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Abstract

We propose an algorithm for maximizing a multivariate functions that does not
require derivatives, so it can be used more widely than traditional algorithms. We also
present a method to obtain the maximum likelihood estimator and confidence interval
for a parameter vector.

1 Introduction

In many cases of function maximization, no closed-form solution is available and the maxi-
mization has to be performed using numerical methods, often of an iterative nature. Newton
type techniques are commonly used, although in general little is known about their global
convergence properties (see, e.g. Spang (1962)). Brent (1973) proposed algorithms for op-
timization without derivatives. Our procedure also does not require derivatives, but uses
a simpler algorithm based on univariate maximization which is similar to the one given by
Hausman (1971). We first examine the case of a univariate function, where smoothness is
not required; only continuity is assumed. The univariate maximization algorithm is called
SPIDER1. In the case of maximizing a k-variate function, we use an approach similar to
that proposed by Jensen et al. (1991), which is an alternating technique with cyclic fixing
of groups of parameters, maximizing over the free remaining parameters. We call this algo-
rithm SPIDER2, and apply it to maximization of the likelihood function for mortality and
asbestos exposure, computing a confidence interval based on the likelihood ratio test.

2 Maximization of a Univariate Function

The following lemma is useful to develop our procedure in the case of a univariate function.
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Lemma 2.1. Suppose f is continuous on an interval (α, β) ⊂ (−∞,∞) and satisfies the
following conditions:

(i) There exists p ∈ (α, β) s.t. f(p) > f(y) for all y ∈ (α, β)\{p}
(ii) For all y ∈ (α, β)\{p}, there exists δ > 0 s.t. f is s.m. (strictly monotone) on

(y − δ, y + δ).

Then

p >
a + b

2
if f(a) < f

(
a + b

2

)
< f(b)

a < p < b if f

(
a + b

2

)
≥ max{f(a), f(b)}

p <
a + b

2
if f(a) > f

(
a + b

2

)
> f(b)

for all (a, b) ⊂ (α, β).

Proof. Let I = {y ∈ (α, β) | f is s.m.i.(strictly monotone increasing) in a neighborhood of y},
and J = {y ∈ (α, β) | f is s.m.d.(strictly monotone decreasing) in a neighborhood of y}.
It follows from (ii), that (α, β) = I ∪ J ∪ {p}. We now show that I = (α, p) and
J = (p, β). Suppose (α, p) ∩ J 6= φ. Then pick an element x0 ∈ (α, p) ∩ J , and let
γ = sup{z ∈ (x0, p) | f is s.m.d. on(x0, z)}. If γ ∈ J , there exists (u, v) 3 γ such that f is
s.m.d. on (u, v). It follows that f is s.m.d. on (x0, v), so that γ < v ≤ γ. If γ ∈ I, there
exists (u, v) 3 γ such that f is s.m.i. on (u, v). Let w1 = (3u + γ)/4 and w2 = (u + 3γ)/4.
Then u < w1 < w2 < γ, so that f(w1) < f(w2) < f(w1) which is a contradiction. If γ = p,
then it follows from (i) that for all ε > 0, there exists δ > 0 such that f(p)−ε < f(z) < f(x0)
for all z ∈ (p − δ, p). Using a parallel argument we obtain (p, β) ∩ I = φ. Thus we deduce
that I = (α, p) and J = (p, β). The desired results follow immediately.

We provide the following algorithm SPIDER1 for maximizing a univariate function which
satisfying the conditions (i) and (ii) of Lemma 2.1.

[SPIDER1]

Step 1. Let τ be the tolerance the allowable length of the final subinterval containing the
maximum. Given starting point t0, compute the function values f(t0 − τ/2), f(t0),
and f(t0 + τ/2).

