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Abstract

Generalized ridge (GR) regression for a univariate linear model was proposed simulta-
neously with ridge regression by Hoerl and Kennard (1970). In this paper, we deal with
a GR regression for a multivariate linear model, referred to as a multivariate GR (MGR)
regression. From the viewpoint of reducing the mean square error (MSE) of a predicted
value, many authors have proposed GR estimators consisting of ridge parameters opti-
mized by non-iterative methods. By expanding their optimizations of ridge parameters to
the multiple response case, we derive MGR estimators with ridge parameters optimized
by the plug-in method. We analytically compare obtained MGR estimators with existing

MGR estimators, and numerical studies are also given for illustration.
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1. Introduction

We consider a multivariate linear regression model with n observations of a p-dimensional
vector of response variables and a k-dimensional vector of regressors (for more detailed

information, see for example, Srivastava, 2002, Chapter 9; Timm, 2002, Chapter 4). Let
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Y = (y1,...,yn)’, X and € be the n x p matrix of response variables, the n x k matrix
of non-stochastic standardized explanatory variables (X’1,, = 0) of rank(X) = k (< n),
and the n x p matrix of error variables, respectively, where n is the sample size, 1,, is an
n-dimensional vector of ones and 0 is a k-dimensional vector of zeros. Suppose that the
row vectors of € are independently and identically distributed according to a distribution
with mean 0, and unknown covariance matrix 3. The matrix form of the multivariate

linear regression model is expressed as
Y=1,u +XE+E, (1.1)

where p is a p-dimensional unknown vector and = is a k X p unknown regression coefficient
matrix.
Since X is standardized, the maximum likelihood (ML) estimators under normality

or least squares (LS) estimators of p and 2 are given by y =n~'>_" | y; and

E=(X'X)'X'Y, (1.2)

~
—

respectively. For simplicity, and because E is unbiased, it is widely used in actual data
analysis, see e.g., Dien et al. (2006), Sarbu et al. (2008), Saxén and Sundell (2006),
Skagerberg, Macgregor and Kiparissides (1992), Yoshimoto, Yanagihara and Ninomiya
(2005). However, when multicollinearity occurs in X, the LS estimator of Z is not a good
estimator in the sense of having a large variance. The ridge regression for a univariate
linear model proposed by Hoerl and Kennard (1970) is one of the ways of avoiding such
problems that arise from multicollinearity. The ridge estimator is defined by adding 01}, to
X'X in the LS estimator, where 6 (> 0) is called the ridge parameter. Since estimates of
a ridge estimator depends heavily on the value of 8, optimization of # is a very important
problem. Choosing € so that the mean square error (MSE) of a predictor of Y becomes
small is a common procedure. However, an optimal value of  cannot be obtained without
an iterative computational algorithm.

However, Hoerl and Kennard (1970) also proposed a generalized ridge (GR) regres-
sion for the univariate linear model simultaneously with the ridge regression. The GR
estimator is defined not by a single ridge parameter but by multiple ridge parameters
0 = (61,...,60r), (6; >0,i=1,...,k). Even though the number of parameters has
increased, we can obtain an explicit solution for @ to the minimization problem of the

MSE of a predictor of Y. By using such closed forms for the solutions, many authors



have proposed GR estimators such that @ can be obtained by non-iterative optimization
methods (see e.g., Lawless, 1981).

It is well known that the ridge estimator is a shrinkage estimator of regression co-
efficients towards the origin. One of the advantages of GR regression is to be able to
obtain a shrinkage estimate for regression coefficients without the use of an iterative op-
timization algorithm on 6. It also has other advantages, namely, whereas ridge regression
shrinks uniformly all coefficients of the LS estimator by a single ridge parameter, for GR
regression, the amount of shrinkage is different for each explanatory variable. Thus GR
regression is more flexible than ridge regression. From this viewpoint, we deal not with
ridge regression but GR regression. We refer to GR regression for a multivariate linear
model as a multivariate GR (MGR) regression.

Methods for optimizing € in GR regression can be roughly divided into the following
types:

e We obtain the optimal @ by replacing unknown parameters with their estimators in
the explicit solution of @ to the minimization problem for the MSE of a predictor

of Y,

e We choose an optimal value of @ that makes the estimator of the MSE of a predicted

value of Y a minimum.

In this paper, the first type of method is referred to as a plug-in method. Since the second
method corresponds to a determination of @ by minimizing an information criterion (IC),
i.e., the C, criterion proposed by Mallows (1973; 1995) (for the multivariate case, see
Sparks, Coutsourides and Troskie (1983)), the second type of method is called an IC-
based method. For each of the above two types of optimization methods in GR regression,
formulas for obtaining optimal 8 in the MGR regression will be derived.

By extending the formulas for a GR estimator with optimized ridge parameters from
the plug-in method to the multivariate case, we are able to propose several MGR estima-
tors with ridge parameters optimized by a non-iterative method. As for the C), criterion
for MGR regression, Yanagihara, Nagai and Satoh (2009) considered the C, criterion
and proposed a bias-corrected C,, criterion called a modified C, (MC,) criterion. Their
MC,, criterion includes criteria proposed by Fujikoshi and Satoh (1997) and Yanagihara
and Satoh (2009) as special cases. In this paper, we consider the generalized C, (GC),)
criterion proposed by Atkinson (1980) for MGR regression, which includes C,, and MC,
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criteria omitting constant terms, as special cases. By using the GC,, criterion, we can deal
systematically with the optimization of @ when using an IC-based method. In particu-
lar, a family of MGR estimators with optimal @ obtained using the IC-based framework
contains the James-Stein estimator proposed by Kubokawa (1991).

This paper is organized in the following way: In Section 2, we extend univariate GR
regression to MGR regression. Then we illustrate a target MSE of a predictor of Y
and derive @ so that the MSE is minimized. In Section 3, we consider MGR estimators
with optimized ridge parameters. In Section 4, we discuss relationships between test
statistics and optimized values of @, and give the magnitude relation among optimized
0s. In Section 5, we compare derived MGR estimators with existing MGR, estimators by

conducting numerical studies. Technical details are provided in an Appendix.

