
Asymptotic expansion of the distribution of

the studentized linear discriminant function

with 2-Step monotone missing data

Nobumichi Shutoh∗,a, Takashi Seob

aDepartment of Mathematical Information Science, Graduate School of Science,
Tokyo University of Science

1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, JAPAN
bDepartment of Mathematical Information Science, Faculty of Science,

Tokyo University of Science
1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, JAPAN

Abstract
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case that all the sample vectors do not have missing data. Also it is known
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1. Introduction

In multivariate analysis, discriminant analysis has been considered as a
statistical method for discriminating p dimensional sample vector x which
arises from any of some groups. In this paper, we discuss linear discriminant
analysis under the situation of discriminating x which comes from one of two
groups Π(1) and Π(2) having multivariate normality, i.e., Π(g) : Np(µ

(g), Σ).
If the parameters are unknown, linear discriminant function (LDF) is

constructed as following form with estimators:

W = (x
(1)
F − x

(2)
F )′S−1

[
x − 1

2
(x

(1)
F + x

(2)
F )

]
,

where x
(g)
F denotes p dimensional sample mean vector based on N

(g)
1 sample

vectors from Π(g), S denotes unbiased pooled sample covariance matrix for
two groups Π(1) and Π(2) and they are based on maximum likelihood estima-
tors (MLEs) of µ(g) and Σ. With cut-off point c which depends on a priori
probabilities of drawing an observation from Π(g) and costs of discrimination,
x may be assigned to Π(1) if W > c, or Π(2) otherwise. Therefore the proba-
bilities of misclassification in linear discriminant analysis can be considered
as following expressions:

e(2|1) ≡ Pr
[
W ≤ c|x ∈ Π(1)

]
(1)

and

e(1|2) ≡ Pr
[
W > c|x ∈ Π(2)

]
= 1 − Pr

[
W ≤ c|x ∈ Π(2)

]
. (2)

It is difficult to obtain e(2|1) and e(1|2) since W includes estimators. How-

ever we can find asymptotic distributions of W as N
(1)
1 and N

(2)
1 tends to

infinity: W is distributed as N((−1)g−1(1/2)∆2, ∆2) asymptotically where
∆2 = (µ(1) − µ(2))′Σ−1(µ(1) − µ(2)) under x ∈ Π(g).

Okamoto (1963) (with correction, Okamoto (1968)) gave the asymptotic
expansions for the distributions of (W − (−1)g−1(1/2)∆2)/∆ under x ∈ Π(g)

for each g by using differential operator. With positive constant k1 which
is limit of N

(2)
1 /N

(1)
1 for large N

(1)
1 and N

(2)
1 , Anderson (1973) considered

that for (W − (−1)g−1(1/2)D2)/D by using perturbation method where D2

denotes sample mahalanobis distance between Π(1) and Π(2) based on N
(1)
1
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and N
(2)
1 sample vectors:

Pr

[
W − 1

2
D2

D
≤ v|x ∈ Π(1)

]
(3)

= Φ(v) +
1

n1

φ(v)

[
p − 1

∆
(1 + k1) −

(
p − 1

4
+

1

2
k1

)
v − 1

4
v3

]
+ O(n−2

1 )

and

Pr

[
W + 1

2
D2

D
≤ v′|x ∈ Π(2)

]
(4)

= Φ(v′) − 1

n1

φ(v′)

[
p − 1

∆

(
1 +

1

k1

)
+

(
p − 1

4
+

1

2k1

)
v′ +

1

4
v′3

]
+ O(n−2

1 ),

where v = (c − (1/2)D2)/D in (3), n1 = N
(1)
1 + N

(2)
1 − 2, Φ(·) denotes

the cumulative density function of standard normal distribution and φ(·)
denotes the probability density function of that. They can be regarded as
type I approximation for (1) and (2). Type I approximation is that under

the framework N
(1)
1 → ∞, N

(2)
1 → ∞ and N

(2)
1 /N

(1)
1 → positive constant k1.

In maximum likelihood rule, also the results similar to the above have been
derived. For details, see Memon and Okamoto (1971) and Fujikoshi and
Kanazawa (1976).

In addition, without asymptotic expansions, some researchers have de-
rived asymptotic approximations for the probabilities of (1) and (2). For
instance, Lachenbruch (1968) has considered by using asymptotic normal-
ity of W . Also, in Fujikoshi and Seo (1998), they have derived by rewriting
W and maximum likelihood discriminant function with expressions of central
and non–central chi–square random variables and making use of their asymp-
totic properties. Error bounds for the result of Lachenbruch (1968) has been
given by Fujikoshi (2000) with explicit form. Fujikoshi and Seo (1998) gave
that which is called type II approximation under the framework such that
N

(1)
1 → ∞, N

(2)
1 → ∞, p → ∞, n1 − p → ∞ and N

(2)
1 /N

(1)
1 → positive

constant k1. The framework of the approximation proposed in Lachenbruch
(1968) can be regarded as both type I and type II approximation.

However the discussions for discriminant functions constructed by missing
samples have not been enough. Recently Shutoh, Hyodo and Seo (2009)
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extended Lachenbruch (1968) to the case of 2-Step monotone missing samples
and evaluated the accuracy of the result by Monte Carlo simulations. Shutoh,
Hyodo and Seo (2009) concluded that the approximation of Lachenbruch
(1968) can be improved by using 2-Step monotone missing samples.

In this paper, since Shutoh, Hyodo and Seo (2009) indicated that ap-
proximation by asymptotic expansions have good accuracy for small p in
simulation studies, we consider of extending Anderson (1973) to the case of
LDF based on 2-Step monotone missing samples by the method similar to
Anderson (1973). The settings of sample vectors based on 2-Step monotone
missing samples is as follows:

x
(g)
j ∼ Np(µ

(g), Σ), g = 1, 2, j = 1, . . . , N
(g)
1 .

x
(g)
1j ∼ Np1(µ

(g)
1 , Σ11), g = 1, 2, j = N

(g)
1 + 1, . . . , N (g),

where p = p1+p2, x
(g)
`j , µ

(g)
` and Σ`m are p` dimensional partitioned vectors of

x
(g)
j , µ(g) and p`×pm partitioned matrix of Σ respectively, that is, considering

x
(g)
j =

(
x

(g)
1j

x
(g)
2j

)
, µ(g) =

(
µ

(g)
1

µ
(g)
2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.

