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Abstract

This paper studies panel quantile regression models with fixed effects. We for-

mally establish sufficient conditions for consistency and asymptotic normality of the

quantile regression estimator when the number of individuals, n, and the number of

time periods, T , jointly go to infinity. The estimator is shown to be consistent under

similar conditions to those found in the nonlinear panel data literature. Nevertheless,

due to the non-smoothness of the criterion function, we had to impose a more restric-

tive condition on T to prove asymptotic normality than that usually found in the

literature. We also examine the practical ability of bootstrap procedures for inference

in quantile regression models for panel data. The finite sample performance of the

estimator and the bootstrap procedures are evaluated by Monte Carlo simulations.

Key words: asymptotics, bootstrap, fixed effects, panel data, quantile regression.

JEL Classification: C13, C21, C23.

1 Introduction

Quantile regression (QR) for panel data has attracted considerable interest in both the

theoretical and applied literatures. It allows us to explore a range of conditional quantiles,

thereby exposing a variety of forms of conditional heterogeneity, and to control for unob-

served individual effects. Controlling for individual heterogeneity via fixed effects, while
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exploring heterogeneous covariate effects within the QR framework, offers a more flexible

approach to the analysis of panel data than that afforded by the classical Gaussian fixed

and random effects estimation.

This paper focuses on the fixed effect estimation of the common parameters in a QR

model with individual effects. We refer to the resulting estimator as the fixed-effect quantile

regression (FE-QR) estimator. Unfortunately, the FE-QR estimator is subject to the

incidental parameters problem (Neyman and Scott, 1948; Lancaster, 2000, for a review)

and will be inconsistent if the number of individuals n goes to infinity while the number of

time periods T is fixed. It is important to note that, in contrast to mean regression, there

is no general transformation that can suitably eliminate the individual effects in the QR

model. Therefore, no clever way is known to sidestep the incidental parameters problem

in the QR case.

The incidental parameters problem has been extensively studied in the recent nonlinear

panel data literature. Among them, Hahn and Newey (2004) studied the maximum likeli-

hood estimation of a general nonlinear panel data model with fixed effects. They showed

that the maximum likelihood estimator (MLE) has a limiting normal distribution with a

bias in the mean when n and T grow at the same rate, and proposed several bias correction

methods to the MLE. Note that since they assumed that likelihood functions are smooth,

while the criterion function of QR is not, their results are not directly applicable to the

QR case.

Koenker (2004) introduced a novel approach to the estimation of a QR model for

panel data. He argued that shrinking the individual parameters towards a common value

improves the performance of the common parameters’ estimates, and proposed a penalized

estimation method where the individual parameters are subject to the ℓ1 penalty. He

also studied the asymptotic properties of the (unpenalized) FE-QR estimator and claimed

that it is asymptotically normal provided that na/T → 0 for some a > 0. We provide

an alternative formal and rigorous approach that offers a clearer understanding of the

asymptotic properties of the FE-QR estimator than that in his Theorem 1.

The goals of this paper are twofold. First, we study the asymptotic properties of the FE-

QR estimator when n and T jointly go to infinity and formally establish sufficient conditions

for consistency and asymptotic normality of the estimator. We show that the FE-QR

estimator is consistent under similar conditions to those found in the nonlinear panel data

literature. However, we need a more restrictive condition on T (i.e., n2(log n)3/T → 0)

to prove asymptotic normality of the estimator than that found in the literature. This

reflects the fact that the order of the remainder term in the Bahadur representation of the

FE-QR estimator is Op{T−3/4(log n)3/4}, while that of the smooth MLE is Op(T
−1). The

slower convergence rate of the remainder term is due to the non-smoothness of the scores.
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From a methodological point of view, the proof of asymptotic normality of the FE-QR

estimator is of independent interest. Because of the non-differentiability of the criterion

function, the stochastic expansion technique of Li, Lindsay, and Waterman (2003) is no

longer applicable to the asymptotic analysis of the FE-QR estimator. Instead, we adapt the

Pakes and Pollard (1989) approach for proving asymptotic normality of the estimator. In

addition, we make use of Talagrand’s (1994,1996) inequalities available from the empirical

process literature to establish the convergence rate of the remainder term in the Bahadur

representation of the FE-QR estimator. These inequalities significantly simplify the proof.

The second goal of this paper is to examine the practical ability of bootstrap procedures

to construct confidence intervals for the QR model with fixed effects. Due to the specific

nature of panel data, there are three possibilities for bootstrap resampling, namely, cross-

sectional resampling, temporal resampling and cross-sectional & temporal resampling. We

use Monte Carlo simulations to study the finite sample performance of the FE-QR estima-

tor and the bootstrap procedures. The simulation study highlights some cases where the

FE-QR estimator has large bias in panels with small T . The results show that the cross-

sectional resampling outperforms the others and the empirical levels from it approximate

well the nominal level when T is of moderate size, but none of the procedures may provide

accurate confidence intervals in some cases when T is small relative to n.

We now review the literature related to this paper. Lamarche (2006) studied Koenker’s

penalization method and discussed an optimal choice of the tuning parameter. Canay

(2008) adopted a Doksum (1974) type formulation of a QR model for panel data, and

proposed a two-step estimator of the common parameters. The difference is that in his

model, each individual effect is not allowed to change across quantiles. Graham, Hahn, and

Powell (2009) showed that when T = 2 and the explanatory variables are independent of the

error term, the FE-QR estimator does not suffer from the incidental parameters problem.

However, their argument does not apply to the general case. Rosen (2009) addressed a

set identification problem of the common parameters when T is fixed. Chernozhukov,

Fernandez-Val, and Newey (2009) considered identification and estimation of the quantile

structural function defined in Imbens and Newey (2009) of a nonseparable panel model with

discrete explanatory variables. They studied bounds of the quantile structural function

when T is fixed and the asymptotic behavior of the bounds when T goes to infinity. Note

that the quantile structural function is not equivalent to the conditional quantile function

which we study in this paper.

This paper is organized as follows. In Section 2, we introduce a QR model with fixed

effects and discuss the asymptotic properties of the FE-QR estimator. In Section 3, we

introduce three types of bootstrap procedures for approximating the finite sample distri-

bution of the estimator. In Section 4, we report a simulation study for assessing the finite
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sample performance of the FE-QR estimator and the bootstrap procedures described in

Section 3. In Section 5, we present some discussion on the paper. We relegate the proofs

of the theorems to the Appendix.

2 Quantile regression with fixed effects

2.1 The model

In this paper, we consider a QR model with individual effects

Qτ (yit|xit, α
∗
i (τ)) = α∗

i (τ) + x′
itβ0(τ), (2.1)

where yit is a response variable, xit is a p dimensional vector of explanatory variables

and Qτ (yit|xit, α
∗
i (τ)) is the conditional τ -quantile of yit given xit and α∗

i (τ). In model

(2.1), each α∗
i (τ) is intended to capture some individual specific source of variability or

unobserved heterogeneity that is not adequately controlled for by the explanatory variables.

We make no parametric assumption on the relationship between α∗
i (τ) and xit. Throughout

the paper, the number of individuals is denoted by n and the number of time periods is

denoted by T = Tn which depends on n. Usually, we omit the subscript n of Tn.