2. MGR Estimator and Target MSE

2.1. Preliminaries
By naturally extending the GR estimator, we derive the MGR estimator for (1.1) as
o= (X'X +QOQ")'X'Y, (2.1)
where © = diag(0) and @ is the k x k orthogonal matrix which diagonalizes X'X | i.e.,
Q'X'XQ = diag(dy, ... ,dy) = D. (2.2)

Here dy, ..., d; are eigenvalues of X’X and we note that the d; are always positive. We
can check that the estimator in (2.1) corresponds to the ordinary LS estimator in (1.2)
when 6 = 0;. This means that the estimator in (2.1) includes the ordinary LS estimator.
If p =1, then the estimator in (2.1) corresponds to the GR estimator proposed by Hoerl
and Kennard (1970).

Let Yp be a predictor of Y, given by Yy = 1,y + XZp. In order to define the MSE
of Yp, we define the following discrepancy function for measuring the distance between

n X p matrices A and B:
r(A,B) = tr {(A -B)Yx'(A- B)'} . (2.3)

Since X is an unknown covariance matrix, we use the following unbiased estimator instead



of X:

1 . X
S—— (Y -1,§ - XE)(Y -1, — XE), 2.4
1 ] )'( (] ) (2.4)
where E is given in (1.2). By replacing ¥ with (2.4), we can estimate (2.3) by
#(A,B)=tr{(A-B)S'(A-B)'}. (2.5)

These two functions in (2.3) and (2.5) correspond to summations of the Mahalanobis
distances and the sample Mahalanobis distances between rows of A and B, respectively.

By using (2.3), the MSE of Yj is defined as
MSE[Ys] = E[r(E[Y], ¥)) (2.6)
In this paper, we choose € that minimizes the MSE in (2.6) as the principal optimum.

2.2. Model Transformation

By using the singular value decomposition, we can determine an n x n orthogonal

matrix P; and a (k + 1) x (k + 1) orthogonal matrix P, such that
(Xa 1n) = PlLP2/7 (27>
where L is an n X (k 4 1) matrix. Recall that X is standardized. Therefore, we have

X' X 0’“) . (2.8)

S

Since the orthogonal matrix P diagonalizes (2.8), from (2.2), P, and L can be expressed

_(Q O
Pz_(% 1’“), (2.9)

as

and

L= (dlag(\/d_la R \/d—k> \/5)7 OkJrl,nfkfl) )

where O,, ;, is an n x k matrix of zeros.

Let

Z=(z1,...,2,) =PY, T'=(v,..., %) =QE, V= (v,...,v,) =PE. (210



By using (2.7) and (2.9), Z is calculated as

—

Z=P/(X,1,) <':,) + P =P/(X,1,)P, (Q ',:) +V =1L (F,> +V.  (2.11)
p p p
Since Cov[vec(Y)] = ¥ ® I,, holds, we have

Covlvec(Z)] = (I, ® P])Cov]vec(Y)|(I, ® P) = X ® IL,.

This equation means that Cov[z;| = 3 (i = 1,

..,n). Thus, from this result and (2.11),
the following equation is obtained:
zi=4 Vnp+v, (i=k+1) , (Elv] =0,, Covly;] =3%). (2.12)
v; (z:k+2,,n)

2.3. Equivalence of MSE[Yy] and MSE[Z]

By a simple calculation, we can determine that the LS estimator of (I, )" is (L'L)"'L' Z.

Hence, the LS estimators of I and p can be expressed as I'=D'C'Z and o=z /V/n,
respectively, where C = (D2 Oy, )’

By replacing D in I' with D + ©, the MGR
estimator of I'" can be determined as

I'y=(D+0O)"'C'Z. (2.13)

Notice that P X Q = C. Hence, the relation between the MGR estimators of E and T is
as follows:

Qly = (X'X +QOQ)'QC'PY = Ey. (2.14)

Let Zg be a predictor of Z, i.e., Zg = L(f‘g,/l)’. The relation between Zg and Yy is
given by

. 0 T =
Zy = P|P,LP, ( (Cj? 1’“ ) ( ﬂ‘,’ ) =P{(X,1,) ( g
k

) = PY,. (2.15)
Notice that E[Z] = P/E[Y]. Thus MSE[Yp] can be rewritten as

MSE([Yp] = E[tr{(E[Y] — Yo)= 1 (E[Y] — Yp) P, P}}]

= E[r(E|Z), Zs)] = MSE|Zj]. (2.16)



The above equation implies that the MSE of Yy is equivalent to the MSE of Zg. Therefore
it appears that we can search for @ minimizing the MSE of Zg instead of the MSE of Y.

2.4. Principal Optimal 6

Recall that E[Z] = L(I", ) and Zg = L(T, ). Then r(E[Z], Zg) can be rewritten

r(E|Z], Ze) = tr {L (F,_ I;) 51 <F,_ F")L} . (2.17)

By elementary linear algebra,

I (r—f9> _ (diag(\/d_l,...\/d_k, \/ﬁ)> (u,_A

po— On—k-1k+1 o n
On k—1,p
Notice that
DY’y =DY*(D+©)"'C'Z
d di '
=(D+0)Y(D,0y,, e, ) 2.19
This equation implies that
DV? (r - f9> — D'’T — (D + @)—I(D, Opn_i)Z
/
v d A/ d : 2.20
( 17— d1 + 91 EYe — dk + 9k ) ( )

By using equations (2.17), (2.18) and (2.20), we can derive another expression for MSE[Zj]

as

MSE(Ze] = E[r(E[Z), Z)]

=S8 |(Vim - 1 ) (Vi 7))

=1

+nE[(p— p)2 (p — p)). (2.21)

Recall that fi = zg41/y/n. It follows from (2.12) that

nB((p—p)S (n— )] = B[(Vip — ze1)' S (Vop — 2]
= tr(Cov]zps 1|2 7Y = p. (2.22)
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Moreover, by using the results that F[z;] = /d;v; and E[z;2]] = S+diviv, (i = 1,... k),

we calculate that
p|(Vam - 8pn) = (Vaa- 700a)| = et 29

2
d; ~|— 0;
Substituting (2.22) and (2.23) into (2.21) yields

where

_ _ d; N\’ _
©(0i]di, vi) = diyi 2y — %21%+( ) (p+ dvyiE" ).