If N
(g)
2 ≡ N (g) − N

(g)
1 = 0, the settings can be reduced to complete data.

Also we assume relevant conditions that n1 is larger than both of p1 and p2,

ρi ≡
ni

n
→ ri,

N
(2)
1

N
(1)
1

→ k1,
N (2)

N (1)
→ k

as N
(g)
1 → ∞, N

(g)
2 → ∞ with nonsingularity of the estimator Σ̂ which is

shown in Section 2 where ni = N
(1)
i + N

(2)
i − 2, n = n1 + n2 + 2 for g =

1, 2, i = 1, 2. ri (i = 1, 2), k1 and k denote positive constants respectively.
The organization of this paper is as follows. We review MLEs based

on 2-Step monotone missing samples and their properties in Section 2. In
Section 3, we discuss asymptotic distribution of LDF to be needed by deriv-
ing asymptotic expansions. In Section 4, we derive asymptotic expansions
for the distribution of studentized LDF based on 2-Step monotone missing
samples. Also we give some Lemmas and main result as a Theorem in this
paper. Section 5 presents evaluations of main result with Anderson (1973)
by simulation studies. At the end of this paper, we give conclusion in this
paper.
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2. Note on MLEs and their properties

As concerns details of derivation of MLEs, see Shutoh, Hyodo and Seo
(2009). In this section, we introduce the MLEs with explicit expressions and
their properties. The MLEs are

µ̂(g) =

(
µ̂

(g)
1

µ̂
(g)
2

)
=

(
x

(g)
1T

x
(g)
2F − Ψ̂21(x

(g)
1F − x

(g)
1T )

)
,

Σ̂ =

(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)
=

(
Ψ̂11 Ψ̂11Ψ̂12

Ψ̂21Ψ̂11 Ψ̂22 + Ψ̂21Ψ̂11Ψ̂12

)
,

where

x
(g)
F =

(
x

(g)
1F

x
(g)
2F

)
=

1

N
(g)
1

N
(g)
1∑

j=1

x
(g)
j =

1

N
(g)
1

N
(g)
1∑

j=1

(
x

(g)
1j

x
(g)
2j

)
,

x
(g)
1T =

1

N (g)

N(g)∑
j=1

x
(g)
1j , x

(g)
1L =

1

N
(g)
2

N(g)∑
j=N

(g)
1 +1

x
(g)
1j ,

S(2) =
1

n2

2∑
g=1

N(g)∑
j=N

(g)
1 +1

(x
(g)
1j − x

(g)
1L )(x

(g)
1j − x

(g)
1L )′,

Ψ̂11 =
1

n

[
n1S11 + n2S

(2) +
2∑

g=1

{
N

(g)
1 N

(g)
2

N (g)
(x

(g)
1F − x

(g)
1L )(x

(g)
1F − x

(g)
1L )′

}]
,

Ψ̂12 = S−1
11 S12, Ψ̂22 = S22·1

and S`m denotes p`×pm partitioned matrix of S which is similar to Σ. These
MLEs are one of extensions for Anderson and Olkin (1985). Also random

matrices which construct Σ̂ have the following distributions:

n1S ∼ Wp(n1, Σ), n1S11 ∼ Wp1(n1, Σ11),

nΨ̂11 ∼ Wp1(n, Σ11), n1Ψ̂22 ∼ Wp2(n1 − p1, Σ22·1),

where Wd(m, Ω) denotes Wishart distribution with the parameters m and Ω.
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3. Asymptotic distribution of LDF

In this section, we consider of the conditional distribution of LDF. By
making use of MLEs introduced in Section 2, LDF is constructed as

Wm = (µ̂(1) − µ̂(2))′Σ̂−1

[
x − 1

2
(µ̂(1) + µ̂(2))

]
.

and probabilities of misclassification in Wm are

em(2|1) ≡ Pr
[
Wm ≤ c|x ∈ Π(1)

]
, (5)

em(1|2) ≡ Pr
[
Wm > c|x ∈ Π(2)

]
= 1 − Pr

[
Wm ≤ c|x ∈ Π(2)

]
. (6)

Define

D2
m = (µ̂(1) − µ̂(2))′Σ̂−1(µ̂(1) − µ̂(2)),

Fm = (µ̂(1) − µ̂(2))′Σ̂−1(µ̂(1) − µ(1)),

Vm = (µ̂(1) − µ̂(2))′Σ̂−1ΣΣ̂−1(µ̂(1) − µ̂(2)),

Zm = V
− 1

2
m (µ̂(1) − µ̂(2))′Σ̂−1(x − µ(1)).

Then the probability (5) can be written by

Pr

[
Wm − 1

2
D2

m

Dm

≤ u|x ∈ Π(1)

]
= (7)

Pr
[
Zm ≤ (uDm + Fm) V

− 1
2

m |x ∈ Π(1)
]
,

where u = (c−(1/2)D2
m)/Dm. In (7), the conditional distribution of Zm given

µ̂(1), µ̂(2) and Σ̂ has standard normal distribution. Therefore, we consider

E
[
Φ

(
(uDm + Fm) V

− 1
2

m

)
|x ∈ Π(1)

]
. (8)

In (6), also we consider that

Pr

[
Wm + 1

2
D2

m

Dm

≤ u′|x ∈ Π(2)

]
. (9)

Since it is sufficient to consider only the case of (8) for achieving our purpose,
we derive the result under x ∈ Π(1) mainly.
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4. Derivation of asymptotic expansion

