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1. Introduction

In discriminant analysis, it is important to discuss probabilities of misclas-

sification in discrimination. Although the probabilities are unknown in both

of linear discriminant function (LDF) and maximum likelihood discriminant

function based on sample vectors, that is, including estimators, the asymp-

totic distributions have been found for two groups Π(g) : Np(µ
(g), Σ) for

g = 1, 2. First, as introduction in this paper, we present the settings, LDF

and its probabilities of misclassification.

Suppose that we can obtain p dimensional sample vectors:

x
(g)
j =

(
x

(g)
1j

x
(g)
2j

)
∼ Np(µ

(g), Σ) (1)

for g = 1, 2, j = 1, . . . , N
(g)
1 from Π(g) respectively, where x

(g)
`j is p` dimen-

sional partitioned vector of x
(g)
j and p = p1 + p2. Now we prepare similar

partitions of µ(g) and Σ:

µ(g) =

(
µ

(g)
1

µ
(g)
2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where µ
(g)
` denotes p` dimensional partitioned vector of µ(g) and Σ`m denotes

p` × pm partitioned matrix of Σ for ` = 1, 2, m = 1, 2. Then LDF can be

constructed as

W = (x
(1)
F − x

(2)
F )′S−1

[
x − 1

2
(x

(1)
F + x

(2)
F )

]
, (2)

where x is p dimensional sample vector arising from Π(1) or Π(2),

x
(g)
F =

(
x

(g)
1F

x
(g)
2F

)
=

1

N
(g)
1

N
(g)
1∑

j=1

(
x

(g)
1j

x
(g)
2j

)
,
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S denotes pooled sample covariance matrix with well known correction of

coefficient:

S =

(
S11 S12

S21 S22

)
=

1

n1

2∑
g=1

N
(g)
1∑

j=1

(x
(g)
j − x

(g)
F )(x

(g)
j − x

(g)
F )′,

S`m denotes p` × pm partitioned matrix of S and n1 = N
(1)
1 + N

(2)
1 − 2. They

are the maximum likelihood estimators (MLEs) of µ(g) and Σ respectively.

Then the discrimination rule for (2) is as follows: x is assigned to Π(1) if

W > c, x is assigned to Π(2) otherwise, where c is cut-off point depends on a

priori probabilities x arises from Π(1) or Π(2) and the risk of discrimination

for (2). The probabilities of misclassification can be described:

e(2|1) ≡ Pr
[
W ≤ c|x ∈ Π(1)

]
,

e(1|2) ≡ Pr
[
W > c|x ∈ Π(2)

]
= 1 − Pr

[
W ≤ c|x ∈ Π(2)

]
.

It is hard to evaluate the above probabilities exactly since LDF includes

estimates. However asymptotic distribution of W has been well known: W is

asymptotically distributed as N((−1)g−1(1/2)∆2, ∆2) under x ∈ Π(g) as N
(1)
1

and N
(2)
1 tend to infinity, where ∆2 denotes Mahalanobis squared distance

(µ(1) − µ(2))′Σ−1(µ(1) − µ(2)). Therefore asymptotic expansions have been

provided.

Okamoto (1963) (with correction, Okamoto (1968)) provided the results

up to the terms of the second order with respect to (N
(1)−1

1 , N
(2)−1

1 , n−1
1 ). The

results up to the terms of the first order with respect to (N
(1)−1

1 , N
(2)−1

1 , n−1
1 )

have following forms:

P(2|1)(v,N
(1)
1 , N

(2)
1 , ∆) ≡ Pr

[
W − 1

2
∆2

∆
≤ v|x ∈ Π(1)

]
(3)
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= Φ(v) − 1

2

[
a1

N
(1)
1 ∆2

+
a2

N
(2)
1 ∆2

+
a3

2n1

]
φ(v)

+ O(N
(1)−2

1 , N
(2)−2

1 , n−2
1 )

and Pr
[
(W + (1/2)∆2)∆−1 ≤ v|x ∈ Π(2)

]
= 1 − P(2|1)(−v,N

(2)
1 , N

(1)
1 , ∆) re-

spectively, where Φ(·) denotes cumulative distribution function, φ(·) denotes

probability density function of standard normal distribution,

a1 = v3 + (p − 3)v − p∆,

a2 = v3 + 2∆v2 + (p − 3 + ∆2)v + (p − 2)∆,

a3 = 4v3 + 4∆v2 + (6p − 6 + ∆2)v + 2(p − 1)∆.

