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Abstract

Generalized ridge (GR) regression for a univariate linear model was proposed simulta-

neously with ridge regression by Hoerl and Kennard (1970). In this paper, we deal with

a GR regression for a multivariate linear model, referred to as a multivariate GR (MGR)

regression. From the viewpoint of reducing the mean square error (MSE) of a predicted

value, many authors have proposed GR estimators consisting of ridge parameters opti-

mized by non-iterative methods. By expanding their optimizations of ridge parameters to

the multiple response case, we derive MGR estimators with ridge parameters optimized

by the plug-in method. We analytically compare obtained MGR estimators with existing

MGR estimators, and numerical studies are also given for illustration.
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1. Introduction

We consider a multivariate linear regression model with n observations of a p-dimensional

vector of response variables and a k-dimensional vector of regressors (for more detailed

information, see for example, Srivastava, 2002, Chapter 9; Timm, 2002, Chapter 4). Let
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Y = (y1, . . . , yn)′, X and E be the n × p matrix of response variables, the n × k matrix

of non-stochastic standardized explanatory variables (X ′1n = 0k) of rank(X) = k (< n),

and the n × p matrix of error variables, respectively, where n is the sample size, 1n is an

n-dimensional vector of ones and 0k is a k-dimensional vector of zeros. Suppose that the

row vectors of E are independently and identically distributed according to a distribution

with mean 0p and unknown covariance matrix Σ. The matrix form of the multivariate

linear regression model is expressed as

Y = 1nµ
′ + XΞ + E , (1.1)

where µ is a p-dimensional unknown vector and Ξ is a k×p unknown regression coefficient

matrix.

Since X is standardized, the maximum likelihood (ML) estimators under normality

or least squares (LS) estimators of µ and Ξ are given by ȳ = n−1
∑n

i=1 yi and

Ξ̂ = (X ′X)−1X ′Y , (1.2)

respectively. For simplicity, and because Ξ̂ is unbiased, it is widely used in actual data

analysis, see e.g., Dien et al. (2006), Sárbu et al. (2008), Saxén and Sundell (2006),

Skagerberg, Macgregor and Kiparissides (1992), Yoshimoto, Yanagihara and Ninomiya

(2005). However, when multicollinearity occurs in X, the LS estimator of Ξ is not a good

estimator in the sense of having a large variance. The ridge regression for a univariate

linear model proposed by Hoerl and Kennard (1970) is one of the ways of avoiding such

problems that arise from multicollinearity. The ridge estimator is defined by adding θIk to

X ′X in the LS estimator, where θ (≥ 0) is called the ridge parameter. Since estimates of

a ridge estimator depends heavily on the value of θ, optimization of θ is a very important

problem. Choosing θ so that the mean square error (MSE) of a predictor of Y becomes

small is a common procedure. However, an optimal value of θ cannot be obtained without

an iterative computational algorithm.

However, Hoerl and Kennard (1970) also proposed a generalized ridge (GR) regres-

sion for the univariate linear model simultaneously with the ridge regression. The GR

estimator is defined not by a single ridge parameter but by multiple ridge parameters

θ = (θ1, . . . , θk)
′, (θi ≥ 0, i = 1, . . . , k). Even though the number of parameters has

increased, we can obtain an explicit solution for θ to the minimization problem of the

MSE of a predictor of Y . By using such closed forms for the solutions, many authors
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have proposed GR estimators such that θ can be obtained by non-iterative optimization

methods (see e.g., Lawless, 1981).

It is well known that the ridge estimator is a shrinkage estimator of regression co-

efficients towards the origin. One of the advantages of GR regression is to be able to

obtain a shrinkage estimate for regression coefficients without the use of an iterative op-

timization algorithm on θ. It also has other advantages, namely, whereas ridge regression

shrinks uniformly all coefficients of the LS estimator by a single ridge parameter, for GR

regression, the amount of shrinkage is different for each explanatory variable. Thus GR

regression is more flexible than ridge regression. From this viewpoint, we deal not with

ridge regression but GR regression. We refer to GR regression for a multivariate linear

model as a multivariate GR (MGR) regression.

Methods for optimizing θ in GR regression can be roughly divided into the following

types:

• We obtain the optimal θ by replacing unknown parameters with their estimators in

the explicit solution of θ to the minimization problem for the MSE of a predictor

of Y ;

• We choose an optimal value of θ that makes the estimator of the MSE of a predicted

value of Y a minimum.

In this paper, the first type of method is referred to as a plug-in method. Since the second

method corresponds to a determination of θ by minimizing an information criterion (IC),

i.e., the Cp criterion proposed by Mallows (1973; 1995) (for the multivariate case, see

Sparks, Coutsourides and Troskie (1983)), the second type of method is called an IC-

based method. For each of the above two types of optimization methods in GR regression,

formulas for obtaining optimal θ in the MGR regression will be derived.

By extending the formulas for a GR estimator with optimized ridge parameters from

the plug-in method to the multivariate case, we are able to propose several MGR estima-

tors with ridge parameters optimized by a non-iterative method. As for the Cp criterion

for MGR regression, Yanagihara, Nagai and Satoh (2009) considered the Cp criterion

and proposed a bias-corrected Cp criterion called a modified Cp (MCp) criterion. Their

MCp criterion includes criteria proposed by Fujikoshi and Satoh (1997) and Yanagihara

and Satoh (2009) as special cases. In this paper, we consider the generalized Cp (GCp)

criterion proposed by Atkinson (1980) for MGR regression, which includes Cp and MCp
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criteria omitting constant terms, as special cases. By using the GCp criterion, we can deal

systematically with the optimization of θ when using an IC-based method. In particu-

lar, a family of MGR estimators with optimal θ obtained using the IC-based framework

contains the James-Stein estimator proposed by Kubokawa (1991).

This paper is organized in the following way: In Section 2, we extend univariate GR

regression to MGR regression. Then we illustrate a target MSE of a predictor of Y

and derive θ so that the MSE is minimized. In Section 3, we consider MGR estimators

with optimized ridge parameters. In Section 4, we discuss relationships between test

statistics and optimized values of θ, and give the magnitude relation among optimized

θs. In Section 5, we compare derived MGR estimators with existing MGR estimators by

conducting numerical studies. Technical details are provided in an Appendix.

2. MGR Estimator and Target MSE

2.1. Preliminaries

By naturally extending the GR estimator, we derive the MGR estimator for (1.1) as

Ξ̂θ = (X ′X + QΘQ′)−1X ′Y , (2.1)

where Θ = diag(θ) and Q is the k × k orthogonal matrix which diagonalizes X ′X, i.e.,

Q′X ′XQ = diag(d1, . . . , dk) = D. (2.2)

Here d1, . . . , dk are eigenvalues of X ′X and we note that the di are always positive. We

can check that the estimator in (2.1) corresponds to the ordinary LS estimator in (1.2)

when θ = 0k. This means that the estimator in (2.1) includes the ordinary LS estimator.

If p = 1, then the estimator in (2.1) corresponds to the GR estimator proposed by Hoerl

and Kennard (1970).