As in Koenker (2004), we treat each individual effect as a parameter to be estimated

and consider the estimator

(α̂(τ), β̂(τ)) := arg min
α,β

1

nT

n∑
i=1

T∑
t=1

ρτ (yit − αi − x′
itβ), (2.2)

where α := (α1, . . . , αn)′ and ρτ (u) := {τ−I(u ≤ 0)}u is the check function of Koenker and

Bassett (1978). Note that α implicitly depends on n. We call β̂(τ) the fixed effects quantile

regression (FE-QR) estimator of β0(τ). The optimization for solving (2.2) can be very large

depending on n and T . However, as Koenker (2004) observed, in typical applications, the

design matrix is very sparse. Standard sparse matrix storage schemes only require the

space for the non-zero elements and their indexing locations. This considerably reduces

the computational effort and memory requirements.

It is important to note that in the QR model, there is no general transformation that

can suitably eliminate the individual effects. This intrinsic difficulty has been recognized

by Abrevaya and Dahl (2008), among others, and was clarified by Koenker and Hallock

(2000). They remarked that “Quantiles of convolutions of random variables are rather

intractable objects, and preliminary differencing strategies familiar from Gaussian models

have sometimes unanticipated effects. (p.19)”
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2.2 Asymptotic theory

In this section, we investigate the asymptotic properties of the FE-QR estimator. In

order to avoid notational complication, we suppress the dependence on τ throughout the

section. For example, we simply write α∗
i for α∗

i (τ). In the asymptotic analysis, as in Hahn

and Newey (2004) and Fernandez-Val (2005), we pick a single realization (α10, α20, . . . ) of

(α∗
1, α

∗
2, . . . ) and treat each αi0 as a fixed true parameter. From now on, we suppose that

every argument is conditional on α∗
i = αi0 for each individual i. Put α0 := (α10, . . . , αn0)

′.

We first consider the consistency of (α̂, β̂). We say that α̂ is weakly consistent if α̂i

converges in probability to αi0 uniformly over 1 ≤ i ≤ n, that is, max1≤i≤n |α̂i − αi0|
p→ 0.

Now, we introduce some regularity conditions that ensure the consistency of (α̂, β̂).

(A1) {(yit,xit), t ≥ 1} is independent and identically distributed (i.i.d.) for each fixed i

and independent across i.

(A2) supi≥1 E[∥xi1∥2s] <∞ for some real s ≥ 1.

The distribution of (yit,xit) is allowed to depend on i. Put uit := yit − αi0 − x′
itβ0.

Condition (A1) implies that {(uit,xit), t ≥ 1} is i.i.d. for each fixed i and independent

across i. Let Fi(u|x) denote the conditional distribution function of uit given xit = x. We

assume that Fi(u|x) has density fi(u|x). Let fi(u) denote the marginal density of uit.

(A3) For each δ > 0,

ϵδ := inf
i≥1

inf
|α|+∥β∥1=δ

E

[∫ α+x′i1β

0

{Fi(s|xi1) − τ}ds

]
> 0, (2.3)

where ∥ · ∥1 stands for the ℓ1 norm.

Condition (A1) is the same as Condition 1 (i) in Fernandez-Val (2005). We exclude

temporal dependence to simplify the technical proofs. Condition (A2) corresponds to the

moment condition in Fernandez-Val (2005, p.12). Condition (A3) is a high level condition

for identification of (α0,β0) and corresponds to Condition 3 in Hahn and Newey (2004). In

fact, it is sufficient for consistency of (α̂, β̂) that (2.3) is satisfied for any sufficiently small

δ > 0. Recall that Fi(0|xi1) = τ . Under suitable integrability conditions, the expectation

in (2.3) can be expanded as (α,β′)Ωi(α,β
′)′ + o(δ2) for |α| + ∥β∥1 = δ uniformly over

i ≥ 1 as δ → 0, where Ωi := E[fi(0|xi1)(1,x
′
i1)(1,x

′
i1)

′]. If the minimum eigenvalue of Ωi

is bounded away from zero uniformly over i ≥ 1, there exists a positive constant δ0 such

that for 0 < δ ≤ δ0, (2.3) is satisfied.

Theorem 2.1. Assume that n/T s → 0 as n → ∞, where s is given in condition (A2).

Then, under conditions (A1)-(A3), (α̂, β̂) is weakly consistent.
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Remark 2.1.

(a) Theorem 2.1 is not covered by Hahn and Newey (2004) and Fernandez-Val (2005)

because they assumed that the parameter spaces of αi0 and β0 are compact. In our

problem, due to the convexity of the criterion function, we can remove the compact-

ness assumption of the parameter spaces.

(b) The condition on T in Theorem 2.1 is the same as that in Theorems 1-2 of Fernandez-

Val (2005). If supi≥1 ∥xi1∥ ≤ M (a.s.) for some positive constant M , then the

conclusion of the theorem holds when log n/T → 0 as n → ∞. See Remark A.1 in

the Appendix for details.

Next, we derive the limiting distribution of β̂. To do this, we present another set of

conditions.

(B1) There exists a constant M such that supi≥1 ∥xi1∥ ≤M (a.s.).

(B2) (a) For each i, fi(u|x) is continuously differentiable with respect to u for each x

and let f
(1)
i (u|x) := ∂fi(u|x)/∂u; (b) there exist constants A0 and A1 such that

fi(u|x) ≤ A0 and |f (1)
i (u|x)| ≤ A1 uniformly over (u,x) and i ≥ 1; (c) fi(0) is

bounded from below by some positive constant independent of i.

(B3) Put γi := E[fi(0|xi1)xi1]/fi(0) and Γn := n−1
∑n

i=1 E[fi(0|xi1)xi1(x
′
i1 − γ ′

i)]. (a) Γn

is nonsingular for each n, and the limit Γ := limn→∞ Γn exists and is nonsingular;

(b) the limit V := limn→∞ n−1
∑n

i=1 E[(xi1 −γi)(xi1 −γi)
′] exists and is nonsingular.

Condition (B1) is assumed in Koenker (2004). This condition is used to ensure the

“asymptotic” first order condition displayed in equation (A.7) in the proof of Theorem 2.2.

Condition (B2) imposes some restrictions on the conditional density and seems standard

in the QR literature. Compare condition (ii) of Theorem 3 in Angrist, Chernozhukov, and

Fernandez-Val (2006). Condition (B3) is concerned with the asymptotic covariance matrix

of β̂. Condition (B3) (a) implies that the minimum eigenvalue of Γn is bounded away from

zero uniformly over n ≥ 1.

Theorem 2.2. Assume that T = O(nr) for some r > 0 and log n/T → 0 as n → ∞.

Then, under conditions (A1), (A3) and (B1)-(B3), β̂ admits the representation

β̂ − β0 + op(∥β̂ − β0∥) = Γ−1
n

{
1

nT

n∑
i=1

T∑
t=1

{τ − I(uit ≤ 0)}(xit − γi)

}
+Rn, (2.4)

where Rn is Op{T−3/4(log n)3/4}. If in addition n2(log n)3/T → 0 as n→ ∞, we have

√
nT (β̂ − β0)

d→ N{0, τ(1 − τ)Γ−1V Γ−1}. (2.5)
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Remark 2.2.