Now we prepare the following the other expression of random vectors:

y
(g)
1T =

√
n(x

(g)
1T − µ

(g)
1 ), y

(g)
`F =

√
n1(x

(g)
`F − µ

(g)
` ), y

(g)
1L =

√
n2(x

(g)
1L − µ

(g)
1 ),

z1T =
√

n(x
(1)
1T − x

(2)
1T − δ1), z`F =

√
n1(x

(1)
`F − x

(2)
`F − δ`),

y
(g)
F =

(
y

(g)
1F

y
(g)
2F

)
=

√
n1(x

(g)
F −µ(g)), zF =

(
z1F
z2F

)
=

√
n1(x

(1)
F −x

(2)
F − δ),

for g = 1, 2, ` = 1, 2, where δ` = µ
(1)
` − µ

(2)
` and δ′ = (δ′

1, δ
′
2). Similarly, we

consider of random matrices:

T (1) =
√

n1(S − Σ), T
(1)
`m =

√
n1(S`m − Σ`m), T (2) =

√
n2(S

(2) − Σ11),

for ` = 1, 2 and m = 1, 2. Also we can rewrite MLEs of covariance matrix as

Ψ̂11 = ρΣ11 +
1√
n

(√
ρ1T

(1)
11 +

√
ρ2T

(2)
)

+
1

n2

2∑
g=1

v(g)v(g)′ ,

Ψ̂12 =

(
Σ11 +

1
√

n1

T
(1)
11

)−1 (
Σ12 +

1
√

n1

T
(1)
12

)
,

Ψ̂22 = Σ22·1 +
1

√
n1

T
(1)
22·1,

S(1) = Σ +
1

√
n1

T (1),

where

v(g) =

√
N

(g)
1 N

(g)
2

N (g)

(
1

√
ρ1

y
(g)
1F − 1

√
ρ2

y
(g)
1L

)
.

Note that ρ ≡ ρ1 + ρ2 = 1 in asymptotic sense. For large m, by using(
I +

1√
m

A

)−1

= I − 1√
m

A +
1

m
A2 − 1

m
√

m
A3 +

1

m2
A4

− 1

m2
√

m
A5

(
I +

1√
m

A

)−1

,(
I +

1√
m

A

)−2

= I − 2√
m

A +
3

m
A2 − 4

m
√

m
A3 +

5

m2
A4

− 1

m2
√

m

(
6A5 +

5√
m

A6

)(
I +

1√
m

A

)−2

,
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where A is matrix, D2
m, Fm and Vm are expressed as

D2
m ≡ ∆2

1 +
1√
n

Dm1 +
1

n
Dm2 +

1

n
√

n
Rd + Op(n

−2),

Fm ≡ 1√
n

Fm1 +
1

n
Fm2 +

1

n
√

n
Rf + Op(n

−2), (10)

Vm ≡ ∆2
2 +

1√
n

Vm1 +
1

n
Vm2 +

1

n
√

n
Rv + Op(n

−2),

where

∆2
1 = ∆2 −

(
1 − 1

ρ

)
δ2
11, ∆2

2 = ∆2 −
(

1 − 1

ρ2

)
δ2
11, δ2

11 = δ′
1Σ

−1
11 δ1,

Rd, Rf and Rv are homogeneous polynomial of degree 3 in the elements of
random vectors and matrices. Therefore

Dm = ∆1 +
1√
n

(
1

2∆1
Dm1

)
+

1

n

(
1

2∆1

Dm2 −
1

8∆3
1

D2
m1

)
(11)

+
1

n
√

n
R′

d + Op(n
−2),

V
− 1

2
m =

1

∆2

+
1√
n

(
− 1

2∆3
2

Vm1

)
+

1

n

(
− 1

2∆3
2

Vm2 +
3

8∆5
2

V 2
m1

)
(12)

+
1

n
√

n
R′

v + Op(n
−2),

where R′
d and R′

v have same properties as Rd and Rv respectively. Dmi, Fmi

and Vmi (i = 1, 2) will be presented in Appendix A. By (10), (11) and (12),
we can obtain

(uDm + Fm)V
− 1

2
m = u∗ +

1√
n

f1 +
1

n
f2 +

1

n
√

n
R1 + Op(n

−2),

where

u∗ = u
∆1

∆2

, f1 = − 1

2∆2
2

u∗Vm1 +
1

2∆2
1

u∗Dm1 +
1

∆2

Fm1,

f2 = − 1

4∆2
1∆

2
2

u∗Dm1Vm1 −
1

2∆3
2

Fm1Vm1 +
1

2∆2
1

u∗Dm2 −
1

8∆4
1

u∗D2
m1

+
1

∆2

Fm2 −
1

2∆2
2

u∗Vm2 +
3

8∆4
2

u∗V 2
m1
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and R1 denotes homogeneous polynomial of degree 3 in the elements of ran-
dom vectors and random matrices. By Taylor series expansion of Φ, we can
rewrite (8) under x ∈ Π(1) as

Φ(u∗) + φ(u∗)

[
1√
n

E(f1) +
1

n

(
E(f2) −

1

2
u∗E(f2

1 )

)
+

1

n
√

n
E(R2)

]
(13)

+O(n−2),

where R2 denotes the term having same property as R1 and depends on u.
For obtaining asymptotic expansion, we need the results of expectations and
show some useful Lemmas:

Lemma 1. Let Ω be the following partitioned matrix:

Ω =
(

Ω11 Ω12
Ω21 Ω22

)
,

where Ω and Ω`m denotes d× d matrix and d` × dm partitioned matrix of Ω,
i.e., d = d1 + d2. If Ω and Ω11 are nonsingular, then Ω−1 is

Ω−1 =

(
Ω−1

11 + Ω−1
11 Ω12Ω

−1
22·1Ω21Ω

−1
11 −Ω−1

11 Ω12Ω
−1
22·1

−Ω−1
22·1Ω21Ω

−1
11 Ω−1

22·1

)
,

Ω−1
(

Ω11
Ω21

)
Ω−1

11 =
(

Ω−1
11

O21

)
,

where O`m denotes d` × dm matrix with 0’s.

Lemma 2. Suppose that X ∼ Nd(η, Ω). Then the following expectations
can be obtained.