Let Ŷθ be a predictor of Y , given by Ŷθ = 1nȳ
′ + XΞ̂θ. In order to define the MSE

of Ŷθ, we define the following discrepancy function for measuring the distance between

n × p matrices A and B:

r(A,B) = tr
{
(A − B)Σ−1 (A − B)′

}
. (2.3)

Since Σ is an unknown covariance matrix, we use the following unbiased estimator instead
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of Σ:

S =
1

n − k − 1
(Y − 1nȳ

′ − XΞ̂)′(Y − 1nȳ
′ − XΞ̂), (2.4)

where Ξ̂ is given in (1.2). By replacing Σ with (2.4), we can estimate (2.3) by

r̂(A, B) = tr
{
(A − B) S−1 (A − B)′

}
. (2.5)

These two functions in (2.3) and (2.5) correspond to summations of the Mahalanobis

distances and the sample Mahalanobis distances between rows of A and B, respectively.

By using (2.3), the MSE of Ŷθ is defined as

MSE[Ŷθ] = E[r(E[Y ], Ŷθ)]. (2.6)

In this paper, we choose θ that minimizes the MSE in (2.6) as the principal optimum.

2.2. Model Transformation

By using the singular value decomposition, we can determine an n × n orthogonal

matrix P1 and a (k + 1) × (k + 1) orthogonal matrix P2 such that

(X,1n) = P1LP ′
2, (2.7)

where L is an n × (k + 1) matrix. Recall that X is standardized. Therefore, we have

(X,1n)′(X,1n) =

(
X ′X 0k

0′
k n

)
. (2.8)

Since the orthogonal matrix P2 diagonalizes (2.8), from (2.2), P2 and L can be expressed

as

P2 =

(
Q 0k

0′
k 1

)
, (2.9)

and

L =
(
diag(

√
d1, . . . ,

√
dk,

√
n),Ok+1,n−k−1

)′
,

where On,k is an n × k matrix of zeros.

Let

Z = (z1, . . . , zn)′ = P ′
1Y , Γ = (γ1, . . . , γk)

′ = Q′Ξ, V = (ν1, . . . , νn)′ = P ′
1E . (2.10)
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By using (2.7) and (2.9), Z is calculated as

Z = P ′
1(X,1n)

(
Ξ
µ′

)
+ P ′

1E = P ′
1(X,1n)P2

(
Q′Ξ
µ′

)
+ V = L

(
Γ
µ′

)
+ V . (2.11)

Since Cov[vec(Y )] = Σ ⊗ In holds, we have

Cov[vec(Z)] = (Ip ⊗ P ′
1)Cov[vec(Y )](Ip ⊗ P1) = Σ ⊗ In.

This equation means that Cov[zi] = Σ (i = 1, . . . , n). Thus, from this result and (2.11),

the following equation is obtained:

zi =


√

diγi + νi (i = 1, . . . , k)√
nµ + νi (i = k + 1)

νi (i = k + 2, . . . , n)
, (E[νi] = 0p, Cov[νi] = Σ) . (2.12)

2.3. Equivalence of MSE[Ŷθ] and MSE[Ẑθ]

By a simple calculation, we can determine that the LS estimator of (Γ′,µ)′ is (L′L)−1L′Z.

Hence, the LS estimators of Γ and µ can be expressed as Γ̂ = D−1C ′Z and µ̂ = zk+1/
√

n,

respectively, where C = (D1/2, Ok,n−k)
′. By replacing D in Γ̂ with D + Θ, the MGR

estimator of Γ can be determined as

Γ̂θ = (D + Θ)−1C ′Z. (2.13)

Notice that P ′
1XQ = C. Hence, the relation between the MGR estimators of Ξ and Γ is

as follows:

QΓ̂θ = (X ′X + QΘQ′)−1QC ′P1Y = Ξ̂θ. (2.14)

Let Ẑθ be a predictor of Z, i.e., Ẑθ = L(Γ̂′
θ, µ̂)′. The relation between Ẑθ and Ŷθ is

given by

Ẑθ = P ′
1P1LP ′

2

(
Q 0k

0′
k 1

)(
Γ̂θ
µ̂′

)
= P ′

1(X,1n)

(
Ξ̂θ
µ̂′

)
= P ′

1Ŷθ. (2.15)

Notice that E[Z] = P ′
1E[Y ]. Thus MSE[Ŷθ] can be rewritten as

MSE[Ŷθ] = E[tr{(E[Y ] − Ŷθ)Σ
−1(E[Y ] − Ŷθ)

′P1P
′
1}]

= E[r(E[Z], Ẑθ)] = MSE[Ẑθ]. (2.16)

6



The above equation implies that the MSE of Ŷθ is equivalent to the MSE of Ẑθ. Therefore

it appears that we can search for θ minimizing the MSE of Ẑθ instead of the MSE of Ŷθ.

2.4. Principal Optimal θ

Recall that E[Z] = L(Γ′, µ)′ and Ẑθ = L(Γ̂′
θ, µ̂)′. Then r(E[Z], Ẑθ) can be rewritten

as

r(E[Z], Ẑθ) = tr

{
L

(
Γ − Γ̂θ
µ′ − µ̂′

)
Σ−1

(
Γ − Γ̂θ
µ′ − µ̂′

)′

L′

}
. (2.17)

By elementary linear algebra,

L

(
Γ − Γ̂θ
µ′ − µ̂′

)
=

(
diag(

√
d1, . . .

√
dk,

√
n)

On−k−1,k+1

)(
Γ − Γ̂θ
µ′ − µ̂′

)
=

D1/2
(
Γ − Γ̂θ

)
√

n (µ − µ̂)′

On−k−1,p

 . (2.18)

Notice that

D1/2Γ̂θ = D1/2(D + Θ)−1C ′Z

= (D + Θ)−1(D, Ok,n−k)Z =

(
d1

d1 + θ1

z1, . . . ,
dk

dk + θk

zk

)′

. (2.19)

This equation implies that

D1/2
(
Γ − Γ̂θ

)
= D1/2Γ − (D + Θ)−1(D, Ok,n−k)Z

=

(√
d1γ1 −

d1

d1 + θ1

z1, . . . ,
√

dkγk −
dk

dk + θk

zk

)′

. (2.20)

By using equations (2.17), (2.18) and (2.20), we can derive another expression for MSE[Ẑθ]

as

MSE[Ẑθ] = E[r(E[Z], Ẑθ)]

=
k∑

i=1

E

[(√
diγi −

di

di + θi

zi

)′

Σ−1

(√
diγi −

di

di + θi

zi

)]
+nE[(µ − µ̂)′Σ−1(µ − µ̂)]. (2.21)

Recall that µ̂ = zk+1/
√

n. It follows from (2.12) that

nE[(µ − µ̂)′Σ−1(µ − µ̂)] = E[(
√

nµ − zk+1)
′Σ−1(

√
nµ − zk+1)]

= tr(Cov[zk+1]Σ
−1) = p. (2.22)
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Moreover, by using the results that E[zi] =
√

diγi and E[ziz
′
i] = Σ+diγiγ

′
i (i = 1, . . . , k),

we calculate that

E

[(√
diγi −

di

di + θi

zi

)′

Σ−1

(√
diγi −

di

di + θi

zi

)]
= φ(θi|di,γi), (2.23)

where

φ(θi|di,γi) = diγ
′
iΣ

−1γi −
2d2

i

di + θi

γ ′
iΣ

−1γi +

(
di

di + θi

)2

(p + diγ
′
iΣ

−1γi).