(a) [Relation to Hahn and Newey (2004)] Equations (10) and (17) in Hahn and Newey

(2004) show that the MLE of the common parameters for smooth likelihood functions

admits the representation

θ̂ − θ0 =

(
1

n

n∑
i=1

Ii

)−1(
1

nT

n∑
i=1

T∑
t=1

Uit

)
+

1

2T
θϵϵ(0) +

1

6T 3/2
θϵϵϵ(ϵ̃), (2.6)

where θ̂, θ0, Ii, Uit, θ
ϵϵ(·) and θϵϵϵ(·) are defined in Hahn and Newey (2004) and ϵ̃ is

in [0, T−1/2]. Under suitable regularity conditions, θϵϵ(0) is Op(1) and θϵϵϵ(ϵ) is Op(1)

uniformly over ϵ ∈ [0, T−1/2], which implies that the last two terms in the right hand

side of equation (2.6) are Op(T
−1) and Op(T

−3/2), respectively.1 This difference is

due to the non-smoothness of the scores. Hahn and Newey (2004) assumed that the

scores are sufficiently smooth with respect to the parameters. On the other hand,

the scores for problem (2.2), which are formally defined in Appendix A.2, are not

differentiable. See Remark A.2 for the technical reason why the (non-)smoothness of

the scores is essential for the convergence rate of the remainder term.

(b) [Relation to He and Shao (2000)] He and Shao (2000) studied a general M -estimation

with diverging number of parameters which allows for non-smooth criterion func-

tions. It is interesting to note that their Corollary 3.2 shows that the smooth-

ness of scores is crucial for the growth condition of the number of parameters in

asymptotic distribution theory of M -estimators. However, it should be pointed

out that our Theorem 2.2 is not derived from their result because of the specific

nature of the panel data problem. The formal problem to apply their result is

that the convergence rate of α̂i is different from that of β̂. To avoid this, make a

reparametrization θ = (n−1/2α′,β′)′ and put zit := (n1/2e′
i,x

′
it)

′, where ei is the

i-th unit vector in Rn. Then, the current problem is under the framework of He

and Shao (2000) with xi = (yit,zit),m = (n + p), p = (n + p), n = nT, θ = θ and

ψ(xi, θ) = {τ − I(yit ≤ z′
itθ)}zit.

2 Although conditions (C0)-(C3) may be achieved

in this case, it is difficult to obtain a tight bound of A(n,m) in conditions (C4) and

(C5) of their paper. If we use the same reasoning as in Lemma 2.1 of He and Shao

(2000), A(n,m) is bounded by a constant times n3/2T 1/2 (in our notation), but if we

use this bound, the condition on T implied by Theorem 2.2 of He and Shao (2000)

will be such that n3(log n)2/T → 0.

1In fact, Hahn and Newey (2004) showed that θϵϵ(0) converges in probability to some constant vector,

which will contribute to the bias in the asymptotic distribution when n and T grow at the same rate.
2The left hand sides correspond to the notation of He and Shao (2000) and the right hand sides

correspond to our notation.
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(c) It should be pointed out that although the above rate of the remainder term is the

best one (up to log n) that we could achieve, there might be a room for improvement

on the rate. Nevertheless, a substantial improvement on the rate of the remainder

term (if possible) is expected to be quite complicated, and we leave it for future

research.

(d) The proof of Theorem 2.2 is of independent interest. In contrast to estimators with

smooth criterion functions which have been studied in the literature such as Li,

Lindsay, and Waterman (2003), Hahn and Newey (2004) and Fernandez-Val (2005),

the Taylor-series methods of asymptotic distribution theory do not apply to the FE-

QR estimator, which greatly complicates the analysis of its asymptotic distributional

properties. The difficulty is partly explained by the fact that, as Hahn and Newey

(2004) observed, the first order asymptotic behavior of the (smooth) MLE of the

common parameters can be affected by the second order behavior of the estimators

of the individual parameters, while the second order behavior of QR estimators is

non-standard and rather complicated (Arcones, 1998; Knight, 1998).

(e) The proof proceeds as follows. It is based on the method of Pakes and Pollard (1989),

but requires some extra efforts. The first step is to obtain certain representations

of α̂i − αi0 by expanding the first n elements of the scores. Plugging them into the

expansion of the last p elements of the scores, we obtain a representation of β̂−β0 (see

(A.5)). The remaining task is to evaluate the remainder terms in the representation

of β̂−β0, which corresponds to establishing the stochastic equicontinuity condition in

Pakes and Pollard (1989). However, since the number of parameters goes to infinity

as n→ ∞, the “standard” empirical process argument such as that displayed in their

paper will not suffice to show this. In order to establish the convergence rate of the

remainder terms, we make use of moment and exponential inequalities for general

empirical processes developed in Talagrand (1994, 1996), which significantly simplify

the proof. We summarize these inequalities in Appendix B.

(f) [Relation to Koenker (2004)] Koenker (2004) claimed asymptotic normality of the FE-

QR estimator under similar conditions to ours except that he assumed that na/T → 0

for some a > 0. We believe that our proof of asymptotic normality offers a clearer

understanding of the asymptotic properties of the FE-QR estimator than that in his

Theorem 1. Actually, in his proof, a formal proof for
√
nT -consistency of β̂ is not

offered, and a justification for the second expression of Rmn in p.82 when n and m

(in his notation) jointly go to infinity is not presented.
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3 Bootstrap inference

The main concern of this section is the application of bootstrap procedures to the problem

of constructing confidence intervals for the common parameters of the QR model with fixed

effects. Theorem 2.2 suggests that in order to use the normal approximation T should be

larger than n2, which seems restrictive in practice. Even in cases where we can use the

normal approximation, the asymptotic covariance matrix is not easy to estimate since it

depends on the conditional density. We consider the bootstrap as a heuristic method to

approximate the finite sample distribution of the FE-QR estimator and to investigate the

finite sample performance of the bootstrap through simulations. The simulation study

appears in the next section.

Traditionally, the bootstrap has been successfully employed to construct confidence

intervals for parameters of QR models for cross-section data.3 However, it is only recently

that the properties of the bootstrap for panel data has been studied. Cameron and Trivedi

(2005) discussed resampling methods for panel data when n is large but T is assumed small.

Kapetanios (2008) studied the bootstrap for a linear panel data model where resampling

occurs in both the cross-section and time dimensions. Goncalves (2008), allowing for both

temporal and cross-sectional dependence, studied the moving block bootstrap for a linear

panel data model where resampling occurs only in the time dimension.

In this section, following Kapetanios (2008), we consider three different methods of

bootstrap resampling, namely, cross-sectional resampling, temporal resampling and cross-

sectional & temporal resampling. Put yi· = (yi1, . . . , yiT )′, Xi· = (xi1, . . . ,xiT )′, y·t =

(y1t, . . . , ynt)
′ and X·t = (x1t, . . . ,xnt)

′. The cross-sectional resampling consists of resam-

pling (yi·,Xi·) with replacement from the cross-section dimension with probability 1/n.

The temporal resampling consists of resampling (y·t,X·t) with replacement from the tem-

poral dimension for each individual with probability 1/T . The cross-sectional & temporal

resampling involves both the cross-sectional and temporal resamplings. It first resamples

(yi·,Xi·) from the cross-sectional dimension with probability 1/n and then resamples the

constructed cross-sectional units from the time dimension with probability 1/T .

Having obtained the resampled data {(y∗it,x∗
it), i = 1, . . . , n; t = 1, . . . , T}, the boot-

strap estimate is computed as

(α̂∗(τ), β̂∗(τ)) := arg min
α,β

1

nT

n∑
i=1

T∑
t=1

witρτ (yit − αi − x′
itβ),

where wit is the number of times that (yit,xit) is “redrawn” from the original sample. The

distribution of β̂∗(τ)−β̂(τ) conditional on the sample would approximate the finite sample

distribution of β̂(τ) − β0(τ). In practice, we repeat these steps a large number of times.

3For example, see Buchinsky (1995), Hahn (1995) and Horowitz (1998).
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Then, the confidence intervals for β0(τ) can be obtained by computing the quantiles of the

empirical distribution of β̂∗(τ) − β̂(τ) conditional on the sample.