E(Xc′X) = Ωc + ηc′η,

E(X ′CX) = tr(CΩ) + η′Cη,

E(XX ′) = Ω + ηη′,

where c and C denotes d × 1 constant vector and d × d constant matrix
respectively.

Proof. See Nel (1977). ¤
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Lemma 3. Suppose X = (X ′
1, X

′
2)

′ ∼ Nd(η, Ω), where X1 is d1 partitioned
random vector and X2 is d2 partitioned random vector. Then the conditional
distribution of X2 given X1 is as follows.

X2|X1 ∼ Nd2(η2 + Ω21Ω
−1
11 (X1 − η1), Ω22·1),

where η` is partitioned vector of η corresponding to X` for ` = 1, 2, i.e.,
d = d1 + d2 and Ω is defined in Lemma 1.

Proof. Consider the joint p.d.f of (X1,X2). ¤

Lemma 4. Suppose that G has Wd(m, Ω). Then the following expectations
can be obtained:

(i) E(G) = mΩ,

(ii) E(GCG) = m2ΩCΩ + mΩC ′Ω + mtr(CΩ)Ω,

(iii) E(G11C11G11) = m2Ω11C11Ω11 + mΩ11C
′
11Ω11 + mtr(C11Ω11)Ω11,

(iv) E(G12C21G11) = m2Ω12C21Ω11 + mΩ11C
′
21Ω21 + mtr(C21Ω12)Ω11,

(v) E(G12C22G21) = m2Ω12C22Ω21 + mΩ12C
′
22Ω21

+ mtr(C22Ω22·1)Ω11 + mtr(C22Ω21Ω
−1
11 Ω12)Ω11,

(vi) E(G22C21G11) = m2Ω22·1C21Ω11 + m2Ω21Ω
−1
11 Ω12C21Ω11

+ mΩ21C
′
21Ω21 + mtr(C21Ω12)Ω21,

(vii) E(GC(12)1G11) =

(
E(G11C11G11) + E(G12C21G11)
E(G21C11G11) + E(G22C21G11)

)
,

where C denotes d×d constant matrix, C`m denotes d` ×dm constant matrix
and C(12)1 = (C ′

11C
′
21)

′ respectively.

Proof. These results will be shown in Appendix B.
These Lemmas provide many expectations to obtain asymptotic expan-

sion. The results to obtain that will be presented in Appendix C. By making
use of them, we can obtain main result with replacing n1/N

(1)
1 , n/N (1), ρ1

and ρ by substituting their limits 1 + k1, 1 + k, r1 and 1.

Theorem 5. The distributions for the studentized discriminant function pre-
sented in (7) and (9) can be expanded as

Φ(u) +
1

nr1

φ(u)

[
∆2

11 + p2 − 1

∆
(1 + k1) −

{(
p − 1

4
+

k1

2

)
+

7

4
∆4

11
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−
(

p1 +
3

2
+

k1

2

)
∆2

11

}
u − 1

4
(1 − ∆4

11)u
3

]
+

1

n
φ(u)

[
p1 − ∆2

11

∆
(1 + k) −

{(
p1 +

3

2
+

k

2

)
∆2

11 −
7

4
∆4

11

}
u

−1

4
∆4

11u
3

]
+ O(n−2)

and

Φ(u′) − 1

nr1

φ(u′)

[
∆2

11 + p2 − 1

∆

(
1 +

1

k1

)
+

{(
p − 1

4
+

1

2k1

)
+

7

4
∆4

11 −
(

p1 +
3

2
+

1

2k1

)
∆2

11

}
u′ +

1

4
(1 − ∆4

11)u
′3
]

− 1

n
φ(u′)

[
p1 − ∆2

11

∆

(
1 +

1

k

)
+

{(
p1 +

3

2
+

1

2k

)
∆2

11 −
7

4
∆4

11

}
u′

+
1

4
∆4

11u
′3
]

+ O(n−2)

respectively, where ∆11 = δ11/∆.

Proof. By making use of the results in Appendix C which are derived by
Lemma 1–Lemma 4, we can find that E(Vm1) = E(Dm1) = E(Fm1) = 0,

i.e., E(f1) = 0. Also we can obtain following results with replacing n1/N
(1)
1 ,

n/N (1), ρ1 and ρ by substituting their limits 1 + k1, 1 + k, r1 and 1:

E(Dm1Vm1) =
4

r1

`(k1)(∆
2 − δ2

11) + 4`(k)δ2
11 +

4

r1

(∆4 − δ4
11) + 4δ4

11,

E(Fm1Vm1) =
2

r1

(1 + k1)(∆
2 − δ2

11) + 2(1 + k)δ2
11,

E(Dm2) =
p2

r1

`(k1) +
p + 1

r1

∆2 − p1 + 1

r1

δ2
11 + p1`(k) + (p1 + 1)δ2

11,

E(D2
m1) =

4

r1

`(k1)(∆
2 − δ2

11) + 4`(k)δ2
11 +

2

r1

(∆4 − δ4
11) + 2δ4

11,

E(Fm2) =
p2

r1

(1 + k1) + p1(1 + k),

E(Vm2) =
p2

r1

`(k1) +
3(p + 1)

r1

∆2 − 3(p1 + 1)

r1

δ2
11

11



+p1`(k) + 3(p1 + 1)δ2
11,

E(V 2
m1) =

4

r1

`(k1)(∆
2 − δ2

11) + 4`(k)δ2
11 +

8

r1

(∆4 − δ4
11) + 8δ4

11,

where `(t) = 1 + t + (1/t) + 1. Thus we can obtain

E(f2) =
1

∆

{
1 + k1

r1

(p2 − (1 − ∆2
11)) + (1 + k)(p1 − ∆2

11)

}
−u

{
1

r1

(
(p + 1) − (p1 + 1)∆2

11 −
7

4
(1 − ∆4

11)

)
+

(
(p1 + 1)∆2

11 −
7

4
∆4

11

)}
.

