) − E[Tn(β0)]}
d→ N(0, E[Z2f0(0|X)]/2).

Proof. This result can be proved by checking the conditions of the Lindeberg-Feller central

limit theorem. Since the argument is standard, we omit the detail.
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Suppose that β̂ is
√

n-consistent for β0, namely β̂ = β0 +Op(n
−1/2). Then, by Lemmas

1 and 2,

(nhn)1/2{Tn(β̂) − E[Tn(β0)]}
= (nhn)1/2{Tn(β̂) − E[Tn(β)]|β=β̂} + (nhn)1/2{E[Tn(β)]|β=β̂ − E[Tn(β0)]}
= (nhn)1/2{Tn(β0) − E[Tn(β0)]} + op(1).

Using the Taylor expansion, we see that

E[Tn(β0)] = E[Zf0(0|X)] +
h2

n

6
E[Zf

(2)
0 (0|X)] + o(h2

n).

Therefore, by Lemma 3, we get the following theorem:

Theorem 1. Suppose that conditions (A1)-(A3) hold and β̂ is
√

n-consistent for β0. Then,

(nhn)1/2

{
Tn(β̂) − E[Zf0(0|X)] − h2

n

6
E[Zf

(2)
0 (0|X)] + o(h2

n)

}
d→ N(0, E[Z2f0(0|X)]/2).

We now describe the asymptotic distribution of the matrix estimator ĴP. Let S = XX′.

Since tr(AS) = vec(A′)′ vec(S), the asymptotic covariance matrix of Tn(β̂) is written as

2−1 vec(A′)′E[f0(0|X) vec(S) vec(S)′] vec(A′). Therefore, the Cramér-Wold device leads to

the next theorem:

Theorem 2. Suppose that conditions (A1)-(A3) hold and β̂ is
√

n-consistent for β0. Then,

(nhn)1/2

{
ĴP − J − h2

n

6
E[f

(2)
0 (0|X)XX′] + o(h2

n)

}
is asymptotically normally distributed with zero mean matrix. The asymptotic covariance

of the (j, k)-th and the (l, m)-th elements is given by

1

2
E[f0(0|X)XjXkXlXm],

where j, k, l, m = 1, . . . , d.

We end this section with a remark. While we put the conditional quantile restriction

on U , the proof of Theorem 2 does not use the restriction. Therefore, Theorem 2 is valid

for any β̂ such that β̂ = β0 + Op(n
−1/2) for some β0. For example, when the model (1) is

misspecified, β̂KB is
√

n-consistent for β0 that uniquely solves E[{τ−I(Y ≤ X′β0)}X] = 0,

where the existence and the uniqueness of such β0 is assumed. See Angrist et al. (2006)

for a proof of this result. Thus, Theorem 2 is valid for β̂ = β̂KB even when the model is

misspecified.
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3 Application: bandwidth selection

Since ĴP contains the estimated parameter in the sum, the direct calculation of the bias and

the variance of ĴP is infeasible. However, Theorem 2 enables us to approximate the mean

squared error (MSE) of ĴP. From Theorem 2, we can see that the MSE is approximated

as

MSE(hn) := E[tr{(ĴP − J)2}]

≃ h4
n

36

d∑
j,k=1

(
E[f

(2)
0 (0|X)XjXk]

)2

+
1

2nhn

d∑
j,k=1

E[f0(0|X)X2
j X2

k ]

=: AMSE(hn).

The optimal hn that minimizes AMSE(hn) is given by

hopt
n = n−1/5

 4.5
∑d

j,k=1 E[f0(0|X)X2
j X2

k ]∑d
j,k=1

(
E[f

(2)
0 (0|X)XjXk]

)2


1/5

, (11)

where we assume that the denominator is not zero. It should be noted that hopt
n depends

on τ , namely hopt
n = hopt

n (τ), since the distribution of U generally depends on τ . We further

note that hopt
n depends on the distribution of X, which is the difference from the scalar

(unconditional) density estimation. In the simple case where f0(u|x) is independent of x,

namely f0(u|x) = f0(u), hopt depends on the (unconditional) error density and the second

and the fourth order moments of X.