Substituting (2.22) and (2.23) into (2.21) yields

MSE[Ẑθ] =
k∑

i=1

φ(θi|di, γi) + p.

The above equation indicates that the principal optimal value of θi can be obtained

by minimizing φ(θi|di, γi) individually. Let θ∗i ≥ 0 (i = 1, . . . , k) be the principal optimal

value of θi. The first partial derivative of φ(θi|di,γi) with respect to θi is calculated as

∂

∂ θi

φ(θi|di,γi) =
2d2

i

(di + θi)3
(θiγ

′
iΣ

−1γi − p).

The above equation yields the principal optimal value of θi as

θ∗i =
p

γ ′
iΣ

−1γi

, (i = 1, . . . , k). (2.24)

3. MGR Estimators with Optimized Ridge Parameters

For the case of a univariate linear model, many authors have provided formulas for GR

estimators with optimized ridge parameters. By extending their methods for optimizing

θ to the multivariate case, we derive formulas for MGR estimators with optimized ridge

parameters. Since the MGR estimator Ξ̂θ in (2.1) is obtained by using the equation

Ξ̂θ = QΓ̂θ in (2.14), we deal with Γ̂θ in (2.13) instead of Ξ̂θ. Let Γ̂ = (γ̂1, . . . , γ̂k)
′ be

the ordinary LS estimator of Γ, i.e., Γ̂ = D−1C ′Z. Then, we have

Γ̂θ = (D + Θ)−1C ′Z = (D + Θ)−1DΓ̂. (3.1)

Let θ̂ = (θ̂1, . . . , θ̂k)
′, (θ̂i ≥ 0, i = 1, . . . , k) be the value of θ optimized by such a method,

and let γ̂i(θ̂i) be the ith row vector of Γ̂θ̂, which is defined by substituting θ̂ into θ in Γ̂θ.

From equation (3.1), we can see that γ̂i(θ̂i) is expressed as

γ̂i(θ̂i) =
di

di + θ̂i

γ̂i, (i = 1, . . . , k). (3.2)
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It is easy to obtain that γ̂i = γ̂i(0). Let

ti = z′
iS

−1zi, (i = 1, . . . , k). (3.3)

Since γ̂i = zi/
√

di, ti in (3.3) can be rewritten as

ti = diγ̂
′
iS

−1γ̂i, (i = 1, . . . , k). (3.4)

If θ̂i is a function of ti, then we can express γ̂i(θ̂i) in (3.2) as

γ̂i(θ̂i) = w(ti)γ̂i, (i = 1, . . . , k),

where w(ti) is a function of ti. From (3.2), it is clearly the case that 0 ≤ w(ti) ≤ 1,

because di > 0 and θ̂i ≥ 0. Hence w(ti) is called the weight function. By using such

a weight function, Lawless (1981) expressed several GR estimators with optimized ridge

parameters. According to his notation, we specify the individual MGR estimator with an

optimized value of θ using the weight function.

3.1. Plug-in Methods

In this subsection, we consider optimization methods based on the plug-in method.

The plug-in estimation is specified by estimators of γi.

3.1.1. Once Plug-in Method

Since the principal optimal value of θ∗ = (θ∗1, . . . , θ∗k)
′ is obtained as (2.24), we estimate

θ∗i by replacing γi and Σ with γ̂i and S. Hence we obtain the following optimal θ by

single plug-in estimation:

θ̂
[1]
i =

p

γ̂ ′
iS

−1γ̂i

=
dip

ti
, (i = 1, . . . , k). (3.5)

Since w(ti) = di/(di + θ̂i), the weight function corresponding to θ̂
[1]
i is given by

w[1](ti) =
ti

ti + p
.

We refer to this plug-in method as PI. In the case of p = 1, the above results coincide

with the result in Hoerl and Kennard (1970).

3.1.2. Multiple Plug-in Method
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If multicollinearity occurs, the PI method does not yield a good estimate, since γ̂i

depends on the ordinary LS estimator. Hence using the MGR estimator instead of γ̂i

yields the following optimal value of θ:

θ̂
[s]
i =

p

γ̂
[s−1]′

i S−1γ̂
[s−1]
i

, (s = 1, 2, . . . ; i = 1, . . . , k), (3.6)

where γ̂
[s]
i = diγ̂i/(di + θ̂

[s]
i ), (s = 0, 1, . . . ) and θ̂

[0]
i = 0. Notice that γ̂

[1]
i is equal to the

estimator obtained using the PI method. Equation (3.6) implies that

θ̂
[s]
i =

(
1 +

θ̂
[s−1]
i

di

)2

θ̂
[1]
i , (s = 1, 2, . . . ; i = 1, . . . , k). (3.7)

In the case of p = 1, the value of (3.6) was proposed by Hoerl and Kennard (1970),

and they used γ̂
[2]
i to estimate the regression coefficient. Hence we also use γ̂

[2]
i which is

obtained by using θ̂
[2]
i . We denote this plug-in twice method as PI2. The optimal value

of θi derived using the PI2 method is given by

θ̂
[2]
i =

dip(ti + p)2

t3i
, (i = 1, . . . , k),

and the weight function corresponding to θ̂
[2]
i is given by

w[2](ti) =
t3i

t3i + p(ti + p)2
.

3.1.3. Infinite Plug-in Method

For the case of p = 1, Hemmerle (1975) showed that the value of (3.6) converges as

s → ∞. By extending the proof in Hemmerle (1975) to the multivariate case, we obtain

the following limiting value of (3.6) as s → ∞:

θ̂
[∞]
i =

 di{ti − 2p −
√

ti(ti − 4p)}
2p

(ti ≥ 4p)

∞ (ti < 4p)
, (i = 1, . . . , k), (3.8)

(the proof is given in Appendix A.1). We refer to this infinite plug-in method as PI∞.

The weight function w[∞](ti) corresponding to θ̂
[∞]
i is given by

w[∞](ti) =


2p

ti(1 −
√

1 − 4p/ti)
(ti ≥ 4p)

0 (ti < 4p)
.
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3.2. IC-based Method

Yanagihara, Nagai and Satoh (2009) proposed Cp-type criteria for optimizing θ. By

omitting constant terms, their criteria are included in the following GCp criterion:

GCp(θ|λ) = λ−1r̂(Y , Ŷθ) + 2ptr{(X ′X + QΘQ′)−1X ′X}, (3.9)

where the function r̂ is given by (2.5). The optimal value of θi which minimizes (3.9) is

obtained as

θ̂
(G)
i (λ) =


λpdi

ti − λp
(ti > λp)

∞ (ti ≤ λp)
, (i = 1, . . . , k), (3.10)

(the proof is given in Appendix A.2). Then the weight function w(G)(ti|λ) corresponding

to θ̂
(G)
i (λ) is given by

w(G)(ti|λ) =

 1 − λp

ti
(ti > λp)

0 (ti ≤ λp)
. (3.11)

3.2.1. Optimization by Minimizing the Cp Criterion

Yanagihara, Nagai and Satoh (2009) proposed a crude Cp criterion whose main term

corresponds to GCp(θ|1). From (3.10), θ̂
(C)
i that minimizes the Cp criterion is θ̂

(C)
i = θ̂

(G)
i (1)

(i = 1, . . . , k). Then equation (3.11) yields the weight function of this estimator as

w(C)(ti) = w(G)(ti|1). This optimization method is referred to as Cp.