There is an alternative way to compute β̂∗(τ). β̂∗(τ) can be also defined as

(ĉ∗, β̂∗(τ)) := arg min
c,β

1

nT

n∑
i=1

T∑
t=1

ρτ (y
∗
it − ci − x∗′

itβ).

Here, ĉ∗ is not necessarily equal to α̂∗(τ) when the cross-sectional resampling is included

but it is not difficult to see that the two definitions of β̂∗(τ) are equivalent.

4 Monte Carlo

In this section, we report a simulation study to investigate the finite sample performance

of the bootstrap procedures described in Section 3. Two simple versions of model (2.1) are

considered in the simulation study:

1. Location shift model: yit = ηi + xit + ϵit;

2. Location-scale shift model: yit = ηi + xit + (1 + 0.2xit)ϵit,

where xit = 0.3ηi + zit, zit ∼ i.i.d. χ2
3, ηi ∼ i.i.d. U [0, 1] and ϵit ∼ i.i.d. F with F = N(0, 1)

or χ2
3. In the location shift model, α∗

i (τ) = ηi + F−1(τ) and β0(τ) = 1, while in the

location-scale shift model, α∗
i (τ) = ηi + F−1(τ) and β0(τ) = 1 + 0.2F−1(τ). Finally, we

consider cases where n ∈ {25, 50}, T ∈ {5, 10, 50} and τ ∈ {0.25, 0.50, 0.75}.

4.1 Bias

The performance of the FE-QR estimator is evaluated by its bias and standard deviation.

The number of Monte Carlo repetitions is 10, 000. Tables 1 and 2 report the results for the

location shift and location-scale shift models, respectively. For the median, the results are

in line with those of Koenker (2004), where in both models the FE-QR estimator has small

bias and standard deviation in small samples. However, there are noticeable differences

for the first and third quartiles. In the location shift model, the bias is very small in every

case and the standard deviation decreases monotonically as either n or T increases. In the

location-scale shift model, however, both bias and standard deviation are large for small

T . In particular, the bias is moderate in the χ2
3 case for the third quartile and T = 5, 10.

As expected, the bias disappears as T increases. These results suggest that the FE-QR

estimator performs well in small samples for the location shift model but may have a large

bias for the location-scale shift model where the quantile of interest is evaluated at an

associated low density (i.e., F = χ2
3 and τ = 0.75 case) when T is small.
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4.2 Bootstrap

The performance of confidence intervals constructed from bootstrap estimates is evaluated

by the (empirical) rejection rate and length. The rejection rate is defined as the proportion

of cases that the true parameter is outside the confidence intervals. If the bootstrap pro-

cedure correctly approximates the finite sample distribution of β̂(τ)− β0(τ), the rejection

rate should be close to the nominal size. The number of bootstrap repetitions is 500 for

each Monte Carlo repetition. Because of the computational burden, the number of Monte

Carlo repetitions is 500. The nominal size is set to 0.1.

Table 3 reports the results for the location shift model. The cross-sectional resampling

performs the best. In this case, rejection rates are close to 0.1 except for a few cases. The

temporal resampling gives rejection rates well below the nominal size in all cases. Finally,

confidence intervals based on the cross-sectional & temporal resampling are excessively

wide and as a result give very small rejection rates.

Table 4 reports the results for the location-scale shift model. The cross-sectional re-

sampling again performs the best but its performance is worse than in the linear location

shift model. In this case, there are considerable differences among quantiles. In the normal

case, rejection rates for the median are close to the nominal size in all cases. However,

for the first and third quartiles, rejection rates are double the nominal size when n/T is

large (the lower diagonal part in each box). In the χ2 case, rejection rates are acceptable

when τ ∈ {0.25, 0.5} but double the nominal size when τ = 0.75 and n/T is large. This is

possibly due to the large bias found in Table 2. The other resampling procedures have a

poorer performance than the cross-sectional resampling. The temporal resampling has re-

jection rates close to the nominal size only when τ = 0.5 and T = 50. Not surprisingly, the

temporal resampling is unreliable when T is small. The performance of the cross-sectional

& temporal resampling is sensitive to the setting.

In summary, the Monte Carlo results suggest that (a) the cross-sectional resampling is

recommended among three resampling procedures and performs well when both n and T

are of moderate sizes; however, (b) none of the resampling procedures may not be accurate

in some cases (such as the location-scale shift model with τ ∈ {0.25, 0.75}) when n/T is

large.

5 Discussion

In this paper, we have studied the asymptotic properties of the FE-QR estimator and ex-

amined the practical ability of three bootstrap procedures by means of simulations. There

remain several issues to be investigated. It is an open question whether the convergence

rate of the remainder term in (2.4) can be improved (it is clear that the rate can not be
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faster than Op(T
−1)). Investigation into this direction will require a sophisticated proba-

bilistic argument. Also, the simulation result suggests that some modification is desirable

to improve the performance of the FE-QR estimator under small T relative to n. The

authors plan to pursue this issue in a separate paper.

A Proofs

A.1 Proof of Theorem 2.1

Put Mni(αi,β) := T−1
∑T

t=1 ρτ (yit−αi−x′
itβ) and ∆ni(αi,β) := Mni(αi,β)−Mni(αi0,β0).

For each δ > 0, define Bi(δ) := {(α,β) : |α−αi0|+∥β−β0∥1 ≤ δ} and ∂Bi(δ) := {(α,β) :

|α− αi0| + ∥β − β0∥1 = δ}.

Proof of Theorem 2.1. We divide the proof into two steps.

Step 1. We first prove β̂
p→ β0. Fix any δ > 0. For each (αi,β) /∈ Bi(δ), define

α̃i = riαi + (1− ri)αi0, β̃ = riβ + (1− ri)β0, where ri = δ/(|αi − αi0|+ ∥β − β0∥1). Note

that ri ∈ (0, 1) and (α̃i, β̃) ∈ ∂Bi(δ). Because of the convexity of the criterion function,

we have

ri{Mni(αi,β) − Mni(αi0,β0)} ≥ Mni(α̃i, β̃) − Mni(αi0,β0)

= {E[∆ni(α̃i, β̃)]} + {∆ni(α̃i, β̃) − E[∆ni(α̃i, β̃)]}. (A.1)

Use the identity of Knight (1998) to obtain

E[∆ni(αi,β)] = E

[∫ (αi−αi0)+x′i1(β−β0)

0

{Fi(s|xi1) − τ}ds

]
.

From condition (A3), the first term in the right hand side of equation (A.1) is greater than

or equal to ϵδ for all 1 ≤ i ≤ n. Thus, from (A.1), we obtain the inclusion relation{
∥β̂ − β0∥1 > δ

}
⊂ {Mni(αi,β) ≤ Mni(αi0,β0), 1 ≤ ∃i ≤ n, ∃(αi,β) /∈ Bi(δ)}

⊂

{
max
1≤i≤n

sup
(αi,β)∈Bi(δ)

|∆ni(αi,β) − E[∆ni(αi,β)]| ≥ ϵδ

}
.