It is well known that convergence in distribution does not necessarily imply moment

convergence. In order to make the argument rigorous, we introduce the truncated MSE

MSET (hn) := E[min[tr{n4/5(ĴP − J)2}, T ]]

and take the limit n → ∞ and T → ∞. In a different context, Andrews (1991) uses the

same device to evaluate covariance matrix estimators that contain estimated parameters.

Then, the optimality of hopt
n is stated as follows.

Proposition 1. Suppose that conditions (A1)-(A3) hold and β̂ is
√

n-consistent for β0.

Then,

lim
T→∞

lim
n→∞

{MSET (hn) − MSET (hopt
n )} ≥ 0,

where the inequality is strict unless hn = hopt
n + o(n−1/5).

Proof. The proposition follows from the fact that for a bounded sequence of random vari-

ables, convergence in distribution implies moment convergence of any order.

As well as the usual density estimation, hopt
n involves unknown quantities and is not

directly usable. In the density estimation literature, there are several methods, namely

rule of thumb, cross validation and plug-in methods, to cope with this difficulty. For a

10



comprehensive treatment on practical aspects of density estimation, see Sheather (2004)

and references therein. For example, the optimal bandwidth hopt
n for a Gaussian location

model

Y = X′θ0 + ϵ, ϵ|X ∼ N(0, 1), (12)

is given by

hopt
n = n−1/5

{
4.5
∑d

j,k=1 E[X2
j X2

k ]

α(τ)
∑d

j,k=1 (E[XjXk])
2

}1/5

,

where α(τ) = {1−Φ−1(τ)}2ϕ(Φ−1(τ)), Φ(·) and ϕ(·) are the distribution function and the

density function of the standard normal distribution. Thus, a rule of thumb bandwidth

for the Gaussian location model is given by

ĥrot
n = n−1/5

{
4.5
∑d

j,k=1(n
−1
∑n

i=1 X2
ijX

2
ik)

α(τ)
∑d

j,k=1 (n−1
∑n

i=1 XijXik)
2

}1/5

.

4 Extension to weakly dependent data

So far this paper has considered i.i.d. data. We now make note of sufficient conditions

for asymptotic normality of Powell’s kernel estimator for weakly dependent data. Let

{(Ui,Xi), i = 1, 2, . . . } be a strictly stationary sequence whose marginal distribution is

same as (U,X). Under a sufficient weak dependence condition (and additional regularity

conditions), it can be shown that

√
n(β̂KB − β0)

d→ N(0,J−1ΩJ−1),

where Ω is the asymptotic covariance matrix of n−1/2
∑n

i=1{τ − I(Ui ≤ 0)}Xi. Of course,

Ω reduces to Σ when {(Ui,Xi)} is i.i.d. See, for example, Phillips (1991, pp.459). In this

case, the estimation of Ω is not straightforward. It should be noted that Theorem 1 in

Andrews (1991) does not apply to the estimation of Ω since the smoothness of the moment

function is violated in the present situation. However, we concentrate on the estimation

of J in this paper and will discuss the estimation of Ω in another place.

Here we state some regularity conditions to ensure asymptotic normality of ĴP.

(B1) {(Ui,Xi), i = 1, 2, . . . } is a strict stationary sequence whose marginal distribution is

same as (U,X).

(B2) The sequence {(Ui,Xi), i = 1, 2, . . . } is β-mixing; that is

β(j) := sup
i≥1

E

[
sup

A∈F∞
i+j

|P(A|F i
1) − P(A)|

]
→ 0, as j → ∞,

where F j
i is the σ-field generated by {(Uk,Xk), k = i, . . . , j} (j ≥ i). In addition,

∞∑
j=1

jλ{β(j)}1−2/δ < ∞, (13)

for some δ > 2 and λ > 1 − 2/δ.
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(B3) E[∥X∥max{6,2δ}] < ∞, where δ is given in condition (B2).