3.2.2. Optimization by Minimizing the MCp criterion

If E ∼ Nn×p(On,p,Σ ⊗ In) and n − k − p − 2 > 0, Yanagihara, Nagai and Satoh

(2009) proposed the MCp criterion, whose main term corresponds to GCp(θ|cM) where

cM = (n − k − 1)/(n − k − p − 2). Hence θ̂
(M)
i minimizing the MCp criterion is given by

θ̂
(M)
i = θ̂

(G)
i (cM) (i = 1, . . . , k), and the weight function is w(M)(ti) = w(G)(ti|cM). This

optimization method is referred to as MCp.

3.2.3. James-Stein Estimator

Kubokawa (1991) proposed an improved James-Stein estimator which is a shrinkage

estimator when p ≥ 3. Suppose that E ∼ Nn×p(On,p,Σ ⊗ In). Since γ̂i ∼ Np(γi,Σ/di)
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(i = 1, . . . , k), (n − k − 1)S ∼ Wp(n − k − 1,Σ) and S ⊥⊥ γ̂i (i = 1, . . . , k) are satisfied,

the James-Stein estimator of γi is obtained as

γ̂
(J)
i =


(

1 − cJp

ti

)
γ̂i (ti > cJp)

0p (ti ≤ cJp)
,

where cJ = (n − k − 1)(p − 2)/{p(n − k − p + 2)}. Hence, the weight function for this

optimization is obtained as

w(J)(ti) =

{
1 − cJp

ti
(ti > cJp)

0 (ti ≤ cJp)
.

Since w(J)(ti) = di/(di + θ̂
(J)
i ), we have

θ̂
(J)
i =


cJpdi

ti − cJp
(ti > cJp)

∞ (ti ≤ cJp)
, (i = 1, . . . , k).

From (3.10), we can see that θ̂
(J)
i = θ̂

(G)
i (cJ) holds. This implies that θ̂

(J)
i is also obtained

by minimizing GCp(θ|cJ). This optimization method is referred to as JS.

3.3. Other Method

In the case of p = 1, there is a method for optimizing θ which does not correspond

to either a plug-in method or an IC-based method. Such a method was proposed by

Lott (1973). By extending this method to the multivariate case, we obtain the following

optimal θ:

θ̂
(P)
i =

{
0 (ti > 2p)
∞ (ti ≤ 2p)

, (i = 1, . . . , k),

and the weight function w(P)(ti) corresponding to θ̂
(P)
i is given by

w(P)(ti) =

{
1 (ti > 2p)
0 (ti ≤ 2p)

.

According to Lawless’ notation, this optimization method is referred to as PC (principal

component).

4. Properties of Optimized Ridge Parameters

4.1. Relationship with Hypothesis Testing

12



Table 1. Relationship between hypothesis testing and shrinkage of the estimator

Method a H0 is rejected H0 is accepted
PI, PI2 −− shrinking γ̂i shrinking γ̂i

PI∞ 4p shrinking γ̂i 0p

Cp p shrinking γ̂i 0p

MCp cMp shrinking γ̂i 0p

JS cJp shrinking γ̂i 0p

PC 2p γ̂i 0p

Sometimes, an estimate of the MGR estimator of γi becomes 0p after optimizing.

This result can be considered from the viewpoint that we estimate γi as 0p when the null

hypothesis in the following hypothesis test is accepted:

H0 : γi = 0p vs. H1 : γi ̸= 0p. (4.1)

In this subsection, we discuss the relationship between each method for optimizing θ and

the hypothesis test of (4.1). Since Cov[γ̂i] = Σ/di, the test statistic for (4.1) is ti in (3.4).

Suppose that E ∼ Nn×p(On,p,Σ ⊗ In). Then the test statistic ti is distributed according

to Hotelling’s T 2 distribution with p and n − k − 1 degrees of freedom when the null

hypothesis H0 is true (see e.g., Siotani, Hayakawa and Fujikoshi, 1985, p.190). For the

PI∞, Cp, MCp, JS and PC methods, the MGR estimators with optimized ridge parameters

of γi become 0p if the test statistic ti is smaller than a threshold value a, i.e., 4p, p, cMp,

cJp and 2p, respectively. This indicates that the MGR estimator with optimized ridge

parameter becomes 0p when the hypothesis H0 is accepted. The significance level of the

above test is determined by the particular threshold value a. When the hypothesis H0 is

rejected, the MGR estimators with the ridge parameter optimized by PI∞, Cp, MCp and

JS methods are shrinkage estimators of the ordinary LS estimator of Γ. These shrinkage

ratios become small as ti increases and eventually approach 1. On the other hand, the

PC method does not shrink the ordinary LS estimator of Γ even when the hypothesis H0

is rejected. The PI and PI2 methods do not result in the MGR estimators with optimized

ridge parameters becoming 0p. The MGR estimators with ridge parameters optimized by

the PI and PI2 methods are always shrinkage estimators of the ordinary LS estimator of

Γ. These shrinkage ratios also become small as ti increases and eventually approach 1.

The relations between hypothesis testing and estimation are shown in Table 1.

Table 2 shows the significance levels P (ti > a) with a = 4p (PI∞), p (Cp), cMp (MCp),

13



Table 2. The significance levels in several cases

k n PI∞ Cp MCp JS PC
5 20 0.0524 0.4895 0.3515 0.8348 0.2170

50 0.0166 0.4231 0.3805 0.8121 0.1428
10 20 0.0978 0.5426 0.3204 0.8526 0.2832

50 0.0181 0.4271 0.3790 0.8135 0.1470

cJp (JS) and 2p (PC) when (k, n) = (5, 20), (5, 50), (10, 20), (10, 50) and p = 3. From

Table 2, we can see that the significance level of PI∞ is the smallest among the five

methods in all cases. This means that the PI∞ method most frequently makes the MGR

estimator with optimized ridge parameter into 0p. We note that the significance level of

the JS method is greater than that of the Cp method and that the significance level of

the Cp method is greater than that of the MCp method.

4.2. Magnitude Relations Among Optimized θ

In this subsection, we obtain magnitude relations among θ optimized by each method.

It follows from (3.7) that θ̂
[s]
i > 0, (s = 1, 2, . . . ), because θ̂

[1]
i > 0. When s = 2, we

have

θ̂
[2]
i =

(
1 +

θ̂
[1]
i

di

)2

θ̂
[1]
i > θ̂

[1]
i .

Suppose that θ̂
[m]
i > θ̂

[m−1]
i is satisfied. Then, we derive

θ̂
[m+1]
i =

(
1 +

θ̂
[m]
i

di

)2

θ̂
[1]
i >

(
1 +

θ̂
[m−1]
i

di

)2

θ̂
[1]
i = θ̂

[m]
i .