MSE([Zo] = Zso (0], vi) +

The above equation indicates that the principal optimal value of #; can be obtained
by minimizing ¢(6;|d;, ;) individually. Let 6 >0 (i = 1,... , k) be the principal optimal
value of 6;. The first partial derivative of ¢(6;|d;,~;) with respect to 6; is calculated as

9] 2d?
— o(O:ld ) = —

The above equation yields the principal optimal value of 6; as

07Xy — p).

p .
= =1,...,k). 2.24
i = s (=1 B) (224)

3. MGR Estimators with Optimized Ridge Parameters

For the case of a univariate linear model, many authors have provided formulas for GR
estimators with optimized ridge parameters. By extending their methods for optimizing
0 to the multivariate case, we derive formulas for MGR estimators with optimized ridge
parameters. Since the MGR estimator Zg in (2.1) is obtained by using the equation
E¢ = QL in (2.14), we deal with T'g in (2.13) instead of Zg. Let T' = (41,...,4%) be
the ordinary LS estimator of T, i.e., =D 'CZ. Then, we have

I'y=(D+0©)"'C'Z=(D+0©)"'DI. (3.1)

Let 6 = (91, o ,ék)’, (QAZ >0,i=1,...,k) be the value of 8 optimized by such a method,
and let ’%(éz) be the ith row vector of f‘é, which is defined by substituting 6 into 6 in T.

From equation (3.1), we can see that 4;(6;) is expressed as

. d;
}9@- :—ZAAi, ’L:L,k 3.2
W0 = = ) (32)



It is easy to obtain that 4; = 4,(0). Let
ti=28"z;, (i=1,...,k). (3.3)
Since 4; = z;/\/d;, t; in (3.3) can be rewritten as
ti=dAS "y, (i=1,...,k). (3.4)
If ; is a function of ¢;, then we can express 4;(6;) in (3.2) as
Fi(0;) = w(ts)q, (i=1,...,k),

where w(t;) is a function of ¢;. From (3.2), it is clearly the case that 0 < w(t;) < 1,
because d; > 0 and HAZ > 0. Hence w(t;) is called the weight function. By using such
a weight function, Lawless (1981) expressed several GR estimators with optimized ridge
parameters. According to his notation, we specify the individual MGR estimator with an

optimized value of @ using the weight function.
3.1. Plug-in Methods

In this subsection, we consider optimization methods based on the plug-in method.

The plug-in estimation is specified by estimators of ~;.

3.1.1. Once Plug-in Method

Since the principal optimal value of 8* = (07, ... ,0;)" is obtained as (2.24), we estimate
0F by replacing «; and ¥ with 4; and S. Hence we obtain the following optimal 8 by

single plug-in estimation:

é[l} _ b . d;p

—— = — =1,...,k). 3.5
'S/fL,S_l")A/Z tz ? (Z Y ? ) ( )
Since w(t;) = d;/(d; + 0;), the weight function corresponding to ézm is given by
wll () = 1
tit+p

We refer to this plug-in method as PI. In the case of p = 1, the above results coincide

with the result in Hoerl and Kennard (1970).

3.1.2. Multiple Plug-in Method



If multicollinearity occurs, the PI method does not yield a good estimate, since +;
depends on the ordinary LS estimator. Hence using the MGR estimator instead of #;
yields the following optimal value of 6:

alsl _ p _ e
0, = ,3/‘[571}'571,?[371]’ (s=1,2,...;i=1,... k), (3.6)

where 4% = d4;/(d; + 61), (s = 0,1,...) and ¥ = 0. Notice that 4" is equal to the

i

estimator obtained using the PI method. Equation (3.6) implies that

. 2
s g\ "
91[]:(1+Zd— oM, (s=1,2,...:i=1,...k). (3.7)
In the case of p = 1, the value of (3.6) was proposed by Hoerl and Kennard (1970),

and they used ’%[2} to estimate the regression coefficient. Hence we also use '3/2[2}

which is
obtained by using QAZ[Q]. We denote this plug-in twice method as PI;. The optimal value

of 6; derived using the PI; method is given by

A dip(t; +p)* .
2 7 7
91“ =—5 (1=1,... k),
and the weight function corresponding to 91[-2] is given by
3
wm (tz) L

T+ p(ti+p)?
3.1.3. Infinite Plug-in Method

For the case of p = 1, Hemmerle (1975) showed that the value of (3.6) converges as
s — 00. By extending the proof in Hemmerle (1975) to the multivariate case, we obtain

the following limiting value of (3.6) as s — oo:

dz{tz - 2p -V tz<tz - 4]9)} (t' > 4]9)
2p .

00 (t; < 4p)

, (i=1,... k), (3.8)

BN

(the proof is given in Appendix A.1). We refer to this infinite plug-in method as Pl...

The weight function w!*!(¢;) corresponding to éz[oo] is given by

2p

w®l(t) =< (1 — /11— 4p/ty)

(ti > 429)
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3.2. IC-based Method

Yanagihara, Nagai and Satoh (2009) proposed C,-type criteria for optimizing 6. By

omitting constant terms, their criteria are included in the following G'C,, criterion:
GCL(B|N) = ANHH(Y, Ye) 4 2ptr{ (X' X + QOQ') ' X'X}, (3.9)

where the function 7 is given by (2.5). The optimal value of §; which minimizes (3.9) is

obtained as

090 =4 oy B o, (3.10)

00 (t: < A\p)

(the proof is given in Appendix A.2). Then the weight function w(®(¢;|A) corresponding
to éEG)()\) is given by

A
1—t—?’ (t: > Ap)

w (] \) = (3.11)

3.2.1. Optimization by Minimizing the C, Criterion

Yanagihara, Nagai and Satoh (2009) proposed a crude C,, criterion whose main term
corresponds to GC,(0|1). From (3.10), él@ that minimizes the C, criterion is él@ = é,fG)( 1)
(¢ = 1,...,k). Then equation (3.11) yields the weight function of this estimator as
w9 (t;) = w'®(t;]1). This optimization method is referred to as C,.