By noting that 2E(F 2
m1) = E(Dm1Fm1) = E(Fm1Vm1) with limits, we find

E(f 2
1 ) =

1

2
u2

{
1

r1

(1 − ∆4
11) + ∆4

11

}
+

{
1 + k1

r1

(1 − ∆2
11) + (1 + k)∆2

11

}
.

Note that u∗ = u, ∆2
1 = ∆2

2 = ∆2 with limits and expectations of the terms
included in R2 are either 0 or O(n−2). By substituting E(f1), E(f2) and
E(f 2

1 ) in (13), we can complete the proof. ¤
In checking on our result, we present the following corollary at the end

of this section. This implies our result is an extension for Anderson (1973).

Corollary 6. The results obtained in Theorem 5 can be reduced to the forms
of (3) and (4) derived in Anderson (1973) by putting N (g) = N

(g)
1 , i.e.,

N
(g)
2 = 0 respectively.

This corollary can be found easily by noting that k = k1, r1 = 1 and n = n1

under N
(g)
2 = 0.

5. Simulation studies

In this section, we evaluate an extension for Anderson (1973) derived in
Section 4 and compare that with Anderson (1973) by Monte Carlo simula-
tions under selected parameters and cut-off point c = 0. Since the result
of Anderson (1973) and ours have unknown parameter δ11 and ∆, we use
estimators of them. That is, in the result of Anderson (1973), we use

n1 − p − 1

n1

D2

12



as estimator of ∆2 and we also use

n − p1 − 1

n
d2

m and
n1 − p − 1

n1

D2
m

in our result as estimators of δ2
11 and ∆2, where d2

m = (µ̂
(1)
1 −µ̂

(2)
1 )′Σ̂−1

11 (µ̂
(1)
1 −

µ̂
(2)
1 ).

At first, by simulations with using the above estimators, we evaluate
Anderson (1973) and our result under x ∈ Π(1) when p = 3 (p1 = 2, p2 = 1),

∆ = 1.05, 3.29, M1 ≡ N
(1)
1 = N

(2)
1 = N

(1)
2 = 10, 15, 20, 40 and N

(2)
2 in our

result depends on M1 such as the two cases:

Case (i) : N
(2)
2 = M1,

Case (ii) : N
(2)
2 = 3M1.

The results of Tables 1-1 and 1-2 imply that our result has lower error than
Anderson (1973) under the case such that N

(1)
2 has the same order as N

(2)
2 .

Then also we see that both of them have better approximation for small ∆
than that for large ∆.

Table 1-1 The values of approximations and simulations.
In the case of complete data when p = 3 and ∆ = 1.05
M1 Anderson Simulation
10 0.3787 0.3470
15 0.3508 0.3312
20 0.3373 0.3234
40 0.3180 0.3114
In the case of missing data when p = 3 and ∆ = 1.05

Shutoh and Seo Simulation
M1 Case (i) Case (i)
10 0.3611 0.3344
15 0.3389 0.3224
20 0.3285 0.3162
40 0.3138 0.3083

Shutoh and Seo Simulation
M1 Case (ii) Case (ii)
10 0.3625 0.3345
15 0.3397 0.3223
20 0.3293 0.3170
40 0.3141 0.3078

13



Table 1-2 The values of approximations and simulations.
In the case of complete data when p = 3 and ∆ = 3.29
M1 Anderson Simulation
10 0.1040 0.06979
15 0.08458 0.06215
20 0.07540 0.05857
40 0.06238 0.05455
In the case of missing data when p = 3 and ∆ = 3.29

Shutoh and Seo Simulation
M1 Case (i) Case (i)
10 0.09170 0.06440
15 0.07620 0.05863
20 0.06912 0.05584
40 0.05921 0.05324

Shutoh and Seo Simulation
M1 Case (ii) Case (ii)
10 0.08966 0.06321
15 0.07478 0.05764
20 0.06806 0.05604
40 0.05866 0.05236

Similarly to Tables 1-1 and 1-2, we evaluate Anderson (1973) and our

result when p = 3 (p1 = 2, p2 = 1), ∆ = 1.05, 3.29, M2 ≡ N
(1)
2 = N

(2)
2 =

N
(1)
1 = 10, 15, 20, 40 and N

(2)
1 depends on M2 such as the following case:

Case (iii) : N
(2)
1 = 3M2.

The simulation of this case is the result which have done under N
(1)
1 and N

(2)
1

are not equal but same order. Also in this case, we can see that our result
have better approximation than Anderson (1973) and LDF constructed by
2-Step monotone missing samples has lower probabilities of misclassification
than that by complete data.

Table 1-3 The values of approximations and simulations under Case (iii).
In the case of complete data when p = 3 and ∆ = 1.05
M1 Anderson Simulation
10 0.3709 0.3520
15 0.3466 0.3336
20 0.3347 0.3260
40 0.3170 0.3130
In the case of missing data when p = 3 and ∆ = 1.05
M1 Shutoh and Seo Simulation
10 0.3511 0.3370
15 0.3337 0.3241
20 0.3251 0.3187
40 0.3124 0.3091
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Table 1-4 The values of approximations and simulations under Case (iii).
In the case of complete data when p = 3 and ∆ = 3.29
M1 Anderson Simulation
10 0.08330 0.06263
15 0.07178 0.05834
20 0.06623 0.05599
40 0.05801 0.05313
In the case of missing data when p = 3 and ∆ = 3.29
M1 Shutoh and Seo Simulation
10 0.07488 0.05946
15 0.06618 0.05631
20 0.06200 0.05438
40 0.05590 0.05239

The above simulations are under the data set which fits the framework
of type I approximation. In four simulations, we can see usefulness of our
result with missing samples and discriminating by Wm under some cases.

Although we show usefulness of our result by simulation in some cases,
we also show the results of simulations in the cases except for the framework.
By these simulations, we make sure the framework of the approximation
proposed in this paper.

For instance, in case that p = 7 (p1 = 4, p2 = 3), p = 9 (p1 = 5, p2 = 4),
∆ = 1.05 and the settings of sample sizes are Case (i), we can find that high
dimensionality of data set makes approximations of this type poorer. See
Tables 2-1 and 2-2.