Consequently, by mathematical induction, we obtain the following theorem:

Theorem 1. The following relationships among the optimized θ always hold:

0 < θ̂
[1]
i < θ̂

[2]
i < · · · < θ̂

[∞]
i , (i = 1, . . . , k). (4.2)

For θ optimized by the IC-based method, we obtain the following theorem from (3.10):

Theorem 2. When λ1 < λ2 holds, the optimized value of θ always satisfies:

θ̂
(G)
i (λ1) ≤ θ̂

(G)
i (λ2), (i = 1, . . . , k), (4.3)

with equality if and only if ti ≤ λ1p.

14



From theorem 2, we have

θ̂
(C)
i ≤ θ̂

(M)
i , θ̂

(J)
i ≤ θ̂

(M)
i , (i = 1, . . . , k),

because 1 < cM and cJ < cM are satisfied. Notice that cJ ≥ 1 holds when p ≥ {3 + (9 +

8(n − k − 1)1/2)}/2 and cJ < 1 holds when p < {3 + (9 + 8(n − k − 1)1/2)}/2. Hence, we

have {
θ̂

(C)
i ≤ θ̂

(J)
i (p ≥ {3 +

√
9 + 8(n − k − 1)}/2),

θ̂
(J)
i ≤ θ̂

(C)
i (p < {3 +

√
9 + 8(n − k − 1)}/2),

(i = 1, . . . , k).

The magnitude relations with θ̂ optimized by the plug-in method and IC-based meth-

ods are shown as follows (the proof is given in Appendix A.3):

Theorem 3. The following relationships among the optimized values of θ hold:{
θ̂

[1]
i < θ̂

(G)
i (λ), (when λ ≥ 1),

θ̂
(G)
i (λ) ≤ θ̂

[∞]
i , (when 0 < λ ≤ 1),

(i = 1, . . . , k), (4.4)

with equality if and only if ti ≤ λp.

It follows from θ̂
(G)
i (1) = θ̂

(C)
i and theorem 3 that

θ̂
[1]
i < θ̂

(C)
i ≤ θ̂

[∞]
i , (i = 1, . . . , k),

with equality if and only if ti ≤ p.

4.3. Magnitude Relations Among Weight Functions

The shrinkage ratio of each method corresponds to the weight function w(ti). A

method with smaller w(ti) shrinks γ̂i to a greater extent. When w(ti) is nearly equal to

one, the method shrinks γ̂i hardly at all. Figure 1 shows the weight functions associated

with each method when (k, n) = (5, 20), (5, 50), (10, 20), (10, 50) and p = 3. From these

figures, we can see that the weight function of MCp is always smaller than those of PI,

PI2, Cp and JS. Thus the MCp method always shrinks γ̂i to a greater extent than do the

PI, PI2, Cp and JS methods. The weight functions of PI2 and Cp are always smaller than

that of PI. The weight function of PI∞ is always smaller than those of Cp, PI, PI2 and

PC.

The above magnitude relations among the weight functions are satisfied only when

(k, n) = (5, 20), (5, 50), (10, 20), (10, 50) and p = 3. Notice that the weight function
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Figure 1. Shrinkage ratio (value of weight function) for each optimization method
in several cases.

w(t) = di/(di + θ̂i). Hence, we can obtain the magnitude relations among the weight

functions by using theorems 1, 2 and 3. General magnitude relations among the weight

functions are given by the following theorem:

Theorem 4. The following relationships among the weight functions hold:

w[∞](t) < · · · < w[2](t) < w[1](t),

w(M)(t) ≤
{

w(J)(t) ≤ w(C)(t) (p < {3 +
√

9 + 8(n − k − 1)}/2),

w(C)(t) ≤ w(J)(t) (p ≥ {3 +
√

9 + 8(n − k − 1)}/2),

w[∞](t) ≤ w(C)(t) < w[1](t).

Notice that these relationships among the methods correspond to the relationships

among the significance levels of the various methods.
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5. Numerical Study

In this section, we conduct numerical studies to compare MSEs of predictors of Y

consisting of the MGR estimators with optimized ridge parameters. Let Rq and ∆q(ρ)

be q × q matrices defined by

Rq = diag(1, . . . , q), ∆q(ρ) =


1 ρ ρ2 · · · ρq−1

ρ 1 ρ · · · ρq−2

ρ2 ρ 1 · · · ρq−3

...
...

...
. . .

...
ρq−1 ρq−2 ρq−3 · · · 1

 .

The explanatory matrix X was generated from X = WΨ1/2 where Ψ = Rk∆k(ρx)Rk

and W is an n×k matrix whose elements were generated independently from the uniform

distribution on (−1, 1). The k × p unknown regression coefficient matrix Ξ was defined

by Ξ = δFΞ0, where δ is constant, and F and Ξ are defined as

F =

(
Iκ Oκ,10−κ

Ok−κ Ok−κ,10−κ

)
,

Ξ0 =

0.8501 −0.2753 −0.3193 0.2754 0.2693 −0.0676 0.2239 −0.0352 0.3240 −0.3747
0.6571 −0.2432 −0.2926 0.2608 0.2164 −0.0663 0.2197 −0.0346 0.3199 −0.3727
0.2159 −0.1187 −0.1671 0.1766 0.2066 −0.0561 0.1880 −0.0305 0.2868 −0.3554

′

.

Here δ controls the scale of the regression coefficient matrix and F controls the number of

non-zero regression coefficients via κ (dimension of the true model). Values of elements of

Ξ0, which is an essential regression coefficient matrix, are the same as in Lawless (1981).

Simulated data values Y were generated by Nn×3(XΞ,Σ⊗ In) repeatedly under several

selections of n, k, κ, δ, ρx and ρy, where Σ = R3∆3(ρy)R3 and the number of repetition

was 10, 000. At each repetition, we evaluated r(XΞ, Ŷθ̂), where Ŷθ̂ = 1nȳ
′ + XΞ̂θ̂ which

is the predicted value of Y obtained from each method. The average of r(XΞ, Ŷθ̂) across

10, 000 repetition was regarded as the MSE of Ŷθ̂. In the simulation, a standardized X

was used for estimating regression coefficients.

Tables 3, 4, 5 and 6 depict MSE[Ŷθ̂]/{3(k + 1)} × 100 in the case of (k, n) = (5, 20),

(5, 50), (10, 20) and (10, 50), respectively, where 3(k + 1) is the MSE of a predictor of Y

derived by considering the LS estimator of Ξ. We observe that the method can improve

the LS estimation when values in the table do not exceed 100. In each table, the average

of MSE[Ŷθ̂]/{3(k + 1)} × 100 across all cases is also depicted in the bottom line of the
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table. From the tables, we can see that all methods improve the ordinary LS method in

almost all cases. The PI2 method improved on the ordinary LS method more than the PI

method in almost all cases when n = 20. When κ is small, it is necessary to shrink the

LS estimator to a greater extent. On the other hand, it is not necessary to shrink the LS

estimator when κ is large. Thus PI∞ works well when κ is small but does not work well

when κ is large since κ controls the number of non-zero elements in the true regression

coefficient matrix Ξ and PI∞ has the most shrinkage of the LS estimators. On average,

Cp was the best method in all cases if we except PI2 and MCp. One of the reasons is

that the shape of weight function of Cp is near to that of PI2, which is shown in Figure

1. Furthermore, because the MCp criterion is the bias corrected Cp criterion, the results

from the MCp and Cp methods become similar when n is large. The PI and JS methods

improve the ordinary LS method in all cases although the ratios of improvement are not

as great. We summarize the results of the numerical study in Table 7 which shows the

best method and additionally the second best method in several cases.