Therefore, it suffices to show that for every ϵ > 0,

lim
n→∞

P

{
max
1≤i≤n

sup
(αi,β)∈Bi(δ)

|∆ni(αi,β) − E[∆ni(αi,β)]| > ϵ

}
= 0. (A.2)
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Because of the subadditivity of the probability measure, it suffices to prove that for

every ϵ > 0,

max
1≤i≤n

P

{
sup

(α,β)∈Bi(δ)

|∆ni(α,β) − E[∆ni(α,β)]| > ϵ

}
= o(n−1). (A.3)

We follow the proof of Lemma 7 in Fernandez-Val (2005) to show (A.3). Without loss of

generality, we may assume that αi0 = 0 and β0 = 0. Then, Bi(δ) is independent of i and

write Bi(δ) = B(δ) for simplicity. Put gα,β(u,x) := ρτ (u−α−x′β)− ρτ (u). Observe that

|gα,β(u,x) − gᾱ,β̄(u,x)| ≤ C(1 + ∥x∥1)(|α − ᾱ| + ∥β − β̄∥1) for some universal constant

C > 0. Put L(x) := C(1 + ∥x∥) and κ := supi≥1 E[L(xi1)]. Since B(δ) is a compact

subset of Rp+1, there exist K ℓ1-balls with centers (α(j),β(j)), j = 1, . . . , K and radius

ϵ/(7κ) such that the collection of these balls covers B(δ). Note that K is independent

of i and can be chosen such that K = K(ϵ) = O(ϵ−p−1) as ϵ → 0. Now, for each

(α,β) ∈ B(δ), there is a j ∈ {1, . . . , K} such that |gα,β(u,x)−gα(j),β(j)(u,x)| ≤ L(x)ϵ/(7κ),

which leads to |∆ni(α,β)−E[∆ni(α,β)]| ≤ |∆ni(α
(j),β(j))−E[∆ni(α

(j),β(j))]|+{ϵ/(7κ)} ·
|T−1

∑T
t=1{L(xit) − E[L(xi1)]}| + 2ϵ/7. Therefore, we have

P

{
sup

(α,β)∈B(δ)

|∆ni(α,β) − E[∆ni(α,β)]| > ϵ

}

≤
K∑

j=1

P
{
|∆ni(α

(j),β(j)) − E[∆ni(α
(j),β(j))]| > ϵ

3

}
+ P

{
1

T

∣∣∣∣∣
T∑

t=1

{L(xit) − E[L(xi1)]}

∣∣∣∣∣ > 7κ

3

}
. (A.4)

Since supi≥1 E[L2s(xi1)] < ∞, application of the Marcinkiewicz-Zygmung inequality (see

Corollary 2 in Chow and Teicher, 1997, p. 387) implies that both terms in the right hand

side of (A.4) are O(T−s) uniformly over 1 ≤ i ≤ n. Because of the hypothesis on T , they

are o(n−1), leading to (A.3).

Step 2. Next, we shall show that max1≤i≤n |α̂i−αi0|
p→ 0. Recall that α̂i = arg minα Mni(α, β̂).

Fix any δ > 0. For each αi ∈ R such that |αi − αi0| > δ, define α̃i = riαi + (1 − ri)αi0,

where ri = δ/|αi − αi0|. Because of the convexity of the criterion function, we have

ri{Mni(αi, β̂) − Mni(αi0, β̂)} ≥ Mni(α̃i, β̂) − Mni(αi0, β̂)

= Mni(α̃i, β̂) − Mni(αi0,β0) − {Mni(αi0, β̂) − Mni(αi0,β0)}

= {∆ni(α̃i, β̂) − E[∆ni(α̃i,β)]|β=β̂} − {∆ni(α0i, β̂) − E[∆ni(α0i,β)]|β=β̂}

+ E[∆ni(α̃i,β0)] + {E[∆ni(α̃i,β)]|β=β̂ − E[∆ni(α̃i,β0)]} + E[∆ni(α0i,β)]|β=β̂.

It is seen from condition (A3) that the third term in the right hand side is greater than or
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equal to ϵδ. Thus, we obtain the inclusion relation

{|α̂i − αi0| > δ, 1 ≤ ∃i ≤ n}

⊂ {Mni(αi, β̂) ≤ Mni(αi0, β̂), 1 ≤ ∃i ≤ n, ∃αi ∈ R s.t. |αi − αi0| > δ}

⊂

{
max
1≤i≤n

sup
|α−αi0|≤δ

|∆ni(α, β̂) − E[∆ni(α,β)]|β=β̂| ≥
ϵδ
4

}

∪

{
max
1≤i≤n

sup
|α−αi0|≤δ

||E[∆ni(α,β)]|β=β̂ − E[∆ni(α,β0)]| ≥
ϵδ
4

}
=: A1n ∪ A2n.

Since β̂ is consistent by Step 1, and especially β̂ = Op(1), from (A.2), it is shown that

P(A1n) → 0. Finally, since

|E[∆ni(α,β)] − E[∆ni(α,β0)]| ≤ 2E[∥xi1∥]∥β − β0∥,

and supi≥1 E[∥xi1∥] ≤ 1+supi≥1 E[∥xi1∥2s] <∞, consistency of β̂ implies that P(A2n) → 0.

Therefore, we complete the proof.

Remark A.1. If supi≥1 ∥xi1∥ ≤ M (a.s.) for some constant M , we may take L(x) ≡
C(1 +M) and the second term in the right hand side of (A.4) will vanish. In this case, we

can apply Hoeffding’s inequality to the first term in the right hand side of (A.4) and the

probability in (A.3) is bounded by D exp(−DT ) for some positive constant D that depends

on ϵ but not on i. Therefore, the conclusion of Theorem 2.1 holds when log n/T → 0 as

n→ ∞ in this case.

A.2 Proof of Theorem 2.2

Define

H(1)
ni (αi,β) :=

1

T

T∑
t=1

{τ − I(yit ≤ αi + x′
itβ)},

H
(1)
ni (αi,β) := E[H(1)

ni (αi,β)] = E[{τ − Fi(αi − αi0 + x′
i1(β − β0)|xi1)}],

H(2)
n (α,β) :=

1

nT

n∑
i=1

T∑
t=1

{τ − I(yit ≤ αi + x′
itβ)}xit,

H(2)
n (α,β) := E[H(2)

n (α,β)] =
1

n

n∑
i=1

E[{τ − Fi(αi − αi0 + x′
i1(β − β0)|xi1)}xi1].

Note that Hni(αi,β) depends on n since T does. The (n+p) dimensional vector of functions

[H(1)
n1 (α1,β), . . . ,H(1)

nn(αn,β),H(2)′

n (α,β)]′
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are called the scores for problem (2.2).

Before starting the proof, we introduce some notation used in empirical process theory.

Let F be a class of measurable functions on a measurable space (S,S). For a process

Z(f) defined on F , ∥Z(f)∥F := supf∈F |Z(f)|. For a probability measure Q on (S,S) and

ϵ > 0, let N(F , L2(Q), ϵ) denote the ϵ-covering number of F with respect to the L2(Q)

norm ∥ · ∥L2(Q). For the definition of a Vapnik-Červonenkis (VC) subgraph class, we refer

to van der Vaart and Wellner (1996), Section 2.6.

Proof of Theorem 2.2. We divide the proof into four steps.

Step 1 (Asymptotic representation). We shall show that

β̂ − β0 + op(∥β̂ − β0∥) = Γ−1
n {−n−1

∑n
i=1H

(1)
ni (αi0,β0)γi + H(2)

n (α0,β0)}

− Γ−1
n [n−1

∑n
i=1γi{H(1)

ni (α̂i, β̂) −H
(1)
ni (α̂i, β̂) − H(1)

ni (αi0,β0)}]

+ Γ−1
n {H(2)

n (α̂, β̂) −H(2)
n (α̂, β̂) − H(2)

n (α0,β0)}

+Op{T−1 + max
1≤i≤n

|α̂i − αi0|2}. (A.5)

Because of the computational property of the QR estimator (see equation (3.10) in

Gutenbrunner and Jureckova, 1992), it is shown that max1≤i≤n |H(1)
ni (α̂i, β̂)| = Op(T

−1).