Step 2. Let g0 := max{f(t0 − τ/2), f(t0), f(t0 + τ/2)}. If g0 = f(t0), then let a := a0 ←
t0 − τ/4 and b := b0 ← t0 + τ/4. If g0 = f(t0 − τ/2), the maximizing value is in
(−∞, t0). In this case tn := t0 − 2n−1τ , n = 1, 2, 3, . . ., and find n0 s.t.

n0 = min{n | f(tn) ≤ f(tn−1) n = 2, 3, . . .}.
Next let a ← tn0 , and b ← tn0−1. If g0 = f(t0 + τ/2), the maximum is in (t0,∞). In
this case tn := t0 + 2n−1τ , n = 1, 2, 3, . . ., and find n0 s.t.

n0 = min{n | f(tn) ≥ f(tn−1) n = 2, 3, . . .}
Finally, let a ← tn0−1 and b ← tn0 .
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Step 3. At the mth stage of the loop, let tn0+m := c ← (a + b)/2, m = 1, 2, 3, . . .. Let
g := max{f(a), f(c), f(b)}. If g = f(c), a ← (a + c)/2 and b ← (b + c)/2. If g = f(a),
a ← (3a − c)/2 and b ← (a + c)/2. If g = f(b), a ← (b + c)/2 and b ← (3b − c)/2.
Continue step 3 until convergence is achieved.

Lemma 2.2. If a function f satisfies conditions (i) and (ii), then SPIDER1 converges in
at most in n0 + n1 iterations, where n1 = [log2(b0 − a0)/γ] + 1.

3 Maximization of a Multivariate Function

In the case of a multivariate function, we use an approach similar to that proposed by Jensen
et al. (1991). This alternating technique cyclically fixes groups of parameters, maximizing
over the remaining free parameter. Our algorithm, which is called SPIDER2, is defined as
follows.

[SPIDER2]

Step 1. Set an interval value z
(0)
0 for finding the maximizing value p of a k-variate function

f .

Step 2. (inner loop)

At the hth stage of the outer loop, start with z
(h)
0 , h = 0, 1, 2, 3, . . .. For j = 1, . . . , k,

define fj(t) := f(z
(h)
j−1 + tδj), where δ = (δj1, . . . , δjk)

′ and δjl denotes Kronecher’s
delta. Using SPIDER1, optimize the function fj and set

tj := arg max
t∈(−∞,∞)

fj(t)

z
(h)
j := z

(h)
j−1 + tjδj.

(outer loop)

Set xh := zk and calculate ∆h := ‖z(h)
0 − z

(h)
k ‖. Quit if ∆h becomes small enough.

Otherwise go back to the inner loop with z
(h+1)
0 := z

(h)
k .

Step 3. Continue step 2 to convergence.

The following theorem is essential to establish for convergence of SPIDER2.

Theorem 3.1. Suppose that Ω is open in Rk and that Ω̄ is compact. Suppose that f is
continuous on Ω and satisfies the following conditions:

(i) There exists p ∈ Ω such that f(y) < f(p) < ∞ for any y ∈ Ω\{p}.
(ii) For any y ∈ Ω\{p}, there exists j0 ∈ {1, . . . , k} and λ > 0 such that fj0(t|x) =

f(x + tδj0) is strictly monotone in a neighborhood of 0 for any x ∈ B(y, λ).

Here B(y, λ) = {x ∈ Rk : ‖x − y‖ < λ}. Then xn → p as n → ∞ if C({xn}) ∩ ∂Ω = φ,
where C({xn}) denotes the set of cluster points of {xn}.

3



Proof. Let gn := f(xn), n = 1, 2, 3, . . .. Then g1 ≤ g2 ≤ · · · ≤ gn ≤ gn+1 ≤ · · · ≤ f(p) < ∞,
so there exists ḡ = limn→∞ gn ≤ f(p) < ∞. Since C({xn}) ∩ ∂Ω = φ, for all y ∈ C({xn})
and ε > 0, there exists N0 = N0(ε) such that gn > ḡ − ε for all n ≥ N0, and there exists
δ0 > 0 such that |f(x) − f(y)| < ε for all x ∈ B(y, δ0). Hence, there exists n0 ≥ N0 such
that xn0 ∈ B(y, δ0) and ḡ ≥ gn0 > ḡ − ε. It follows that

|f(y)− ḡ| ≤ |f(y)− gn0|+ |gn0 − ḡ| < 2ε.