Please insert Tables 3, 4, 5, 6 and 7 around here

Appendix

A.1. The Proof of Equation (3.8)

In this subsection, we show that the θ̂
[s]
i in (3.6) converge to θ̂

[∞]
i in (3.8) as s → ∞

by extending the technique in Hemmerle (1975).

Theorem 1 shows that {θ̂[s]
i } is a monotonic increasing sequence. If θ̂

[s]
i is bounded

above, θ̂
[s]
i surely converges. Hence, firstly, we show that θ̂

[s]
i is bounded above when

ti ≥ 4p is satisfied, where ti is given by (3.3) or (3.4). Recall that θ̂
[1]
i = dip/ti, where di is

an eigenvalue of X ′X, which is defined by (2.2). Thus, we have θ̂
[1]
i ≤ di/4 when ti ≥ 4p

holds. By using this bound of θ̂
[1]
i and (3.7), the following inequality can be derived:

θ̂
[s]
i ≤ di

4

(
1 +

θ̂
[s−1]
i

di

)2

, (A.1)

with equality if and only if ti = 4p. From (A.1) and the bound of θ̂
[1]
i , an inequality for
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θ̂
[s]
i with s = 2 is obtained as

θ̂
[2]
i ≤ di

4

(
1 +

θ̂
[1]
i

di

)2

≤ di

4

(
1 +

1

4

)2

= di

(
5

8

)2

, (A.2)

with equality if and only if ti = 4p. Suppose that the following inequality holds:

θ̂
[s]
i ≤ di

(
1 − 3

2s+1

)2

. (A.3)

Equation (A.2) states that (A.3) holds when s = 2. By using (A.1), we have the following

inequality when (A.3) holds:

θ̂
[s+1]
i ≤ di

4

{
1 +

(
1 − 3

2s+1

)2
}2

= di

(
1 − 3

2s+1
+

18

4s+2

)2

. (A.4)

On the other hand, for any positive integer s, we have

1 − 3

2s+2
−
(

1 − 3

2s+1
+

18

4s+2

)
=

3

2s+2
− 18

4s+2
=

3

2s+2

(
1 − 3

2s+1

)
≥ 0, (A.5)

with equality if and only if s → ∞. From (A.4), it is easy to see that 1−3/2s+1+18/4s+2 >

0 always holds. Moreover, we can see that 1 − 3/2s+2 > 0 is satisfied for any positive

integer s. These results together with (A.5) imply that(
1 − 3

2s+2

)2

≥
(

1 − 3

2s+1
+

18

4s+2

)2

, (A.6)

with equality if and only if s → ∞. Combining (A.4) and (A.6) yields

θ̂
[s+1]
i ≤ di

(
1 − 3

2s+2

)2

.

Consequently, by mathematical induction, it follows that the inequality (A.3) holds for

s ≥ 2. The equality of (A.3) holds if and only if (ti = 4p, s = 2) or (ti = 4p, s → ∞). Since

{θ̂[s]
i } is a monotonic increasing sequence, an upper bound of θ̂

[s]
i is obtained by letting s

to ∞ on the right hand side of (A.3). Notice that lims→∞(1 − 3/2s+1) = 1. Therefore,

we can see that θ̂
[s]
i ≤ di is always satisfied for any integer s when ti ≥ 4p holds. The

equality of the bound holds if and only if ti = 4p and s → ∞.

Next, we assume that θ̂
[s]
i converges to some value, i.e., lims→∞ θ̂

[s]
i = ai < ∞. Then,

from (3.7), we can see that ai satisfies the following equation:

ai =

(
1 +

ai

di

)2
dip

ti
.
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By solving the above quadratic equation for ai, we have

ai = dibU(ti) or dibL(ti), (A.7)

where bU(ti) and bL(ti) are functions of ti, which are given by

bU(ti) =
ti − 2p +

√
ti(ti − 4p)

2p
, bL(ti) =

ti − 2p −
√

ti(ti − 4p)

2p
.

If ti < 4p holds, ai does not exist. This result is contradictory to the assumption that

ai exists. Hence, by reductio ad absurdum, we can see that θ̂
[s]
i does not converge when

ti < 4p holds. Recall that {θ̂[s]
i } is a monotonic increasing sequence. Hence, if ti < 4p

holds, lims→∞ θ̂
[s]
i = ∞ is satisfied.

Finally, we study which of the two values in (A.7) is suitable for the limiting value of

θ̂
[s]
i as s → ∞. It is clearly known that bU(ti) is a monotonic increasing positive-valued

function of ti when ti ≥ 4p. Hence, we have dibU(ti) ≥ dibU(4p) = di. However, the limiting

value of θ̂
[s]
i must not exceed di. Therefore, dibU(ti) is not appropriate for the limiting

value of θ̂
[s]
i . On the other hand, we have dibL(ti) = di/bU(ti). Since bU(ti) is a monotonic

increasing positive-valued function of ti when ti ≥ 4p, dibL(ti) is a monotonic decreasing

positive-valued function of ti when ti ≥ 4p. Hence, we have 0 < dibL(ti) ≤ dibL(4p) = di.

This leads us to the conclusion that dibL(ti) is the appropriate value for the limit of θ̂
[s]
i .

A.2. The Proof of Equation (3.10)

From (2.2), the second part of GCp(θ|λ) in (3.9) can be rewritten as

tr{(X ′X + QΘQ′)−1X ′X} = tr{(D + Θ)−1D} =
k∑

i=1

di

di + θi

. (A.8)

Moreover, from (2.10) and (2.15), the first part of GCp(θ|λ) can be rewritten as

r̂(Y , Ŷθ) = tr
{

(Y − Ŷθ)S
−1(Y − Ŷθ)

′
}

= tr
{

P1(Z − Ẑθ)S
−1(Z − Ẑθ)

′P ′
1

}
= r̂(Z, Ẑθ). (A.9)

By using (2.15) and (2.18), we have

Ẑθ = L

(
Γ̂θ
µ̂′

)
=

D1/2Γ̂θ√
nµ̂′

On−k−1,p

 . (A.10)

20



Notice that µ̂ = zk+1/
√

n and zi−{di/(di +θi)}zi = {θi/(di +θi)}zi . Substituting (2.19)

and (A.10) into (A.9) yields

r̂(Z, Ẑθ) =
k∑

i=1

(
θi

di + θi

)2

ti +
n∑

i=k+2

z′
iS

−1zi, (A.11)

where ti is given by (3.3) or (3.4). Let Ŷ and Ẑ be Ŷθ and Ẑθ with θ = 0k, respectively.