Thus, uniformly over 1 ≤ i ≤ n, we have

Op(T
−1) = H(1)

ni (αi0,β0) +H
(1)
ni (α̂i, β̂) + {H(1)

ni (α̂i, β̂) −H
(1)
ni (α̂i, β̂) − H(1)

ni (αi0,β0)}.

Expanding H
(1)
ni (α̂i, β̂) around (αi0,β0), we have

α̂i − αi0 = {fi(0)}−1H(1)
ni (αi0,β0) − γ ′

i(β̂ − β0)

+ {fi(0)}−1{H(1)
ni (α̂i, β̂) −H

(1)
ni (α̂i, β̂) − H(1)

ni (αi0,β0)} + rni, (A.6)

where max1≤i≤n |rni| = op(∥β̂ − β0∥) +Op{T−1 + max1≤i≤n |α̂i − αi0|2}.
Similarly, the computational property of the QR estimator implies that ∥H(2)

n (α̂, β̂)∥ =

Op{T−1 max1≤i≤n,1≤t≤T ∥xit∥} = Op(T
−1), from which we have

Op(T
−1) = H(2)

n (α0,β0) +H(2)
n (α̂, β̂) + {H(2)

n (α̂, β̂) −H(2)
n (α̂, β̂) − H(2)

n (α0,β0)}. (A.7)

Use Taylor’s theorem to obtain

H(2)
n (α̂, β̂) = −

{
1

n

n∑
i=1

E[fi(0|xi1)xi1](α̂i − αi0)

}

−

{
1

n

n∑
i=1

E[fi(0|xi1)xi1x
′
i1]

}
(β̂ − β0) + op(∥β̂ − β0∥) +Op

{
max
1≤i≤n

|α̂i − αi0|2
}
. (A.8)
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Plugging (A.6) into (A.8) leads to

H(2)
n (α̂, β̂) = − 1

n

n∑
i=1

H(1)
ni (αi0,β0)γi − Γn(β̂ − β0)

− 1

n

n∑
i=1

γi{H(1)
ni (α̂i, β̂) −H

(1)
ni (α̂i, β̂) − H(1)

ni (αi0,β0)}

+ op(∥β̂ − β0∥) +Op

{
T−1 + max

1≤i≤n
|α̂i − αi0|2

}
. (A.9)

Combining (A.7) and (A.9) yields the desired representation. The next two steps are

devoted to determining the order of the remainder terms in (A.5).

Step 2 (Stochastic equicontinuity). Take δn → 0 such that max1≤i≤n |α̂i−αi0|∨∥β̂−β0∥ =

Op(δn).4 We shall show that

∥n−1
∑n

i=1γi{H(1)
ni (α̂i, β̂) −H

(1)
ni (α̂i, β̂) − H(1)

ni (αi0,β0)}∥ = Op(dn), (A.10)

∥H(2)
n (α̂, β̂) −H(2)

n (α̂, β̂) − H(2)
n (α0,β0)∥ = Op(dn). (A.11)

where dn := T−1| log δn| + T−1/2δ
1/2
n | log δn|1/2.

We only prove (A.10) since the proof of (A.11) is analogous.5 Without loss of generality,

we may assume that αi0 = 0 and β0 = 0. Put gα,β(u,x) := I(u ≤ α + x′β) − I(u ≤ 0),

Gδ := {gα,β : |α| ≤ δ, ∥β∥ ≤ δ} and ξit := (uit,xit). Since γi is bounded over i, it suffices

to show that

max
1≤i≤n

E

∥∥∥∥∥
T∑

t=1

{g(ξit) − E[g(ξi1)]}

∥∥∥∥∥
Gδn

 = O(dnT ).

We make use of Proposition B.1 in Appendix B to show this. For each i, let ϵi1, . . . , ϵiT

be i.i.d. random variables with P(ϵit = ±1) = 1/2 and independent of {ξit, t = 1, . . . , T}.
Observe from Lemma 2.3.1 in van der Vaart and Wellner (1996) that

E

∥∥∥∥∥
T∑

t=1

{g(ξit) − E[g(ξi1)]}

∥∥∥∥∥
Gδn

 ≤ 2E

∥∥∥∥∥
T∑

t=1

ϵit{g(ξit) − E[g(ξi1)]}

∥∥∥∥∥
Gδn

 . (A.12)

We apply Proposition B.1 to G̃i,δn := {g − E[g(ξi1)] : g ∈ Gδn}. Observe that G̃i,δn is

pointwise measurable and each element of G̃i,δn is bounded by 4. Because of Lemmas

2.6.15 and 2.6.18 of van der Vaart and Wellner (1996), G∞ = {gα,β : α ∈ R,β ∈ Rp} is a

VC subgraph class. Thus, from Theorem 2.6.7 of van der Vaart and Wellner (1996), the fact

that G̃i,δn ⊂ {g−E[g(ξi1)] : g ∈ G∞}, and a simple estimate of covering numbers, there exist

4For a, b ∈ R, a ∨ b := max{a, b}.
5Though the present proof requires xi1 to be bounded, it is possible to use Theorem 2.14.1 of van der

Vaart and Wellner (1996) to show (A.11), which only requires that supi≥1 E[∥xi1∥2] < ∞. However, recall

that condition (B1) is used to ensure (A.7).
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constants A ≥ 3
√
e and v ≥ 1 independent of i and n such thatN(G̃i,δn , L2(Q), 4ϵ) ≤ (A/ϵ)v

for 0 < ϵ < 1 and for every probability measure Q on Rp+1. Observe that E[g2
α,β(ξi1)] =

E[|Fi(α + x′
i1β|xi1) − Fi(0|xi1)|] ≤ A0(|α| +M∥β∥) and take D := A0(1 +M). Then, we

can see that G̃i,δn satisfies all the conditions of Proposition B.1 with F ≡ 4, U = 4 and

σ2 = Dδn, and the constants A, v and D are independent of i and n, which implies that

the right hand side of (A.12) is O(dnT ) uniformly over 1 ≤ i ≤ n.

Step 3 (Convergence rates). We shall show that

max
1≤i≤n

|α̂i − αi0| = Op{(T/ log n)−1/2}, ∥β̂ − β0∥ = op(T
−1/2).

Because of consistency of (α̂, β̂) and the result given in Step 2, the second and third

terms in the right hand side of equation (A.5) is op(T
−1/2), which implies that ∥β̂−β0∥ =

Op{max1≤i≤n |α̂i −αi0|2}+ op(T
−1/2). Thus, from (A.6), max1≤i≤n |α̂i −αi0| is bounded by

const.×
{

max
1≤i≤n

|H(1)
ni (αi0,β0)| + max

1≤i≤n
|H(1)

ni (α̂i, β̂) −H
(1)
ni (α̂i, β̂) − H(1)

ni (αi0,β0)|
}

+op(T
−1/2),

with probability approaching one. First, observe that for K > 0,

P

{
max
1≤i≤n

|H(1)
ni (αi0,β0)| > (T/ log n)−1/2K

}
≤

n∑
i=1

P
{
|H(1)

ni (αi0,β0)| > (T/ log n)−1/2K
}
,

and the right hand side is bounded by 2n1−K2/2 by Hoeffding’s inequality. This implies

that max1≤i≤n |H(1)
ni (αi0,β0)| = Op{(T/ log n)−1/2}.