Table 2-1 The values of approximations and simulations.
In the case of complete data when p = 7 and ∆ = 1.05
M1 Anderson Simulation
10 0.4607 0.3904
15 0.4067 0.3668
20 0.3808 0.3502
40 0.3415 0.3295
In the case of missing data when p = 7 and ∆ = 1.05

Shutoh and Seo Simulation
M1 Case (i) Case (i)
10 0.4336 0.3813
15 0.3873 0.3568
20 0.3655 0.3442
40 0.3331 0.3229
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Table 2-2 The values of approximations and simulations.
In the case of complete data when p = 9 and ∆ = 1.05
M1 Anderson Simulation
10 0.4980 0.4065
15 0.4309 0.3806
20 0.3996 0.3658
40 0.3521 0.3378
In the case of missing data when p = 9 and ∆ = 1.05

Shutoh and Seo Simulation
M1 Case (i) Case (i)
10 0.4654 0.4011
15 0.4088 0.3717
20 0.3822 0.3562
40 0.3421 0.3304

Also we can not obtain good approximations derived by Anderson (1973)

and our result when N
(2)
2 (or N

(2)
1 ) has higher order than N

(1)
2 (or N

(1)
1 ). Now

we show the simulated results when p = 3 (p1 = 2, p2 = 1), ∆ = 1.05,

M3 ≡ N
(1)
1 = N

(2)
1 = N

(1)
2 = 10 and N

(2)
2 = M3,M

2
3 ,M3

3 .

Table 3-1 The values of approximations and simulations.
In the case of missing data when p = 3 and ∆ = 1.05

N
(2)
2 Shutoh and Seo Simulation

M3 0.3611 0.3344
M2

3 0.3638 0.3349
M3

3 0.3644 0.3349

Finally, similarly to Table 3-1, we also show the result of Anderson (1973)

and our result when p = 3 (p1 = 2, p2 = 1), ∆ = 1.05, M4 ≡ N
(1)
1 = N

(1)
2 =

N
(2)
2 = 10 and N

(2)
1 = M4,M

2
4 ,M3

4 .

Table 3-2 The values of approximations and simulations.
In the case of complete data when p = 3 and ∆ = 1.05

N
(2)
1 Anderson Simulation

M4 0.3787 0.3470
M2

4 0.3644 0.3530
M3

4 0.3610 0.3530
In the case of missing data when p = 3 and ∆ = 1.05

N
(2)
1 Shutoh and Seo Simulation

M4 0.3611 0.3344
M2

4 0.3446 0.3374
M3

4 0.3412 0.3371

Thus, in case that N
(1)
i and N

(2)
i does not have same order, Tables 3-1 and

3-2 show that these approximations are poorer.

16



6. Conclusion and future problems

We proposed asymptotic expansion of the distribution of studentized lin-
ear discriminant function constructed by 2-Step monotone missing samples
by using perturbation method. As it turns out, we give an extension for the
result of Anderson (1973).

By simulation studies, we compared the accuracy in our result and the
result of Anderson (1973) under various settings of dimensionality and sample
sizes. We showed both cases that our result and the result of Anderson
(1973) provide good approximation and do not. We could see that asymptotic

expansion are useful for the case p is small, N
(1)
1 /N

(2)
1 = O(1), N

(1)
2 /N

(2)
2 =

O(1) and ∆ is small. Also we found that our result is useful for obtaining
more accurate approximations than that of complete data.

As left problems, for large p, we consider that it is needed for better
approximation to be provided. Shutoh, Hyodo and Seo (2009) proposed
approximation for this type similar to Lachenbruch (1968). However the ap-
proximation based on 2-Step monotone missing samples similar to Fujikoshi
and Seo (1998) is needed since Fujikoshi and Seo (1998) has better approxi-
mation than Lachenbruch (1968) by simulation studies in Fujikoshi and Seo
(1998).

A. Details for the terms included in (10)–(12)

The terms included in Dm, Fm and Vm are as follows:

Dm1 =
2

√
ρ1

δ′Σ−1zF − 1
√

ρ1

δ′Σ−1T (1)Σ−1δ − 2
√

ρ1

δ′
1Σ

−1
11 z1F

+
1

√
ρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 δ1 +
2

ρ
δ′

1Σ
−1
11 z1T

−
√

ρ1

ρ2
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 δ1 −
√

ρ2

ρ2
δ′

1Σ
−1
11 T (2)Σ−1

11 δ1,

Dm2 =
1

ρ1

z′
F Σ−1zF − 2

ρ1

δ′Σ−1T (1)Σ−1zF +
1

ρ1

δ′Σ−1T (1)Σ−1T (1)Σ−1δ

− 1

ρ1

z′
1F Σ−1

11 z1F +
2

ρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 z1F

− 1

ρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 T
(1)
11 Σ−1

11 δ1 +
1

ρ
z′

1T Σ−1
11 z1T
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−
2
√

ρ1

ρ2
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 z1T −
2
√

ρ2

ρ2
δ′

1Σ
−1
11 T (2)Σ−1

11 z1T

+
ρ1

ρ3
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T
(1)
11 Σ−1

11 δ1 +
2
√

ρ1ρ2

ρ3
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T (2)Σ−1
11 δ1

+
ρ2

ρ3
δ′

1Σ
−1
11 T (2)Σ−1

11 T (2)Σ−1
11 δ1,

Fm1 =
1

√
ρ1

δ′Σ−1y
(1)
F − 1

√
ρ1

δ′
1Σ

−1
11 y

(1)
1F +

1

ρ
δ′

1Σ
−1
11 y

(1)
1T ,

Fm2 =
1

ρ1

z′
F Σ−1y

(1)
F − 1

ρ1

z′
1F Σ−1

11 y
(1)
1F − 1

ρ1

δ′Σ−1T (1)Σ−1y
(1)
F

+
1

ρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 y
(1)
1F +

1

ρ
z′

1T Σ−1
11 y

(1)
1T −

√
ρ1

ρ2
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 y
(1)
1T

−
√

ρ2

ρ2
δ′

1Σ
−1
11 T (2)Σ−1

11 y
(1)
1T ,

Vm1 =
2

√
ρ1

δ′Σ−1zF − 2
√

ρ1

δ′Σ−1T (1)Σ−1δ − 2
√

ρ1

δ′
1Σ

−1
11 z1F

+
2

√
ρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 δ1

+
2

√
ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1Σ21Σ

−1
11 δ1

− 2
√

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
12 Σ−1

22·1Σ21Σ
−1
11 δ1

− 2
√

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1δ2

+
2

√
ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
12 Σ−1

22·1δ2

+
2

ρ2
δ′

1Σ
−1
11 z1T −

2
√

ρ1

ρ3
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 δ1

−
2
√

ρ2

ρ3
δ′

1Σ
−1
11 T (2)Σ−1

11 δ1,

Vm2 =
1

ρ1

z′
F Σ−1zF − 4

ρ1

δ′Σ−1T (1)Σ−1zF +
3

ρ1

δ′Σ−1T (1)Σ−1T (1)Σ−1δ

− 1

ρ1

z′
1F Σ−1

11 z1F +
4

ρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 z1F
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− 3

ρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 T
(1)
11 Σ−1

11 δ1

+
2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1Σ21Σ

−1
11 z1F

− 2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
12 Σ−1

22·1Σ21Σ
−1
11 z1F

− 2

ρ1

δ′
1Σ

−1
11 Σ12Σ

−1
22·1T

(1)
21 Σ−1

11 z1F

+
2

ρ1

δ′
1Σ

−1
11 Σ12Σ

−1
22·1Σ21Σ

−1
11 T

(1)
11 Σ−1

11 z1F

+
2

ρ1

(
2 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T
(1)
12 Σ−1

22·1Σ21Σ
−1
11 δ1

− 2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1T

(1)
22·1Σ

−1
22·1Σ21Σ

−1
11 δ1

+
2

ρ1

(
1 − 2

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1T

(1)
21 Σ−1

11 δ1

+
2

ρρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1Σ21Σ

−1
11 T

(1)
11 Σ−1

11 δ1

+
2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
12 Σ−1

22·1T
(1)
22·1Σ

−1
22·1Σ21Σ

−1
11 δ1

− 2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
12 Σ−1

22·1T
(1)
21 Σ−1

11 δ1

− 2

ρ1

(
2 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T
(1)
11 Σ−1

11 Σ12Σ
−1
22·1Σ21Σ

−1
11 δ1

− 2

ρ1

z′
1F Σ−1

11 T
(1)
11 Σ−1

11 Σ12Σ
−1
22·1δ2 +

2

ρ1

z′
1F Σ−1

11 T
(1)
12 Σ−1

22·1δ2

− 2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1z2F

+
2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
12 Σ−1

22·1z2F

− 2

ρ1

(
2 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T
(1)
12 Σ−1

22·1δ2

+
2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1T

(1)
22·1Σ

−1
22·1δ2
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− 2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
12 Σ−1

22·1T
(1)
22·1Σ

−1
22·1δ2

+
2

ρ1

(
2 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T
(1)
11 Σ−1

11 Σ12Σ
−1
22·1δ2

+
1

ρ2
z′

1T Σ−1
11 z1T −

4
√

ρ1

ρ3
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 z1T

−
4
√

ρ2

ρ3
δ′

1Σ
−1
11 T (2)Σ−1

11 z1T

+
3ρ1

ρ4
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T
(1)
11 Σ−1

11 δ1 +
6
√

ρ1ρ2

ρ4
δ′

1Σ
−1
11 T

(1)
11 Σ−1
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11 δ1

+
3ρ2

ρ4
δ′
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11 δ1
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ρ1

z′
1T Σ−1
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11 Σ12Σ
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22·1Σ21Σ
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11 δ1

+
2

ρ
√

ρ1

z′
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11 T
(1)
12 Σ−1

22·1Σ21Σ21Σ
−1
11 δ1

+
2

ρ2
δ′
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11 Σ12Σ
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22·1Σ21Σ
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11 δ1
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ρ2
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+
2

ρ2

√
ρ2

ρ1

δ′
1Σ

−1
11 T (2)Σ−1

11 T
(1)
12 Σ−1

22·1δ2.

B. Proof of Lemma 4

Since only last four formulae are not well known result, we show the proof
of them. By definition of Wishart matrix, we can rewrite the terms of (iv)
as (

m∑
i=1

zi1z
′
i2

)
C21

(
m∑

j=1

zj1z
′
j1

)
, (14)

where zi ≡ (z′
i1z

′
i2)

′ ∼ Nd(0, Ω) and zi and zj are independent for i 6= j. By
Lemma 3, zi2|zi1 ∼ Nd2(Ω21Ω

−1
11 zi1, Ω22·1).Thus we find that the conditional

expectation of (14) given zi1 and zj1 can be expressed as∑
i

∑
j

zi1z
′
i1Ω

−1
11 Ω12C21zj1z

′
j1.

Since zi1z
′
i1 and zj1z

′
j1 are distributed as Wd1(1, Ω11) respectively, by (ii),

E(zi1z
′
i1Ω

−1
11 Ω12C21zj1z

′
j1) = Ω11C

′
21Ω21 + tr(C21Ω12)Ω11 + Ω12C21Ω11 (15)

for i = j. On the other hand, for i 6= j, we find that

E(zi1z
′
i1Ω

−1
11 Ω12C21zj1z

′
j1) = Ω12C21Ω11 (16)

by (i). The left-hand of (iv) includes m terms of (15) and m(m − 1) terms
of (16). Therefore (iv) holds. Similarly, (v) can be shown easily by making
use of the second formula of Lemma 2.

Next we show (vi). By definition of Wishart matrix, also we can rewrite
the terms of (vi) as follows:(

m∑
i=1

zi2z
′
i2

)
C21

(
m∑

i=1

zi1z
′
i1

)
.