3.2.2. Optimization by Minimizing the M C, criterion

If &€ ~ Npxp(Opp, X2 ® I,) and n — k — p — 2 > 0, Yanagihara, Nagai and Satoh
(2009) proposed the MC, criterion, whose main term corresponds to GC,(80|cy) where
cu=Mm—k—1)/(n—k—p—2). Hence HAZ(M) minimizing the M C,, criterion is given by
QAZ(M) = QAEG)(CM) (i = 1,...,k), and the weight function is w®™(t;) = w(¥(t;]cy). This

optimization method is referred to as MC,,.

3.2.8. James-Stein Estimator

Kubokawa (1991) proposed an improved James-Stein estimator which is a shrinkage

estimator when p > 3. Suppose that € ~ N,,,(O,,,, X ® I,,). Since 4; ~ N,(v;, 2/d;)
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(i=1,...,k),(n—k—1)S ~W,(n—k—1,¥)and S1L4; (i =1,... k) are satisfied,
the James-Stein estimator of =, is obtained as
& A

40 = (1 - ;p> Yi (ti > cp)

0, (ti < ch)

where ¢; = (n —k —1)(p — 2)/{p(n — k — p + 2)}. Hence, the weight function for this

)

optimization is obtained as

Cp
1-— t;, >
w® (tz) _ { £ ( CJP)

0 (ti < CJP)

Since w') (t;) = d;/(d; + éEJ)), we have

cypd;

0 = G>ap) o1 .

= t; —cp )
(&8 (ti < CJp)

From (3.10), we can see that ézm = él@ (¢;) holds. This implies that éf) is also obtained
by minimizing GC,(8|c,). This optimization method is referred to as JS.

3.3. Other Method

In the case of p = 1, there is a method for optimizing @ which does not correspond
to either a plug-in method or an IC-based method. Such a method was proposed by
Lott (1973). By extending this method to the multivariate case, we obtain the following
optimal 6:

) _ 0 (ti>2p) -
0, _{oo (t < 2p) (i=1,... k),

and the weight function w(")(t;) corresponding to é§‘°> is given by

p 1 (tz>2)
w()(ti):{o (ti§2§)

According to Lawless’ notation, this optimization method is referred to as PC (principal
component).
4. Properties of Optimized Ridge Parameters

4.1. Relationship with Hypothesis Testing
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Table 1. Relationship between hypothesis testing and shrinkage of the estimator

Method | a | Hy is rejected | Hy is accepted
PI, PI, | —— | shrinking ~; shrinking ~;
Pl 4p | shrinking 4; 0,
Cp P shrinking ~; 0,
MC, | cuyp | shrinking 4; 0,
JS c;p | shrinking 4; 0,

Sometimes, an estimate of the MGR estimator of «; becomes 0, after optimizing.
This result can be considered from the viewpoint that we estimate -, as 0, when the null

hypothesis in the following hypothesis test is accepted:
H() :'Yi:Op VS. H1 Y %Op (41)

In this subsection, we discuss the relationship between each method for optimizing € and
the hypothesis test of (4.1). Since Cov[¥;] = ¥/d;, the test statistic for (4.1) is ¢; in (3.4).
Suppose that € ~ N+, (O, p, X @ I,,). Then the test statistic ¢; is distributed according
to Hotelling’s T? distribution with p and n — k — 1 degrees of freedom when the null
hypothesis Hy is true (see e.g., Siotani, Hayakawa and Fujikoshi, 1985, p.190). For the
Pl., C,, MC,, JS and PC methods, the MGR estimators with optimized ridge parameters
of v; become 0, if the test statistic ¢; is smaller than a threshold value a, i.e., 4p, p, cup,
c;p and 2p, respectively. This indicates that the MGR estimator with optimized ridge
parameter becomes 0, when the hypothesis Hj is accepted. The significance level of the
above test is determined by the particular threshold value a. When the hypothesis Hj is
rejected, the MGR estimators with the ridge parameter optimized by Pl,, C,, MC, and
JS methods are shrinkage estimators of the ordinary LS estimator of I'. These shrinkage
ratios become small as t; increases and eventually approach 1. On the other hand, the
PC method does not shrink the ordinary LS estimator of I' even when the hypothesis H
is rejected. The PI and PI; methods do not result in the MGR estimators with optimized
ridge parameters becoming 0,. The MGR estimators with ridge parameters optimized by
the PI and PI, methods are always shrinkage estimators of the ordinary LS estimator of
I'. These shrinkage ratios also become small as ¢; increases and eventually approach 1.
The relations between hypothesis testing and estimation are shown in Table 1.

Table 2 shows the significance levels P(t; > a) with a = 4p (Ply), p (C}), eup (MCy),

13



Table 2. The significance levels in several cases

k|ln]| P, C, MC, JS PC
5 |20 [ 0.0524 0.4895 0.3515 0.8348 0.2170
50 | 0.0166 0.4231 0.3805 0.8121 0.1428
10 [ 20 [ 0.0978 05426 0.3204 0.8526 0.2832
50 | 0.0181 0.4271 0.3790 0.8135 0.1470

¢;p (JS) and 2p (PC) when (k,n) = (5,20), (5,50), (10,20), (10,50) and p = 3. From
Table 2, we can see that the significance level of Pl is the smallest among the five
methods in all cases. This means that the PI,, method most frequently makes the MGR
estimator with optimized ridge parameter into 0,. We note that the significance level of
the JS method is greater than that of the C}, method and that the significance level of
the C}, method is greater than that of the M C), method.

4.2. Magnitude Relations Among Optimized 6

In this subsection, we obtain magnitude relations among @ optimized by each method.