(B4) The conditional density f0(u|x) of U given X = x is twice continuously differentiable

with respect to u for each x. Furthermore, there exist a constant A0 > 0 and measur-

able functions Gj(x) (j = 1, 2) such that f0(u|x) ≤ A0, |f (j)
0 (u|x)| ≤ Gj(x) (j = 1, 2)

for every realization (u,x) of (U,X), E[(∥X∥2 + ∥X∥3 + ∥X∥4)G1(X)] < ∞ and

E[∥X∥2G2(X)] < ∞, where f
(j)
0 (u|x) = ∂jf0(u|x)/∂uj for j = 1, 2.

(B5) Let f0(u1, u1+j|x1,x1+j; j) denote the conditional density of (U1, U1+j) given (X1,X1+j) =

(x1,x1+j) (j ≥ 1). Then, there exists a constant A1 > 0 independent of j such that

f0(u1, u1+j|x1,x1+j; j) ≤ A1 for every realization (u1, u1+j,x1,x1+j) of (U1, U1+j,X1,X1+j).

(B6) As n → ∞, hn → 0 and (n1/2hn)/ log(n) → ∞. In addition, there exists a sequence

of positive integers sn satisfying sn → ∞ and sn = o((nhn)1/2) as n → ∞ such that

(n/hn)1/2β(sn) → 0 as n → ∞. (14)

The β-mixing condition is required for establishing the uniform convergence result

corresponding to Lemma 1 because our approach uses the blocking technique as in Yu

(1994) and Arcones and Yu (1994). The blocking technique enables us to employ the

symmetrization technique and an exponential inequality available in the i.i.d. case. In

order to validate the blocking technique, we use Lemma 4.1 in Yu (1994), which requires

the β-mixing condition. A set of conditions such as (13), E[∥X∥2δ] < ∞, the boundedness of

the conditional densities (included in conditions (B4)-(B5)) and the latter part of condition

(B6) is often assumed in density estimation and nonparametric regression. See Condition

1 of Theorem 6.3 in Fan and Yao (2005) (we note that Theorem 6.3 of Fan and Yao (2005)

assumes the corresponding α-mixing condition, which is weaker than the current β-mixing

condition). These conditions are sufficient for asymptotic normality of (nhn)1/2{Tn(β0) −
E[Tn(β0)]}, where Tn(β) is given by (6). A sufficient condition on the mixing coefficient

β(j) to satisfy the conditions (13) and (14) is provided in Fan and Yao (2005, pp.387).

Below we follow the notations used in Section 2. The next lemma is essential to our

purpose.

Lemma 4. Under conditions (B1)-(B6), the conclusion of Lemma 1 is valid in the present

situation.

Proof. Working with the same notations as in the proof of Lemma 1, we show that

n1/2h−1/2
n {W1n(t) − E[W1n(t)]} p→ 0,

uniformly in ∥t∥ ≤ l.

Before proceeding to the proof, we introduce a sequence of independent blocks as in Yu

(1994) and Arcones and Yu (1994). Divide the n-sequence {1, . . . , n} into blocks of length

an = [n(1−2/δ)/(1−2/δ+λ)] one after the other:

Hk = {i : 2(k − 1)an + 1 ≤ i ≤ (2k − 1)an},
Tk = {i : (2k − 1)an + 1 ≤ i ≤ 2kan},
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for k = 1, . . . , µn, where µn = [n/(2an)]. Let {(Ũi, X̃i), i ∈
∪µn

k=1 Hk} be a set of random

vectors such that blocks {(Ũi, X̃i), i ∈ Hk} (k = 1, . . . , µn) are independent and have the

same distribution as {(Ui,Xi), i ∈ H1}. Replacing (Ui,Xi) with (Ũi, X̃i), define Z̃i and

Ũ∗
i (t) as Zi and U∗

i (t), respectively, for i ∈
∪µn

k=1 Hk.