Therefore, f(y) = ḡ.
Suppose that y 6= p. Then it follows from (ii) that there exists j0 ∈ {1, . . . , k} and

λ0 > 0 such that fj0(t|x) is s.m.i. in a neighborhood of 0 for all x ∈ B(y, λ0). Without loss
of generality it is assumed that j0 = 1. Let φλ0(x) = f1(λ0/2|x)− f1(0|x) for x ∈ Ω. Then,
since φλ0 is continuous on Ω, there exists ε0 = ε0(λ0) > 0 such that minx∈B(y,λ0/2) φλ0(x) =
ε0 > 0. Because f is continuous at y ∈ Ω, there exists δ1 > 0 such that f(y)− ε0/2 < f(x)
for all x ∈ B(y, δ1). Let λ1 = min{λ0/2, δ1}. Then, there exists n1 such that xn1 ∈ B(y, λ1)
and, since f1(t|xn1) is s.m.i. on (−λ0/2, λ0/2),

f(y) ≥ f(xn1+1) ≥ f1

(
λ0

2

∣∣∣∣ xn1

)
≥ f1(0|xn1) + ε0 = f(xn1) + ε0 > f(y) +

ε0

2
,

which is a contradiction. Therefore y = p.

4 Application to Maximization of a Likelihood Func-

tion

In this section we illustrate an application of SPIDER. Consider the relationship between
asbestos use and mortality from mesothelioma (see Nishikawa et al. (2008)). Data on
asbestos use (1920–1999) and mortality (1979–1999) furnished by the WHO are given in
Tables 1 and 2. First we assume:

A1 The number of persons who are at risk of mesothelioma caused by asbestos increases
in proportion to the use of asbestos. These persons will die after an interval of some
years following their initial exposure.

A2 The length of time between exposure to asbestos and death from mesothelioma is a
random value following the Gamma distribution G(k, µ) with location parameter k
and mean µ.

Then the mortality from mesothelioma in year t, f(t) is described as follows:

f(t) ∝
∫ t

1920

λ(y)g(t− y|k, µ)dy ∝
∫ t

1920

λ(y)(t− y)k−1e−k(t−y)/µ =: h(t|k, µ),

where λ(y) is asbestos use and g(w|k, µ) is a probability density function of the Gamma
distribution. The expectation of the cumulative mortality from mesothelioma in the pop-
ulation under the assumption of heterogeneity is ξh(t|k, µ), where ξ is a constant. Given
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data {(ny,my) | y = 1979, . . . , 1999}, where ny is total population size and my is number of
deaths, if the parameters (k, µ) are known, the maximum likelihood estimator of ξ is

ξ̂(k, µ) =

∑
y my∑

y nyh(y|k, µ)
.

We can use SPIDER2 to find the maximum likelihood estimator (MLE) of (k, µ) treating ξ
as a nuisance parameter. MLEs of µ by gender are shown in Table 3.

5 Confidence Interval

We now consider how to construct confidence intervals for the parameters. Let µ =
(µ1, µ2, . . . , µk) and suppose we want to find a confidence interval for µi. Without loss
of generality, we assume µ1 = µi and let µ2 = (µ2, . . . , µk). Let f(µ) = −2 log `(X |µ),
where ` is the likelihood function, ε be small number, and H be some positive integer, then
the confidence interval for µ1 is obtained as follows:

Step 1. Find the maximum likelihood estimator of µ, µ̂ = (µ̂1, µ̂2) using SPIDER2.