We next show that

max
1≤i≤n

|H(1)
ni (α̂i, β̂) −H

(1)
ni (α̂i, β̂) − H(1)

ni (αi0,β0)| = op{(T/ log n)−1/2},

which will lead to the desired result. Again, without loss of generality, we may assume

that αi0 = 0 and β0 = 0. Let gα,β,Gδ, G̃i,δ and ξit be the same as those given in Step

2. Because of consistency of (α̂, β̂) and the subadditivity of the probability measure, it

suffices to show that for every ϵ > 0, there exists a sufficiently small δ > 0 such that

max
1≤i≤n

P

{∥∥∥∥∥
T∑

t=1

{g(ξit) − E[g(ξi1)]}

∥∥∥∥∥
Gδ

> (T log n)1/2ϵ

}
= o(n−1).

To show this, we make use of Proposition B.2 in Appendix B. Fix ϵ > 0. From Step 2,

observe that G̃i,δ satisfies the conditions of Proposition B.1 with F ≡ 4, U = 4, σ2 = Dδ,

where D := A0(1 +M), and the constants A and v are independent of i and δ. Let L,C

be the constants given in Proposition B.2. Note that L and C depend only on A and v.

Take δ > 0 such that δ < min{4/D, ϵ2φ(L,C)/D} and fix it, where, as in Proposition
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B.2, φ(L,C) := log(1 + C/(4L))/(LC). Then, from Proposition B.2 and the fact that

log n/T → 0, there exists a positive integer n0 such that for n ≥ n0,

max
1≤i≤n

P

{∥∥∥∥∥
T∑

t=1

{g(ξit) − E[g(ξi1)]}

∥∥∥∥∥
Gδ

> (T log n)1/2ϵ

}
≤ L exp

{
−ϵ

2φ(L,C) log n

Dδ

}
,

which is o(n−1) because of the choice of δ.

Step 4 (Conclusion). From Step 3, we may take δn = (T/ log n)−1/2 in Step 2. Thus, from

Step 1, we obtain

β̂ − β0 + op(∥β̂ − β0∥) = Γ−1
n {−n−1

∑n
i=1H

(1)
ni (αi0,β0)γi + H(2)

n (α0,β0)}

+Op{T−3/4(log n)3/4}, (A.13)

which leads to (2.4). Finally, if n2(log n)3/T → 0, Op{T−3/4(log n)3/4} = op{(nT )−1/2}
and ∥β̂ − β0∥ = Op{(nT )−1/2}. Application of the Lyapunov central limit theorem shows

that √
nT{−n−1

∑n
i=1H

(1)
ni (αi0,β0)γi + H(2)

n (α0,β0)}
d→ N{0, τ(1 − τ)V }.

Therefore, we obtain (2.5).

Remark A.2. The reason why the order of the remainder term in (A.13) isOp{T−3/4(log n)3/4}
and not Op(T

−1) is that the exponent of δn inside the Op terms in the right hand side

of equations (A.10) and (A.11) is 1/2 and not 1. Recall the definition of gα,β given in

Step 2. Since gα,β is not differentiable with respect to (α,β), E[g2
α,β(ξi1)] is bounded by

const. × (|α| + ∥β∥) but not by const. × (|α|2 + ∥β∥2), which results in the exponent 1/2

of δn. Note that if gα,β were smooth in (α,β), we could use Taylor’s theorem to bound

E[g2
α,β(ξi1)] by const.× (|α|2 + ∥β∥2). In that case, the exponent of δn would be 1, leading

to the Op(T
−1) rate of the remainder terms (we have ignored the log n term).

B Inequalities from empirical process theory

In this appendix, we introduce two inequalities from empirical process theory that were

used in the proof of Theorem 2.2. Let ξ1, . . . , ξn be i.i.d. random variables taking values in a

measurable space (S,S) and let ϵ1, . . . , ϵn be i.i.d. random variables independent of {ξi, i =

1, . . . , n} with P(ϵi = ±1) = 1/2. For a function f on S, let ∥f∥∞ := supx∈S |f(x)|. The

next proposition is a moment inequality of symmetrized empirical processes, which is due

to Proposition 2.2 in Gine and Guillou (2001). The same inequality for indicator functions

is found in Talagrand (1994), Proposition 6.2. To avoid the measurability problem, we

assume F to be a pointwise measurable class of functions, i.e., each element of F is
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measurable and there exists a countable subset G ⊂ F such that for each f ∈ F , there

exists a sequence {gm} ⊂ G with gm(ξ) → f(ξ) for all ξ ∈ S. This condition is discussed

in Section 2.3 of van der Vaart and Wellner (1996).

Proposition B.1. Let F be a uniformly bounded, pointwise measurable class of functions

on (S,S) such that for some constants A ≥ 3
√
e and v ≥ 1, N(F , L2(Q), ϵ∥F∥L2(Q)) ≤

(A/ϵ)v for 0 < ϵ < 1 and for every probability measure Q on (S,S) with ∥F∥L2(Q) > 0,

where F (x) ≥ supf∈F |f(x)| for all x ∈ S. Let σ2 ≥ supf∈F E[f 2(ξ1)] and U ≥ ∥F∥∞ be

such that 0 < σ ≤ U . Then, for all n ≥ 1,

E

[∥∥∥∥∥
n∑

i=1

ϵif(ξi)

∥∥∥∥∥
F

]
≤ C

[
vU log

AU

σ
+
√
v
√
nσ

√
log

AU

σ

]
,

where C is a universal constant.

The next proposition is an exponential inequality for centered empirical processes,

which originates from Talagrand (1994, 1996). The current form of the inequality is due

to Corollary 2.2 in Gine and Guillou (2002). Proposition B.2 is derived from combining

Talagrand’s (1996) Theorem 1.4 and the moment inequality in Proposition B.1.6 See the

derivation of Proposition 2.2 in Gine and Guillou (2001).

Proposition B.2. Suppose that F satisfies the conditions of Proposition B.1 and E[f(ξ1)] =

0 for all f ∈ F . If, moreover, 0 < σ < U/2 and
√
nσ ≥ U

√
log(U/σ), there exits positive

constants L and C depending only on A and v such that for all t satisfying

C
√
nσ

√
log

U

σ
≤ t ≤ C

nσ2

U
,

we have

P

{∥∥∥∥∥
n∑

i=1

f(ξi)

∥∥∥∥∥
F

> t

}
≤ L exp

{
−φ(L,C)t2

nσ2

}
,

where φ(L,C) := log(1 + C/(4L))/(LC).
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Table 1: Bias and standard deviation of β̂(τ). Location shift model.

ϵit
i.i.d.∼ N(0, 1) ϵit

i.i.d.∼ χ2
3

n/T 5 10 50 5 10 50

τ = 0.25 25 0.002 -0.000 0.000 0.004 0.004 0.001

[0.056] [0.037] [0.016] [0.074] [0.048] [0.021]

50 0.000 -0.000 0.000 0.003 0.002 0.000

[0.037] [0.026] [0.011] [0.052] [0.033] [0.015]

τ = 0.50 25 0.000 -0.001 0.000 0.005 0.004 0.001

[0.050] [0.035] [0.015] [0.099] [0.072] [0.031]

50 0.000 0.000 0.000 0.002 0.002 0.000

[0.035] [0.025] [0.011] [0.069] [0.050] [0.022]

τ = 0.75 25 -0.001 -0.001 0.000 0.003 0.004 0.001

[0.056] [0.037] [0.016] [0.153] [0.106] [0.047]

50 -0.001 0.000 0.000 0.001 0.002 0.000

[0.039] [0.026] [0.011] [0.104] [0.075] [0.034]

Notes: Standard deviation in brackets. The bias is computed as E[β̂(τ) − β0(τ)].