Fix any ϵ > 0. Observe that

P

(
sup
∥t∥≤l

|W1n(t) − E[W1n(t)]| > n−1/2h1/2
n ϵ

)

≤ P

(
sup
∥t∥≤l

∣∣∣∣∣ 1n
2anµn∑
i=1

{U∗
i (t) − E[U∗

i (t)]}

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

2

)

+ P

(
sup
∥t∥≤l

∣∣∣∣∣ 1n
n∑

i=2anµn+1

{U∗
i (t) − E[U∗

i (t)]}

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

2

)
. (15)

A simple calculation shows that the second term of the right hand side of (15) converges

to zero; use the fact that sup∥t∥≤l |U∗
i (t)| ≤ |Zi|I(hn < Ui ≤ hn + n−1/2l∥Xi∥). On the

other hand, using the same argument as in Lemma 4.2 of Yu (1994), we may bound the

first term of the right hand side of (15) by

2P

(
sup
∥t∥≤l

∣∣∣∣∣ 1n
µn∑
k=1

{Ṽk(t) − E[Ṽk(t)]}

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

4

)
+ 2µnβ(an),

where

Ṽk(t) =
∑
i∈Hk

Ũ∗
i (t).

Because of the condition (13), µnβ(an) = o(1). Therefore, it suffices to show that

P

(
sup
∥t∥≤l

∣∣∣∣∣ 1n
µn∑
k=1

{Ṽk(t) − E[Ṽk(t)]}

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

4

)
→ 0.

Let σ1, . . . , σµn be independent and uniformly distributed over {−1, 1} and independent

of {(Ũi, X̃i), i ∈ Hk} (k = 1, . . . , µn). Since {t 7→ Ṽk(t), k = 1, . . . , µn} is a sequence of

i.i.d. stochastic processes, the symmetrization technique (van der Vaart and Wellner, 1996,

Lemma 2.3.7) yields that

ξnP

(
sup
∥t∥≤l

∣∣∣∣∣ 1n
µn∑
k=1

{Ṽk(t) − E[Ṽk(t)]}

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

4

)

≤ 2P

(
sup
∥t∥≤l

∣∣∣∣∣ 1n
µn∑
k=1

σkṼk(t)

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

16

)
,

where ξn = 1 − (16µn/(ϵ2nhn)) sup∥t∥≤l E[{Ṽ1(t)}2]. We show that sup∥t∥≤l E[{Ṽ1(t)}2] =

O(ann
−1/2). By stationarity,

E[{Ṽ1(t)}2] = anE[U∗
1 (t)}2] + 2an

an−1∑
j=1

(1 − j/an)E[U∗
1 (t)U∗

1+j(t)].
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Observe that sup∥t∥≤l E[{U∗
1 (t)}2] = O(n−1/2). By conditioning on (X1,X1+j), we have

|E[U∗
1 (t)U∗

1+j(t)]|

≤ E

[
|Z1Z1+j|

∫ hn+n−1/2l∥X1∥

hn

∫ hn+n−1/2l∥X1+j∥

hn

f0(u1, u1+j|X1,X1+j; j)du1du1+j

]
≤ const. × n−1E[|Z1Z1+j| · ∥X1∥∥X1+j∥]
= O(n−1),

uniformly in ∥t∥ ≤ l and j ≥ 1. This yields that

sup
∥t∥≤l

∣∣∣∣∣
an−1∑
j=1

E[U∗
1 (t)U∗

1+j(t)]

∣∣∣∣∣ = O(ann−1) = o(n−1/2).

Thus, we have shown that sup∥t∥≤l E[{Ṽ1(t)}2] = O(ann−1/2), which implies that ξn =

1 − O(n−1/2h−1
n ) = 1 − o(1) and consequently ξn ≥ 1/2 for large n. Therefore, for large n,

P

(
sup
∥t∥≤l

∣∣∣∣∣ 1n
µn∑
k=1

{Ṽk(t) − E[Ṽk(t)]}

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

4

)

≤ 4P

(
sup
∥t∥≤l

∣∣∣∣∣ 1n
µn∑
k=1

σkṼk(t)

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

16

)
.