It follows from (3.7) that éz[s] >0, (s =1,2,...), because ézm > 0. When s = 2, we

Al2 é[l] 2A1 AlL
P = L+~ ol > gt

have

(2

Suppose that él[m] > éz[m*l] is satisfied. Then, we derive

~ 2 ~ 2
AlmA+1] ez[m} Hl1] ez[mil] a1l _ plm]

Consequently, by mathematical induction, we obtain the following theorem:
Theorem 1. The following relationships among the optimized @ always hold:
0<O <P <.cocg™  (i=1,... k) (4.2)
For 6 optimized by the IC-based method, we obtain the following theorem from (3.10):
Theorem 2. When \; < Ay holds, the optimized value of 0 always satisfies:
090 <090, (i=1,... k), (4.3)
with equality if and only if t; < \p.
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From theorem 2, we have

A~ /\ /\

0 <™ 4 < 6™ (=1, k),

because 1 < ¢y and ¢; < ¢y are satisfied. Notice that ¢; > 1 holds when p > {3+ (9 +
8(n —k —1)2)}/2 and ¢, < 1 holds when p < {3+ (9 +8(n — k — 1)1/2)} /2. Hence, we

have

0 <6 (p>{3++/9+8(n—k—1)}/2), PR
0 <0 (p<{34++9+8(n—k—1)}/2), = L ).

The magnitude relations with 0 optimized by the plug-in method and IC-based meth-

ods are shown as follows (the proof is given in Appendix A.3):

Theorem 3. The following relationships among the optimized values of @ hold:

{

with equality if and only if t; < Ap.

1

/‘\

) (when A > 1),

<4 .
—1,... k), 44
) < (when 0 < XA < 1), =1, ) (4.4)

[
Z(G()\

D> D>

~

It follows from éf” (1) = 950) and theorem 3 that
<O < =1 k),
with equality if and only if t; < p.
4.3. Magnitude Relations Among Weight Functions

The shrinkage ratio of each method corresponds to the weight function w(t;). A
method with smaller w(t;) shrinks 4; to a greater extent. When w(¢;) is nearly equal to
one, the method shrinks 4; hardly at all. Figure 1 shows the weight functions associated
with each method when (k,n) = (5,20), (5,50), (10,20), (10,50) and p = 3. From these
figures, we can see that the weight function of MC,, is always smaller than those of PI,
PI,, C, and JS. Thus the M), method always shrinks 4; to a greater extent than do the
PI, PI,, C, and JS methods. The weight functions of PI; and C), are always smaller than
that of PI. The weight function of Pl is always smaller than those of C,, PI, PI, and
PC.

The above magnitude relations among the weight functions are satisfied only when

(k,n) = (5,20), (5,50), (10,20), (10,50) and p = 3. Notice that the weight function
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Figure 1. Shrinkage ratio (value of weight function) for each optimization method
in several cases.

w(t) = d;/(d; + 6;).

functions by using theorems 1, 2 and 3. General magnitude relations among the weight

Hence, we can obtain the magnitude relations among the weight

functions are given by the following theorem:

Theorem 4. The following relationships among the weight functions hold:

[oo]( < wl? () < wll(t),

{ w(t <w(c)(t) (p<{3++/9+8(n—k—1)}/2),
D) <w(t) (p={3+/9+8(n—k—1)}/2),
(t) < ’w[”(f)

| AN

wll(r) <

Notice that these relationships among the methods correspond to the relationships

among the significance levels of the various methods.
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5. Numerical Study

In this section, we conduct numerical studies to compare MSEs of predictors of Y
consisting of the MGR estimators with optimized ridge parameters. Let R, and A,(p)
be ¢ x ¢ matrices defined by

1 p p2 P pq_l

10 1 p e pq_2

R, =diag(1,...,q), A,lp) = p? P 1 pi?
pq.—l pq.—2 pq'—3 .. 1

The explanatory matrix X was generated from X = WW¥'/2 where ¥ = Ry Ay (p.) Ry
and W is an n x k matrix whose elements were generated independently from the uniform
distribution on (—1,1). The k& x p unknown regression coefficient matrix = was defined

by 2 = 0 FE,, where ¢ is constant, and F' and Z are defined as
In OH 10—k
F = : ,
(Ok—f{ Ok—n,lO—m)

0.8501 —0.2753 —0.3193 0.2754 0.2693 —0.0676 0.2239 —0.0352 0.3240 —0.3747
Eo=10.6571 —0.2432 —0.2926 0.2608 0.2164 —0.0663 0.2197 —0.0346 0.3199 —0.3727

0.2159 —0.1187 —0.1671 0.1766 0.2066 —0.0561 0.1880 —0.0305 0.2868 —0.3554
Here 0 controls the scale of the regression coefficient matrix and F' controls the number of
non-zero regression coefficients via x (dimension of the true model). Values of elements of
Eo, which is an essential regression coefficient matrix, are the same as in Lawless (1981).
Simulated data values Y were generated by N, »3(XE, X ® I,,) repeatedly under several
selections of n, k, K, 6, p, and p,, where 3 = R3A3(p,)R3 and the number of repetition
was 10,000. At each repetition, we evaluated r( X E, Yé), where Yé =1,y + Xéé which
is the predicted value of Y obtained from each method. The average of r( X E, Ye) across
10, 000 repetition was regarded as the MSE of Yé. In the simulation, a standardized X
was used for estimating regression coefficients.

Tables 3, 4, 5 and 6 depict MSE[Yé]/{i%(k + 1)} x 100 in the case of (k,n) = (5, 20),
(5,50), (10,20) and (10, 50), respectively, where 3(k + 1) is the MSE of a predictor of Y
derived by considering the LS estimator of Z. We observe that the method can improve
the LS estimation when values in the table do not exceed 100. In each table, the average

~

of MSE[Y}]/{3(k + 1)} x 100 across all cases is also depicted in the bottom line of the
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table. From the tables, we can see that all methods improve the ordinary LS method in
almost all cases. The PI, method improved on the ordinary LS method more than the PI
method in almost all cases when n = 20. When & is small, it is necessary to shrink the
LS estimator to a greater extent. On the other hand, it is not necessary to shrink the LS
estimator when k is large. Thus PI,, works well when x is small but does not work well
when k is large since k controls the number of non-zero elements in the true regression
coefficient matrix E and PI,, has the most shrinkage of the LS estimators. On average,
C, was the best method in all cases if we except PI, and MC),. One of the reasons is
that the shape of weight function of C), is near to that of PI,, which is shown in Figure
1. Furthermore, because the M), criterion is the bias corrected C, criterion, the results
from the M), and C}, methods become similar when n is large. The PI and JS methods
improve the ordinary LS method in all cases although the ratios of improvement are not
as great. We summarize the results of the numerical study in Table 7 which shows the

best method and additionally the second best method in several cases.