Then, from similar calculations with (A.9) and (A.10), we derive

(Y − Ŷ )′(Y − Ŷ ) = (Z − Ẑ)′(Z − Ẑ) =
n∑

i=k+2

ziz
′
i.

This equation implies that (n−k−1)S =
∑n

i=k+2 ziz
′
i. Consequently, by using this result,

(A.8), (A.9) and (A.11), GCp(θ|λ) can be rewritten as

GCp(θ|λ) =
k∑

i=1

f(θi|di, ti, λ) + λ−1p(n − k − 1), (A.12)

where the function f(θi|di, ti, λ) is defined by

f(θi|di, ti, λ) = λ−1

(
θi

di + θi

)2

ti +
2pdi

di + θi

, (i = 1, . . . , k).

Hence in order to obtain θ̂(G)(λ) = (θ̂
(G)
1 (λ), . . . , θ̂

(G)
k (λ))′, (θ̂

(G)
i (λ) ≥ 0, i = 1, . . . , k)

making GCp(θ|λ) a minimum, we can see that it is necessary only to minimize f(θi|di, ti, λ)

individually. The first partial derivative of f(θi|di, ti, λ) with respect to θi is calculated as

∂

∂θi

f(θi|di, ti, λ) =
2di

λ(di + θi)3
{θi(ti − λp) − λpdi} .

This derivative indicates that f(θi|di, ti, λ) becomes a minimum at θi = λpdi/(ti − λp)

when ti − λp > 0 holds. On the other hand, f(θi|di, ti, λ) is a monotonic decreasing

function of θi when ti−λp ≤ 0 holds. Thus, f(θi|di, ti, λ) converges to the minimum value

as θi → ∞ when ti − λp ≤ 0 holds. Consequently, from the above two results, Equation

(3.10) follows.

A.3. The Proof of Equation (4.4)

Firstly, we show the proof of the first inequality of Equation (4.4). It is easy to obtain

θ̂
(G)
i (λ) > θ̂

[1]
i when ti ≤ λp, because θ̂

(G)
i (λ) = ∞ and θ̂

[i]
i < ∞ are satisfied when ti ≤ λp.

When ti > λp, from (3.5) and (3.10), we can see that

θ̂
(G)
i (λ) − θ̂

[1]
i =

dip{(λ − 1)ti + λp}
ti(ti − λp)

.
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Since ti > 0 holds, the right side of the above equation becomes positive when λ ≥ 1.

Thus, θ̂
(G)
i (λ) > θ̂

[1]
i holds when λ ≥ 1.

Next, we show the proof of the second inequality of Equation (4.4). Suppose that

0 < λ ≤ 1. It is easy to obtain θ̂
(G)
i (λ) ≤ θ̂

[∞]
i when ti ≤ 4p, because θ̂

[∞]
i = ∞ and

θ̂
(G)
i (λ) ≤ ∞ are satisfied when ti ≤ 4p. Notice that(

1 − 2p

ti − p

)2

−
(

1 − 4p

ti

)
=

4p3

ti(ti − p)2
> 0.

The above equation and the inequality ti − p ≤ ti − λp imply that

1 − 4p

ti
<

(
1 − 2p

ti − p

)2

<

(
1 − 2p

ti − λp

)2

. (A.13)

Since ti ≥ 4p is assumed, we obtain 1 − 2p/(ti − p) = (ti − 3p)/(ti − p) > 0. Hence,

1 − 2p/(ti − λp) > 0 can also be derived. It follows from this result and the inequality

(A.13) that √
1 − 4p

ti
< 1 − 2p

ti − λp
. (A.14)

By multiplying both sides of (A.14) by ti after calculation, we have

ti
ti − λp

<
ti −

√
ti(ti − 4p)

2p
. (A.15)

Subtracting 1 from both sides of (A.15) yields

λp

ti − λp
<

ti − 2p −
√

ti(ti − 4p)

2p
. (A.16)

Thus, when ti > 4p, θ̂
(G)
i (λ) < θ̂

[∞]
i can be derived by multiplying both sides of (A.16) by

di. Consequently, θ̂
(G)
i (λ) ≤ θ̂

[∞]
i is obtained when 0 < λ ≤ 1.
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Table 3. MSE of each method (k = 5, n = 20)

κ δ ρx ρε PI PI2 PI∞ Cp MCp JS PC

0 0.0 0.2 0.2 51.02 36.75 23.35 37.66 29.98 66.47 53.99
0.2 0.9 51.29 36.92 23.50 37.82 30.11 66.85 54.21
0.9 0.2 50.64 36.41 23.27 37.28 29.70 65.99 53.18
0.9 0.9 50.95 36.72 23.50 37.59 29.99 66.34 53.59

3 1.0 0.2 0.2 69.60 66.19 82.01 68.71 67.77 81.22 93.44
0.2 0.9 79.42 79.77 109.0 81.22 83.49 87.54 101.1
0.9 0.2 58.56 48.94 45.28 51.02 45.73 73.00 72.41
0.9 0.9 64.35 57.85 63.00 60.45 57.07 77.71 84.58

3.0 0.2 0.2 89.05 89.89 108.6 90.26 93.18 93.06 100.5
0.2 0.9 92.68 93.24 104.2 93.25 95.48 94.93 98.44
0.9 0.2 77.46 76.09 99.57 76.83 78.36 85.33 92.64
0.9 0.9 81.69 80.25 94.04 80.33 81.74 87.42 89.63

5 1.0 0.2 0.2 74.68 70.79 80.31 71.42 70.88 83.18 84.22
0.2 0.9 80.80 78.70 86.50 80.01 80.10 87.91 94.47
0.9 0.2 71.99 68.85 85.12 70.62 70.18 82.35 91.05
0.9 0.9 79.14 78.36 97.96 79.93 81.19 87.13 98.65

3.0 0.2 0.2 87.42 87.39 103.8 88.22 89.79 92.20 99.84
0.2 0.9 93.40 94.28 106.5 94.53 96.61 95.81 100.7
0.9 0.2 88.17 88.64 105.8 88.89 91.35 91.99 98.01
0.9 0.9 90.66 90.52 100.1 90.49 92.20 93.24 95.37

Average 74.15 69.83 78.27 70.83 69.74 82.98 85.50
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Table 4. MSE of each method (k = 5, n = 50)

κ δ ρx ρε PI PI2 PI∞ Cp MCp JS PC

0 0.0 0.2 0.2 47.37 32.20 19.24 32.73 30.49 62.86 46.09
0.2 0.9 47.47 32.31 19.45 32.82 30.58 62.98 46.17
0.9 0.2 47.27 32.16 19.48 32.66 30.44 62.69 45.88
0.9 0.9 47.59 32.32 19.31 32.87 30.61 63.22 46.27

3 1.0 0.2 0.2 78.14 78.68 109.8 80.03 80.52 85.94 99.61
0.2 0.9 83.00 82.83 103.6 82.91 83.31 88.22 92.53
0.9 0.2 64.16 58.78 74.87 60.64 60.06 76.19 82.61
0.9 0.9 70.81 67.76 92.12 68.71 68.57 80.47 85.60