The rest of the proof is similar to the latter part of the proof of Lemma 1. Arguing as

in the proof of Lemma 1, it is shown that the cardinality of the functional set {σ(µn) 7→
n−1

∑µn

k=1 σkṼk(t) : ∥t∥ ≤ l}, where σ(µn) = (σ1, . . . , σµn), is bounded by some polynomial

of n uniformly over every realization of D̃n := {(Ũi, X̃i), i ∈
∪µn

k=1 Hk}. In addition,

Hoeffding’s inequality implies that

sup
∥t∥≤l

P

(∣∣∣∣∣ 1n
µn∑
k=1

σkṼk(t)

∣∣∣∣∣ > n−1/2h
1/2
n ϵ

16

∣∣∣∣∣ D̃n

)
≤ 2 exp

(
− hnϵ

2

512wn

)
,

where wn = n−1
∑µn

k=1{
∑

i∈Hk
|Z̃i|I(hn < Ũi ≤ hn + n−1/2l∥X̃i∥)}2. Thus, it suffices to

show that

log(n)h−1
n wn

p→ 0. (16)

From the evaluation of E[{Ṽ1(t)}2] above, it is shown that

E

{∑
i∈H1

|Z̃i|I(hn < Ũi ≤ hn + n−1/2l∥X̃i∥)

}2
 = O(ann−1/2),

which leads to

E[wn] = O(µnann
−3/2) = O(n−1/2).

Since n1/2hn/ log(n) → ∞, (16) follows from Markov’s inequality. Therefore, we complete

the proof.
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The proof of Lemma 2 does not use the independence assumption and hence the con-

clusion of Lemma 2 applies to the present situation. Thus, for any
√

n-consistent estimator

β̂, we have

(nhn)1/2{Tn(β̂) − E[Tn(β0)]} = (nhn)1/2{Tn(β0) − E[Tn(β0)]} + op(1).

In addition, mimicking the proof of Theorem 6.3 in Fan and Yao (2005), it can be shown

that under conditions (B1)-(B6),

(nhn)1/2{Tn(β0) − E[Tn(β0)]}
d→ N(0, E[Z2f(0|X)]/2).

Therefore, arguing as in Section 2, we get the following theorem:

Theorem 3. Suppose that conditions (B1)-(B6) hold and β̂ is
√

n-consistent for β0. Then,

(nhn)1/2

{
ĴP − J − h2

n

6
E[f

(2)
0 (0|X)XX′] + o(h2

n)

}
is asymptotically normally distributed with zero mean matrix. The asymptotic covariance

of the (j, k)-th and the (l, m)-th elements is given by

1

2
E[f0(0|X)XjXkXlXm],

where j, k, l, m = 1, . . . , d.

The result of Theorem 4 is same as that of Theorem 2 which deals with the i.i.d.

case. Hence, the optimal bandwidth that minimizes the AMSE under the current weak

dependence condition is the same as that for the i.i.d. case.

5 Concluding remarks

In this paper, we have shown asymptotic normality of Powell’s kernel estimator for the

asymptotic covariance matrix of the quantile regression estimator for both i.i.d and weakly

dependent data. The asymptotic distribution of the kernel estimator enables us to calculate

the approximate mean squared error. It should be noted that since the kernel estimator

contains the estimated parameter in the sum, the direct calculation of the mean squared

error is infeasible. We have derived the optimal bandwidth that minimizes the AMSE.

In this paper, we have treated the uniform kernel, which is suited to apply the VC theory

to obtain the uniform convergence results (see the proof of Lemma 1; see also Angrist et

al., 2006, Appendix). As Powell (1984) states, however, more elaborating kernel functions

could be devised. Although the kernel selection is less important than the bandwidth

selection in density estimation (cf. Fan and Yao, 2005, Section 5.2), the extension of the

present paper’s results to a general kernel remains in the future research.
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