Please insert Tables 3, 4, 5, 6 and 7 around here

Appendix
A.1. The Proof of Equation (3.8)

In this subsection, we show that the QAZ[-S] in (3.6) converge to éz[oo] in (3.8) as s — o0

by extending the technique in Hemmerle (1975).
[s]

Theorem 1 shows that {él[s}} is a monotonic increasing sequence. If 6’1 is bounded

[s]

t; > 4p is satisfied, where ¢; is given by (3.3) or (3.4). Recall that él[-” = d;p/t;, where d; is
an eigenvalue of X'X, which is defined by (2.2). Thus, we have él[-l} <d;/4 when t; > 4p

above, 0 surely converges. Hence, firstly, we show that él[-s] is bounded above when

holds. By using this bound of éz[l] and (3.7), the following inequality can be derived:
. 2
. d 9[371]
<214+ 2 Al

with equality if and only if ¢; = 4p. From (A.1) and the bound of s

7 )

an inequality for
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él[-s] with s = 2 is obtained as

2 _ di AN 1\ 5\
. <—Z 1 ¢ <—Z 1 — = Uy — .
G R _4<+4) <8>, (A2)

with equality if and only if t; = 4p. Suppose that the following inequality holds:

. 3 \?
i < g, (1 - 23+1> . (A3)

Equation (A.2) states that (A.3) holds when s = 2. By using (A.1), we have the following
inequality when (A.3) holds:

2Y) 2 2
Als+1) A 3 B 3 18
0 < 4 {1 + (1 - 23+1) } = d; (1 s+l + 4s+2 ) (A.4)

On the other hand, for any positive integer s, we have

3 3 18 3 18 3 3
L= 2s+2 B (1 B 25+1 + 4s+2> - 25+2 B 4s+2 - 25+2 (1 o 25+1) Z 0’ (A5>

with equality if and only if s — oco. From (A.4), it is easy to see that 1—3/25T!1+18/4572 >

0 always holds. Moreover, we can see that 1 — 3/2°72 > ( is satisfied for any positive

integer s. These results together with (A.5) imply that

3\ 3 18’
(1 o 25+2) = (1 ©9stl + 4s+2> ) (A.6)
with equality if and only if s — co. Combining (A.4) and (A.6) yields

gl < g (13 2
i — 5+2 :

Consequently, by mathematical induction, it follows that the inequality (A.3) holds for
s > 2. The equality of (A.3) holds if and only if (¢; = 4p, s = 2) or (¢; = 4p, s — ). Since

{éz[s]} is a monotonic increasing sequence, an upper bound of él[s} is obtained by letting s
to oo on the right hand side of (A.3). Notice that lim, (1 — 3/25"') = 1. Therefore,
we can see that éz[»s] < d; is always satisfied for any integer s when t; > 4p holds. The
equality of the bound holds if and only if ¢; = 4p and s — oo.

Next, we assume that HAZ[»S] converges to some value, i.e., limg . él[s] = a; < 0o. Then,

from (3.7), we can see that a; satisfies the following equation:

2
a; d;p

i =14+ — .
a ( +di> ‘.
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By solving the above quadratic equation for a;, we have
a; = dsz(t1> or deL(t’L>7 (A7>

where by (t;) and by, (¢;) are functions of ¢;, which are given by

2p ; L\l 2]? .

by(t:)

If t; < 4p holds, a; does not exist. This result is contradictory to the assumption that
a; exists. Hence, by reductio ad absurdum, we can see that él[s] does not converge when
t; < 4p holds. Recall that {él[s]} is a monotonic increasing sequence. Hence, if t; < 4p
holds, lim,_.o éz[s] = 00 is satisfied.

Finally, we study which of the two values in (A.7) is suitable for the limiting value of
QAZ[S] as s — 00. It is clearly known that by(t;) is a monotonic increasing positive-valued
function of t; when ¢; > 4p. Hence, we have d;by(t;) > d;by(4p) = d;. However, the limiting
[s]

i

value of él[s}. On the other hand, we have d;b,(t;) = d;/by(t;). Since by(t;) is a monotonic

value of 6 must not exceed d;. Therefore, d;by(t;) is not appropriate for the limiting

increasing positive-valued function of ¢; when t; > 4p, d;b.(t;) is a monotonic decreasing
positive-valued function of ¢; when ¢; > 4p. Hence, we have 0 < d;b,(t;) < d;b.(4p) = d;.
This leads us to the conclusion that d;by(¢;) is the appropriate value for the limit of éz[s].

A.2. The Proof of Equation (3.10)

From (2.2), the second part of GC,(6|)) in (3.9) can be rewritten as

k
d-
r{(X'X +QOQ) 'X'X} =t{(D+©)'D} =) ——. (A.8)
—~ d; + 0,
Moreover, from (2.10) and (2.15), the first part of GC,(0|\) can be rewritten as
Y, Vo) =t {(Y ~ Yo)S7(Y — o)}
—tr {Pl(Z — Ze)S7N(Z - Zg)’P{} = 7(Z, Z). (A.9)
By using (2.15) and (2.18), we have
£ D'/’T,
Zo —L( 6 > = vai | (A.10)
H On—k—l,p
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Notice that 1 = zy+1/v/n and z; —{d;/(d;+0;) } z; = {0;/(d;+0;) } z; . Substituting (2.19)
and (A.10) into (A.9) yields

2 n
= (d.ie.) h+ ) Sz, (A.11)

i=1 i=k+2
where t; is given by (3.3) or (3.4). Let Y and Z be Yy and Zg with 6 = 0y, respectively.

Then, from similar calculations with (A.9) and (A.10), we derive

Y -Y)(Y-Y)=(Z-2Z) Z ziz
i=k+2
This equation implies that (n—k—1)8 = Y77 , , z;2{. Consequently, by using this result,
(A.8), (A.9) and (A.11), GC,(0|\) can be rewritten as

k
Cp(B1X) =D f(Oild;, ti, A) + A 'p(n — k — 1), (A.12)

=1

where the function f(6;|d;,t;, \) is defined by

0; 2 2pd;
NPT S Y LA T T
f(0;|di, ti, N) = A ( i 9@') t; + e (1=1,...,k).