Table 2: Bias and standard deviation of β̂(τ). Location-scale shift

model.

ϵit
i.i.d.∼ N(0, 1) ϵit

i.i.d.∼ χ2
3

n/T 5 10 50 5 10 50

τ = 0.25 25 0.028 0.013 0.002 0.021 0.008 0.001

[0.118] [0.080] [0.035] [0.159] [0.105] [0.046]

50 0.027 0.012 0.002 0.013 0.004 -0.000

[0.083] [0.056] [0.025] [0.114] [0.074] [0.032]

τ = 0.50 25 0.000 0.001 -0.000 -0.018 -0.008 -0.002

[0.107] [0.075] [0.032] [0.214] [0.156] [0.068]

50 0.001 -0.000 -0.000 -0.029 -0.011 -0.003

[0.076] [0.052] [0.023] [0.153] [0.108] [0.047]

τ = 0.75 25 -0.027 -0.013 -0.003 -0.102 -0.052 -0.010

[0.118] [0.080] [0.035] [0.328] [0.233] [0.104]

50 -0.026 -0.014 -0.003 -0.111 -0.056 -0.011

[0.084] [0.056] [0.025] [0.231] [0.164] [0.074]

Notes: Standard deviation in brackets. The bias is computed as E[β̂(τ) − β0(τ)].
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Table 3: Rejection rate and length. Location shift model.

Cross-sectional Temporal Cross-S.&Temp.

ϵit
i.i.d.∼ N(0, 1)

n / T 5 10 50 5 10 50 5 10 50

τ = 0.25 25 0.128 0.144 0.148 0.098 0.054 0.072 0.016 0.008 0.020

[0.182] [0.116] [0.049] [0.183] [0.127] [0.055] [0.250] [0.165] [0.071]

50 0.100 0.170 0.110 0.072 0.088 0.066 0.022 0.008 0.012

[0.127] [0.081] [0.036] [0.125] [0.089] [0.039] [0.172] [0.116] [0.051]

τ = 0.50 25 0.116 0.138 0.130 0.074 0.050 0.066 0.004 0.018 0.012

[0.160] [0.111] [0.046] [0.181] [0.126] [0.051] [0.244] [0.162] [0.067]

50 0.090 0.132 0.136 0.058 0.054 0.052 0.022 0.006 0.010

[0.113] [0.078] [0.033] [0.124] [0.089] [0.036] [0.168] [0.113] [0.048]

τ = 0.75 25 0.158 0.126 0.112 0.084 0.080 0.060 0.012 0.016 0.014

[0.180] [0.116] [0.050] [0.182] [0.127] [0.055] [0.249] [0.166] [0.072]

50 0.098 0.132 0.104 0.072 0.058 0.042 0.028 0.018 0.016

[0.126] [0.082] [0.036] [0.126] [0.090] [0.039] [0.174] [0.118] [0.051]

ϵit
i.i.d.∼ χ2

3

τ = 0.25 25 0.162 0.116 0.120 0.076 0.088 0.056 0.020 0.014 0.016

[0.244] [0.156] [0.066] [0.286] [0.171] [0.072] [0.391] [0.231] [0.095]

50 0.104 0.134 0.114 0.060 0.066 0.078 0.020 0.010 0.006

[0.167] [0.107] [0.047] [0.192] [0.119] [0.050] [0.266] [0.156] [0.067]

τ = 0.50 25 0.094 0.124 0.114 0.062 0.054 0.046 0.014 0.014 0.016

[0.325] [0.227] [0.099] [0.348] [0.245] [0.106] [0.470] [0.320] [0.140]

50 0.120 0.108 0.126 0.060 0.032 0.060 0.020 0.014 0.014

[0.224] [0.162] [0.070] [0.236] [0.172] [0.075] [0.317] [0.223] [0.100]

τ = 0.75 25 0.110 0.106 0.114 0.082 0.062 0.076 0.014 0.014 0.016

[0.489] [0.335] [0.151] [0.428] [0.335] [0.165] [0.595] [0.447] [0.214]

50 0.098 0.122 0.126 0.090 0.060 0.092 0.028 0.016 0.018

[0.347] [0.233] [0.109] [0.294] [0.234] [0.116] [0.403] [0.309] [.155]

Notes: Length of the confidence interval in brackets. The nominal size is 0.1.
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Table 4: Rejection rate and length. Location-scale shift model.

Cross-sectional Temporal Cross-S.&Temp.

ϵit
i.i.d.∼ N(0, 1)

n / T 5 10 50 5 10 50 5 10 50

τ = 0.25 25 0.174 0.146 0.144 0.464 0.256 0.128 0.200 0.120 0.032

[0.185] [0.119] [0.048] [0.167] [0.119] [0.051] [0.244] [0.168] [0.069]

50 0.212 0.198 0.120 0.612 0.376 0.144 0.360 0.184 0.040

[0.133] [0.084] [0.034] [0.120] [0.084] [0.036] [0.171] [0.119] [0.049]

τ = 0.50 25 0.136 0.126 0.120 0.114 0.084 0.094 0.020 0.022 0.018

[0.163] [0.108] [0.044] [0.173] [0.119] [0.047] [0.241] [0.161] [0.064]

50 0.110 0.118 0.104 0.106 0.090 0.104 0.018 0.020 0.016

[0.119] [0.077] [0.031] [0.119] [0.084] [0.033] [0.171] [0.115] [0.046]

τ = 0.75 25 0.202 0.162 0.142 0.412 0.290 0.138 0.196 0.122 0.028

[0.182] [0.117] [0.048] [0.172] [0.121] [0.051] [0.242] [0.168] [0.070]

50 0.208 0.222 0.126 0.630 0.360 0.120 0.368 0.156 0.042

[0.119] [0.077] [0.031] [0.117] [0.085] [0.036] [0.174] [0.120] [0.050]

ϵit
i.i.d.∼ χ2

3

τ = 0.25 25 0.168 0.122 0.132 0.354 0.210 0.082 0.152 0.092 0.024

[0.262] [0.166] [0.063] [0.283] [0.175] [0.069] [0.404] [0.244] [0.094]

50 0.186 0.140 0.126 0.458 0.206 0.110 0.236 0.104 0.018

[0.185] [0.116] [0.045] [0.200] [0.125] [0.048] [0.288] [0.176] [0.067]

τ = 0.50 25 0.122 0.144 0.144 0.126 0.106 0.086 0.030 0.036 0.026

[0.346] [0.224] [0.091] [0.355] [0.244] [0.098] [0.489] [0.338] [0.134]

50 0.120 0.112 0.128 0.146 0.100 0.112 0.052 0.024 0.020

[0.251] [0.162] [0.066] [0.250] [0.173] [0.069] [0.354] [0.237] [0.096]

τ = 0.75 25 0.212 0.160 0.146 0.484 0.364 0.142 0.322 0.152 0.042

[0.521] [0.342] [0.141] [0.419] [0.331] [0.153] [0.598] [0.470] [0.206]

50 0.272 0.224 0.144 0.724 0.500 0.212 0.480 0.266 0.072

[0.374] [0.246] [0.102] [0.301] [0.236] [0.107] [0.433] [0.331] [0.150]

Notes: Length of the confidence interval in brackets. The nominal size is 0.1.
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