Step 2. For h = 1, 2, . . . , H, repeat the following loop:

For k = 1, 2, . . ., calculate

µ
(k)
2 = arg max

µ2

f(µ̂1 + kε(h),µ2)

using SPIDER2 until

(−1)h · {f(µ̂1
(h) + kε(h), µ

(k)
2 )− (f(µ̂1, µ̂2)− χ2(1, α/2))} > 0,

where ε(h) = (−1)h−110H−h+1ε and χ2(1, α/2) is the upper 100 · α/2% point of chi-
square distribution with one degree of freedom.

Step 3. Output µ
(H)
1 + kε(H) as the upper bound for the confidence interval for µ1.

The lower bound is given by steps 1-3 substituting ε(h) for −ε(h). The algorithm is based on
the asymptotic chi-square distribution of the likelihood ratio statistic. We use this method
for the asbestos data in Tables 1 and 2, obtaining the confidence intervals shown in Table
3 in less than five minutes using an Intel Celeron 946 MHz processor.

6 Discussion

In this paper, we suggest an algorithm for derivative-free function maximization. Haus-
man(1971) and Brent(1973) suggested an algorithm for maximizing an univariate function
without derivatives using golden section search. Our method is easier to deal with and
can also be used with multivariate functions. On the other hand, Jensen et al. (1991) sug-
gest an algorithm for maximizing an multivariate function employing the Newton method for
univariate. We use a similar approach, but without derivatives, by modifying the univariate-
function algorithm, SPIDER1 to a multivariate-function algorithm, SPIDER2.
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Table 1: Asbestos use

JYEAR CIN JYEAR CIN JYEAR CIN JYEAR CIN
1920 0.011410 1940 0.490513 1960 2.061435 1980 2.366669
1921 0.010201 1941 0.542695 1961 2.165136 1981 2.121210
1922 0.009008 1942 0.594130 1962 2.266579 1982 1.868984
1923 0.007830 1943 0.644836 1963 2.365837 1983 1.629376
1924 0.006668 1944 0.694826 1964 2.462980 1984 1.392677
1925 0.005520 1945 0.744117 1965 2.558075 1985 1.157740
1926 0.004388 1946 0.792722 1966 2.651186 1986 1.152337
1927 0.003270 1947 0.840657 1967 2.742374 1987 1.146726
1928 0.002166 1948 0.887934 1968 2.831698 1988 1.140805
1929 0.001076 1949 0.934568 1969 2.919215 1989 1.134474
1930 0.000000 1950 0.980571 1970 3.004979 1990 1.122268
1931 0.046265 1951 1.097542 1971 2.927804 1991 1.061751
1932 0.093117 1952 1.212395 1972 2.851788 1992 1.001945
1933 0.140569 1953 1.325189 1973 2.776906 1993 0.943411
1934 0.188631 1954 1.435977 1974 2.703133 1994 0.885990
1935 0.237315 1955 1.544812 1975 2.630444 1995 0.829132
1936 0.286635 1956 1.651747 1976 2.576884 1996 0.352481
1937 0.336601 1957 1.756829 1977 2.523731 1997 0.000938
1938 0.387227 1958 1.860108 1978 2.470980 1998 0.016635
1939 0.438527 1959 1.961628 1979 2.420106 1999 0.000256

Table 2: Mortality from mesothelioma

JYEAR DMALE DFEMALE JYEAR DMALE DFEMALE
1979 347 193 1990 602 272
1980 365 196 1991 581 264
1981 363 228 1992 630 272
1982 416 203 1993 667 237
1983 434 213 1994 609 278
1984 469 198 1995 681 268
1985 492 217 1996 791 292
1986 541 254 1997 724 314
1987 544 239 1998 716 297
1988 564 235 1999 777 277
1989 584 225
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Table 3: MLE and 90%CI of µ

Male 19.136902 (17.406902, 21.216902)
Female 11.157669 (10.987669, 13.257669)
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