Hence in order to obtain (9)(\) = (égG)()\), . ,élie)()\))’, (égc)()\) >0, 1=1,...,k)
making GC,(0|\) a minimum, we can see that it is necessary only to minimize f(6;|d;, t;, \)
individually. The first partial derivative of f(6;|d;,t;, \) with respect to 6; is calculated as
0 2d;
0;]di 1, \) = ——___£0,(t; — Ap) — Apd;)
SOt ) = S (1 = ) = )
This derivative indicates that f(6;|d;,t;, \) becomes a minimum at 6; = A\pd;/(t; — \p)

when ¢; — Ap > 0 holds. On the other hand, f(6;|d;,t;,\) is a monotonic decreasing

function of §; when t; — Ap < 0 holds. Thus, f(6;|d;,t;, A) converges to the minimum value
as 0; — oo when t; — Ap < 0 holds. Consequently, from the above two results, Equation
(3.10) follows.

A.3. The Proof of Equation (4.4)

Firstly, we show the proof of the first inequality of Equation (4.4). It is easy to obtain
QAZ(G)(/\) > ézm when t; < Ap, because éEG)()\) = 00 and QAZM < oo are satisfied when ¢; < Ap.
When t; > Ap, from (3.5) and (3.10), we can see that

Dt; + /\p}
ti(ti — Ap)

~

5O (n) — i — dipA(A =
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Since t; > 0 holds, the right side of the above equation becomes positive when A > 1.
Thus, HAZ(G)()\) > ézm holds when A > 1.

Next, we show the proof of the second inequality of Equation (4.4). Suppose that
0 < A < 1. It is easy to obtain HAEG)()\) < HAZ[OO] when t; < 4p, because éz[oo] = oo and
éz@(k) < oo are satisfied when ¢; < 4p. Notice that

29 \2 4 43
-2y (1-2)= 2
ti—p t; ti(t; — p)?

The above equation and the inequality ¢; — p < ¢; — Ap imply that

4 29 \? 2 2
1- P« P <(1--2 . (A.13)
t; ti—p ti— Ap

Since t; > 4p is assumed, we obtain 1 — 2p/(t; — p) = (t; — 3p)/(t; — p) > 0. Hence,

1 —2p/(t; — Ap) > 0 can also be derived. It follows from this result and the inequality

(A.13) that
1 2
’/1_?p<1_t-—pAp' (A.14)

By multiplying both sides of (A.14) by t; after calculation, we have

ti ti —\/ti(ti — 4p)
. A.15
ti — A\p < 2p ( )
Subtracting 1 from both sides of (A.15) yields
t; — 2p — /Lt — 4
b L i = 4p) (A.16)
ti— A\p 2p

Thus, when t; > 4p, lG (A) < é[oo] can be derived by multiplying both sides of (A.16) by
d;. Consequently, 6\ (N < é is obtained when 0 < A < 1.
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Table 3. MSE of each method (k =5, n = 20)

Ii‘ 0 ‘pz Pe ‘ PI Pl, Pl Cy MC, JS PC

0100102 02| 51.02 36.75 23.35 37.66 2998 66.47 53.99
0.2 09| 51.29 36.92 23.50 37.82 30.11 66.85 54.21
09 0.2] 50.64 3641 23.27 3728 29.70 65.99 53.18
0.9 091 50.95 36.72 23.50 37.59 29.99 66.34 53.59

3110102 02| 6960 66.19 8201 6871 67.77 &81.22 93.44
02 09]79.42 79.77 109.0 81.22 8349 87.54 101.1
0.9 0.2] 5856 4894 45.28 51.02 45.73 73.00 72.41
09 09| 6435 57.85 63.00 60.45 57.07 7T7.71 84.58

3.0102 02]89.05 89.89 108.6 90.26 93.18 93.06 100.5
0.2 091]92.68 9324 1042 9325 9548 94.93 98.44
09 02| 7746 76.09 99.57 T76.83 78.36 85.33 92.64
0.9 09| 8169 80.25 94.04 80.33 81.74 87.42 89.63

5110102 02| 7468 70.79 80.31 71.42 70.88 83.18 84.22
0.2 09| 80.80 7870 86.50 80.01 80.10 8791 94.47
09 02| 71.99 68.85 8512 70.62 70.18 82.35 91.05
09 09| 79.14 7836 9796 79.93 81.19 &7.13 98.65

3.0102 02| 8742 87.39 103.8 88.22 &89.79 92.20 99.84
0.2 09]93.40 9428 106.5 94,53 96.61 95.81 100.7
09 0.2]88.17 88.64 1058 88.89 91.35 91.99 98.01
0.9 091 90.66 90.52 100.1 90.49 92.20 93.24 95.37

Average \ 74.15  69.83 7827 70.83 69.74 8298 85.50
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Table 4. MSE of each method (k =5, n = 50)

Ii‘ ) ‘pm Pe ‘ PI Pl Pl ¢, MC, IJS pPC

0]00]02 02| 4737 3220 19.24 32.73 3049 62.86 46.09
0.2 09| 4747 3231 19.45 32.82 30.58 6298 46.17
0.9 02| 4727 3216 19.48 32.66 30.44 62.69 45.88
0.9 09| 4759 3232 19.31 3287 30.61 63.22 46.27

3110]02 02]78.14 7868 109.8 80.03 80.52 8594 99.61
0.2 09| 8300 82.83 103.6 8291 83.31 88.22 9253
09 02| 6416 58.78 7487 60.64 60.06 76.19 82.61
09 09| 7081 67.76 92.12 68.71 68.57 80.47 85.60

3.0102 02} 90.80 90.72 102.7 90.66 91.01 93.32 95.28
0.2 091 90.69 89.63 94.62 89.56 89.63 93.17 92.65
09 02| 7864 7596 8384 77.25 7T7.11 8592 91.76
0.9 09| 8.30 85.26 105.6 86.02 86.36 90.28 98.39

511002 02| 8177 7953 86.84 79.53 79.54 87.14 86.77
0.2 09| 813 79.77 78.51 80.45 80.13 88.44 88.24
09 02| 7712 76.35 101.3 77.64 77.92 84.94 95.79
0.9 09| 8219 82.01 104.7 82.27 82.64 87.69 92.54