3.0 0.2 0.2 90.80 90.72 102.7 90.66 91.01 93.32 95.28
0.2 0.9 90.69 89.63 94.62 89.56 89.63 93.17 92.65
0.9 0.2 78.64 75.96 83.84 77.25 77.11 85.92 91.76
0.9 0.9 85.30 85.26 105.6 86.02 86.36 90.28 98.39

5 1.0 0.2 0.2 81.77 79.53 86.84 79.53 79.54 87.14 86.77
0.2 0.9 83.13 79.77 78.51 80.45 80.13 88.44 88.24
0.9 0.2 77.12 76.35 101.3 77.64 77.92 84.94 95.79
0.9 0.9 82.19 82.01 104.7 82.27 82.64 87.69 92.54

3.0 0.2 0.2 93.49 95.82 116.0 97.17 97.78 96.48 109.8
0.2 0.9 95.54 98.89 124.6 99.90 100.8 97.72 111.8
0.9 0.2 89.18 89.02 101.9 89.53 89.83 92.56 97.96
0.9 0.9 91.22 90.66 98.21 90.69 90.83 93.76 94.66

Average 76.24 72.53 82.83 73.20 72.91 83.70 85.02
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Table 5. MSE of each method (k = 10, n = 20)

κ δ ρx ρε PI PI2 PI∞ Cp MCp JS PC

0 0.0 0.2 0.2 50.13 35.55 21.25 36.76 22.78 66.67 56.01
0.2 0.9 49.90 35.31 21.07 36.50 22.60 66.42 55.58
0.9 0.2 49.81 35.21 20.89 36.41 22.47 66.36 55.65
0.9 0.9 50.03 35.55 21.43 36.73 22.88 66.46 55.60

3 1.0 0.2 0.2 60.22 51.35 51.62 53.38 45.64 74.74 76.44
0.2 0.9 65.44 59.34 67.36 61.21 57.57 77.98 83.03
0.9 0.2 54.75 43.17 35.28 45.03 33.81 70.44 66.84
0.9 0.9 58.66 49.00 46.45 51.11 42.13 73.71 74.16

3.0 0.2 0.2 75.62 72.89 85.71 74.42 75.38 84.77 92.67
0.2 0.9 82.27 81.45 95.52 82.70 86.06 89.04 98.04
0.9 0.2 68.70 63.60 72.75 65.42 63.10 80.36 86.54
0.9 0.9 74.19 70.89 83.21 72.24 72.92 83.72 90.46

5 1.0 0.2 0.2 69.66 65.33 77.04 67.21 65.84 81.02 88.64
0.2 0.9 75.57 73.35 88.38 74.92 76.73 84.70 93.74
0.9 0.2 59.90 49.72 43.38 51.31 42.20 74.05 70.87
0.9 0.9 62.96 54.49 52.73 56.34 48.96 76.26 76.95

3.0 0.2 0.2 87.24 87.71 103.8 88.70 93.75 92.43 101.7
0.2 0.9 91.45 93.02 110.1 93.73 100.1 94.82 104.1
0.9 0.2 72.44 68.56 79.17 70.17 69.18 82.49 89.04
0.9 0.9 77.89 75.79 88.85 77.34 78.43 86.45 94.74

10 1.0 0.2 0.2 86.66 89.14 119.2 89.87 99.76 91.88 104.7
0.2 0.9 90.62 92.68 113.2 92.98 101.9 94.05 103.0
0.9 0.2 67.46 61.17 65.16 62.82 58.86 79.17 82.27
0.9 0.9 71.54 66.84 74.24 68.49 66.40 82.10 87.73

3.0 0.2 0.2 96.75 97.45 104.6 97.32 102.3 97.67 99.76
0.2 0.9 96.58 96.62 98.42 96.69 99.36 97.50 98.80
0.9 0.2 81.29 79.51 91.85 80.32 82.82 87.92 93.23
0.9 0.9 84.92 83.51 92.59 84.29 86.50 90.55 95.14

Average 71.88 66.72 72.33 68.02 65.73 81.92 84.84
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Table 6. MSE of each method (k = 10, n = 50)

κ δ ρx ρε PI PI2 PI∞ Cp MCp JS PC

0 0.0 0.2 0.2 42.79 26.21 12.02 26.81 24.03 59.80 41.75
0.2 0.9 42.79 26.25 12.06 26.87 24.09 59.76 41.97
0.9 0.2 42.46 25.97 12.01 26.56 23.79 59.32 41.22
0.9 0.9 42.94 26.38 12.14 27.00 24.21 59.97 41.98

3 1.0 0.2 0.2 62.08 55.58 64.92 57.69 56.74 75.28 80.24
0.2 0.9 70.87 68.33 91.41 70.07 69.99 81.17 91.29
0.9 0.2 53.87 43.98 47.69 45.80 44.24 68.83 67.55
0.9 0.9 59.24 51.77 64.15 53.23 52.20 72.52 73.74

3.0 0.2 0.2 81.15 81.21 106.1 81.87 82.41 87.24 96.20
0.2 0.9 85.59 84.41 93.91 84.40 84.58 89.89 90.73
0.9 0.2 67.47 61.39 70.04 62.02 61.32 77.55 75.63
0.9 0.9 71.75 66.40 68.81 67.47 66.75 81.07 81.08

5 1.0 0.2 0.2 77.58 78.72 112.0 80.78 81.45 86.19 104.6
0.2 0.9 86.73 90.28 128.8 90.96 92.24 91.46 106.8
0.9 0.2 58.58 49.81 51.26 51.83 50.42 72.39 72.52
0.9 0.9 65.06 59.72 72.16 61.88 61.13 77.25 84.08

3.0 0.2 0.2 94.18 95.45 107.2 95.48 96.16 95.91 100.8
0.2 0.9 95.96 96.06 99.77 95.92 96.27 96.81 97.64
0.9 0.2 78.67 78.30 101.4 79.83 80.16 86.49 98.38
0.9 0.9 84.79 85.90 108.0 86.85 87.50 90.07 100.7

10 1.0 0.2 0.2 89.95 90.31 100.0 90.97 91.42 93.51 99.98
0.2 0.9 91.22 91.64 101.5 92.29 92.72 94.04 100.3
0.9 0.2 77.31 76.52 99.90 77.89 78.13 85.45 95.74
0.9 0.9 82.02 81.93 100.0 83.25 83.61 88.72 99.19

3.0 0.2 0.2 99.53 101.7 115.4 101.4 102.1 99.42 103.1
0.2 0.9 99.97 101.9 115.1 101.6 102.2 99.80 103.0
0.9 0.2 94.12 96.55 119.9 96.33 97.30 95.80 102.2
0.9 0.9 94.89 96.17 108.2 95.75 96.39 95.92 98.03

Average 74.77 71.03 81.99 71.89 71.56 82.92 85.37
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Table 7. Comparison of ridge parameter optimizations
by dimension of the true model and sample size

Average
κ n

Small Large Small Large
Best PI∞ PI2 MCp PI2
Second MCp PI, MCp or Cp PI2 MCp
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