By Lemma 3, we found the conditional distribution of zi2 given zi1. There-
fore, by Lemma 2, also we find E(zi2z

′
i2|zi1) = Ω22·1 + Ω21Ω

−1
11 zi1z

′
i1Ω

−1
11 Ω12.

Thus we can obtain the fact that

E

(
m∑

i=1

zi2z
′
i2|z11, . . . , zm1

)
= mΩ22·1 + Ω21Ω

−1
11

(
m∑

i=1

zi1z
′
i1

)
Ω−1

11 Ω12.
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This implies

E (G22C21G11|G11) = mΩ22·1C21G11 + Ω21Ω
−1
11 G11Ω

−1
11 Ω12C21G11.

Thus, by (i), (ii), this can be shown.
Clearly (vii) holds and we can also find that

E(G21C11G11) = m2Ω21C11Ω11 + mΩ21C
′
11Ω11 + mtr(C11Ω11)Ω21. (17)

Therefore (vii) can be obtained by (iii), (iv), (vi) and (17). Thus all the
expectations in this Lemma have been derived. ¤

C. Formulae for expectations

We can obtain following results which support obtaining asymptotic ex-
pansion formulae by given Lemmas:

E(zF ) =
(

z1F
z2F

)
= 0, E(z1T ) = 0,

E(y
(g)
F ) =

(
y

(g)
1F

y
(g)
2F

)
= 0, E(y

(g)
1T ) = 0,

E(T (1)) =

(
T

(1)
11 T

(1)
12

T
(1)
21 T

(1)
22

)
= O, E(T (2)) = O11,

E(z′
F CzF ) =

n1(N
(1)
1 + N

(2)
1 )

N
(1)
1 N

(2)
1

tr(CΣ),

E(z′
1F C11z1F ) =

n1(N
(1)
1 + N

(2)
1 )

N
(1)
1 N

(2)
1

tr(C11Σ11),

E(z′
1T C11z1T ) =

n(N (1) + N (2))

N (1)N (2)
tr(C11Σ11),

E(zF c′zF ) =
n1(N

(1)
1 + N

(2)
1 )

N
(1)
1 N

(2)
1

Σc,
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E(z1F c′
1z1F ) =

n1(N
(1)
1 + N

(2)
1 )

N
(1)
1 N

(2)
1

Σ11c1,

E(z1T c′
1z1T ) =

n(N (1) + N (2))

N (1)N (2)
Σ11c1,

E(z1F c′
1z1T ) =

√
nn1(N

(1) + N (2))

N (1)N (2)
Σ11c1,

E(zF c′
1z1F ) =

n1(N
(1)
1 + N

(2)
1 )

N
(1)
1 N

(2)
1

(
Σ11
Σ21

)
c1,

E(zF c′
1z1T ) =

√
nn1(N

(1) + N (2))

N (1)N (2)

(
Σ11
Σ21

)
c1,

E(z′
F Cy

(1)
F ) =

n1

N
(1)
1

tr(CΣ), E(z′
1F C11y

(1)
1F ) =

n1

N
(1)
1

tr(C11Σ11),

E(z′
1T C11y

(1)
1T ) =

n

N (1)
tr(Σ11C11),

E(y
(1)
F c′zF ) =

n1

N
(1)
1

Σc,

E(y
(1)
1F c′zF ) =

n1

N
(1)
1

( Σ11 Σ12 ) c,

E(y
(1)
1T c′zF ) =

√
nn1

N (1)
( Σ11 Σ12 ) c,

E(y
(1)
F c′

1z1F ) =
n1

N
(1)
1

(
Σ11
Σ21

)
c1,

E(y
(1)
F c′

1z1T ) =

√
nn1

N (1)

(
Σ11
Σ21

)
c1,

E(y
(1)
1F c′

1z1F ) =
n1

N
(1)
1

Σ11c1,

E(y
(1)
1F c′

1z1T ) =

√
nn1

N (1)
Σ11c1,

E(y
(1)
1T c′

1z1F ) =

√
nn1

N (1)
Σ11c1,

E(y
(1)
1T c′

1z1T ) =
n

N (1)
Σ11c1,
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E(y
(1)
F c′y

(1)
F ) =

n1

N
(1)
1

Σc,

E(y
(1)
F c′

1y
(1)
1F ) =

n1

N
(1)
1

(
Σ11
Σ21

)
c1,

E(y
(1)
F c′

1y
(1)
1T ) =

√
nn1

N (1)

(
Σ11
Σ21

)
c1,

E(y
(1)
1F c′

1y
(1)
1F ) =

n1

N
(1)
1

Σ11c1,

E(y
(1)
1F c′

1y
(1)
1T ) =

√
nn1

N (1)
Σ11c1,

E(y
(1)
1T c′

1y
(1)
1T ) =

n

N (1)
Σ11c1,

E(T (1)CT (1)) = ΣC ′Σ + tr(ΣC)Σ,

E(T
(1)
11 C11T

(1)
11 ) = E(T (2)C11T

(2)) = Σ11C
′
11Σ11 + tr(Σ11C11)Σ11,

E(T
(1)
11 C11T

(1)
12 ) = Σ11C

′
11Σ12 + tr(C11Σ11)Σ12,

E(T
(1)
11 C12T

(1)
21 ) = Σ12C

′
12Σ11 + tr(C12Σ21)Σ11,

E(T
(1)
12 C21T

(1)
11 ) = Σ11C

′
21Σ21 + tr(C21Σ12)Σ11,

E(T
(1)
21 C11T

(1)
11 ) = Σ21C

′
11Σ11 + tr(C11Σ11)Σ21,

E(T
(1)
22 C21T

(1)
11 ) = Σ21C

′
21Σ21 + tr(Σ21C21)Σ21,

and

E(δ′Σ−1T (1)Σ−1δδ′
1Σ

−1
11 T

(1)
11 Σ−1

11 δ1) = 2δ4
11,

where C is p× p constant matrix, c is p dimensional constant vector, C`m is
p` × pm constant matrix and c` is p` dimensional constant vector.
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