3.0102 02]93.49 9582 116.0 97.17 97.78 96.48 109.8
0.2 09]95.54 9889 124.6 99.90 100.8 97.72 111.8
09 0.2] 89.18 89.02 101.9 89.53 89.83 92.56 97.96
0.9 09] 9122 90.66 98.21 90.69 90.83 93.76 94.66

Average 76.24 72.53 8283 73.20 7291 83.70 85.02
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Table 5. MSE of each method (k = 10, n = 20)

K ‘ 4] ‘ P Pe ‘ PI PI, Pl ¢, MC, IS PC
0 100{0.2 0.2] 50.13 35.55 21.25 36.76 22.78 66.67 56.01
0.2 09] 4990 3531 21.07 36.50 22.60 66.42 55.58

0.9 0.2] 49.81 35.21 20.89 36.41 2247 66.36 55.65

0.9 0.9 ] 50.03 3555 21.43 36.73 22.88 66.46 55.60
3110702 02] 60.22 51.35 51.62 53.38 45.64 74.74 76.44
0.2 09| 65.44 59.34 6736 61.21 57.57 77.98 83.03

0.9 0.2] 54.75 43.17 3528 45.03 33.81 70.44 66.84

0.9 09| 58.66 49.00 46.45 51.11 42.13 73.71 74.16
3.0102 02| 7562 72.89 8571 7T4.42 7538 84.77 92.67
0.2 0.9 ] 8227 81.45 9552 8270 86.06 89.04 98.04

09 0.2 68.70 63.60 72.75 65.42 63.10 80.36 86.54

0.9 09| 7419 70.89 8321 7224 7292 83.72 90.46
5110102 0.2 69.66 65.33 77.04 6721 6584 81.02 88.64
0.2 09| 7557 73.35 88.38 74.92 76.73 84.70 93.74

0.9 0.2] 59.90 49.72 43.38 51.31 42.20 74.05 70.87

09 09| 6296 5449 5273 56.34 48.96 76.26 76.95
3.002 028724 8771 103.8 88.70 93.75 92.43 101.7
0.2 091]91.45 93.02 110.1 93.73 100.1 94.82 104.1

0.9 02| 7244 68.56 79.17 70.17 69.18 82.49 89.04

0.9 09| 77.89 75.79 88.85 T7.34 T843 86.45 94.74

10 1.0]0.2 0.2]86.66 89.14 119.2 89.87 99.76 91.88 104.7
0.2 091]90.62 92.68 113.2 9298 101.9 94.05 103.0

0.9 02| 6746 61.17 65.16 62.82 58.86 79.17 82.27

0.9 09| 71.54 66.84 7424 68.49 66.40 82.10 87.73
3.0/102 02]96.75 9745 104.6 97.32 102.3 97.67 99.76
0.2 0.91]96.58 96.62 98.42 96.69 99.36 97.50 98.80

0.9 0.2] 8129 79.51 91.85 &80.32 82.82 87.92 93.23

0.9 09| 84.92 83.51 92.59 84.29 86.50 90.55 95.14
Average ‘ 71.88 66.72 7233 68.02 65.73 81.92 84.84
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Table 6. MSE of each method (k = 10, n = 50)

K ‘ 0 ‘ Pr - ‘ PI Pl Pl Cyp MC, JS PC
0 [00]02 0.2] 4279 26.21 12.02 26.81 24.03 59.80 41.75
0.2 09| 42.79 26.25 12.06 26.87 24.09 59.76 41.97

0.9 0.2] 4246 2597 12.01 26.56 23.79 59.32 41.22

0.9 0.9 4294 2638 12.14 27.00 24.21 59.97 41.98
3110702 02| 62.08 55.58 64.92 57.69 56.74 75.28 80.24
0.2 09| 70.87 68.33 9141 70.07 69.99 81.17 91.29

0.9 0.2] 53.87 43.98 47.69 4580 44.24 68.83 67.55

0.9 09 59.24 51.77 64.15 53.23 5220 72.52 73.74
3.010.2 028115 81.21 106.1 81.87 82.41 &87.24 96.20
0.2 0.9] 85.59 8441 9391 84.40 84.58 89.89 90.73

09 02| 6747 61.39 70.04 62.02 61.32 77.55 75.63

0.9 09| 71.75 66.40 68.81 6747 66.75 81.07 81.08

5 110]02 02]77.58 7872 112.0 80.78 &81.45 86.19 104.6
0.2 09]86.73 90.28 128.8 9096 9224 91.46 106.8

0.9 0.2 ] 5858 49.81 51.26 5H1.83 50.42 72.39 72.52

09 0.9 65.06 59.72 72.16 61.88 61.13 77.25 84.08
3.0[02 02]94.18 9545 107.2 9548 96.16 95.91 100.8
0.2 091 9596 96.06 99.77 95.92 96.27 96.81 97.64

0.9 0.2] 78.67 7830 1014 7983 &80.16 86.49 98.38

0.9 0.9 ]84.79 8590 108.0 86.85 87.50 90.07 100.7

101 1.0]0.2 0.2]89.95 90.31 100.0 90.97 9142 93.51 99.98
0.2 091]91.22 91.64 101.5 9229 9272 94.04 100.3

0.9 02| 7731 76.52 99.90 7789 78.13 85.45 95.74

0.9 09| 82.02 81.93 100.0 8&83.25 &83.61 88.72 99.19
3.010.2 02 9953 101.7 1154 1014 102.1 99.42 103.1
0.2 0.9 9997 101.9 1151 101.6 102.2 99.80 103.0

09 02]94.12 96.55 1199 96.33 97.30 95.80 102.2

0.9 091]94.89 96.17 108.2 9575 96.39 95.92 98.03
Average ‘ 7477 71.03 8199 71.89 T1.56 82.92 85.37
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Table 7. Comparison of ridge parameter optimizations
by dimension of the true model and sample size

Average
K n
Small Large Small | Large
Best Pl PI, MC, | Pl
Second | MC, | PI, MC, or C, | Pl | MC,
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