Besides Anderson (1973) derived an asymptotic expansion of the case

that ∆2 is replaced by D2, where D2 denotes sample Mahalanobis squared

distance based on N
(1)
1 +N

(2)
1 sample vectors. Also in the discrimination based

on maximum likelihood, the result similar to Okamoto (1963) was given by

Memon and Okamoto (1971) by using asymptotic normality of discriminant

function, which is asymptotically distributed as N((−1)g∆2, 4∆2) under x ∈

Π(g) for g = 1, 2.

Especially, in both of discrimination rules with cut-off point c = 0,

Φ(−(1/2)D) is considerable as an estimator for the probabilities of misclas-

sification. Therefore McLachlan (1973) expanded the expectation of that up

to the terms of the second order:

E

[
Φ

(
−1

2
D

)]
= Φ

(
−1

2
∆

)
+ b1 + O(N

(1)−2

1 , N
(2)−2

1 , n−2
1 ), (4)

where

b1 =
1

16
φ

(
−1

2
∆

)[(
1

N
(1)
1

+
1

N
(2)
1

)
{∆ − 4

∆
(p − 1)}
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+
∆

2n1

{∆2 − 4(2p + 1)}
]
.

On the other asymptotic approximations, Lachenbruch (1968) derived an

approximation by asymptotic normality of LDF. Fujikoshi and Seo (1998)

proposed that in both of LDF and discriminant function based on maxi-

mum likelihood by expressing discriminant functions with chi-square and

noncentral chi-square random variables and making use of their asymptotic

properties.

There are two types of asymptotic approximations. Type I approx-

imations are ones under the framework such that N
(1)
1 → ∞, N

(2)
1 →

∞, N
(2)
1 /N

(1)
1 → positive const. and type II approximations are ones un-

der the framework such that N
(1)
1 → ∞, N

(2)
1 → ∞, p → ∞, n1 − p →

∞, N
(2)
1 /N

(1)
1 → positive const. In general, asymptotic expansions are re-

garded as type I approximations. Fujikoshi and Seo (1998) considered one

of type II approximations. Besides Lachenbruch (1968) can be regarded as

both of type I and type II approximation. Error bounds for them have been

reviewed in Fujikoshi, Ulyanov and Shimizu (2010).

Recently extensions of Lachenbruch (1968) and Anderson (1973) in the

case of 2-step monotone missing samples have been given. In addition to (1),

the authors assumed that N
(g)
2 = N (g) − N

(g)
1 sample vectors from Π(g) are

also obtained:

x
(g)
1j ∼ Np1(µ

(g)
1 , Σ11)

for g = 1, 2, j = N
(g)
1 + 1, . . . , N (g). Shutoh, Hyodo and Seo (2009) gave

that for Lachenbruch (1968) and unbiased estimates of ∆2 and δ2
11, where

δ2
11 = (µ

(1)
1 − µ

(2)
1 )′Σ−1

11 (µ
(1)
1 − µ

(2)
1 ). Shutoh and Seo (2010) gave that for
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Anderson (1973) by perturbation method.

In this paper, by making use of Shutoh and Seo (2010), we extend the

result of Okamoto (1963) and McLachlan (1973) up to the terms of the first

order with respect to (N
(1)−1

1 , N
(2)−1

1 , n−1
1 ) to the case of 2-step monotone

missing samples. Also we prepare relevant conditions in deriving asymptotic

expansion and nonsingularity of estimators such that

ρi ≡
ni

n
→ positive const., n1 − p1 > 0, n1 − p2 > 0,

where n = N (1) + N (2) − 2 and ni = N
(1)
i + N

(2)
i − 2 for large N

(g)
1 , N

(g)
2 (g =

1, 2, i = 1, 2). Thus we find ρ ≡ ρ1 + ρ2 = 1 easily in asymptotic sense.

Besides asymptotic expansions provided in this paper are regarded as type I

approximations for the probabilities of misclassification for 2-step monotone

missing samples under the framework such that

N
(g)
1 → ∞, N

(g)
2 → ∞,

N
(2)
1

N
(1)
1

→ positive const.,
N (2)

N (1)
→ positive const.

The organization of this paper is as follows. In Section 2, we introduce

the MLEs of 2-step monotone missing samples with their properties and con-

struct LDF. In Section 3, we show the derivations of asymptotic expansions.

We give some useful Lemmas for our purpose in Section 4. Also simulation

studies are presented in Section 5. Finally we present conclusion in this

paper.

2. MLEs and LDF based on 2-step monotone missing samples

In this paper, we need MLEs based on 2-step monotone missing samples

for two groups. These can be derived similar to Anderson and Olkin (1985)
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which gave the results for one group. As concerns details of derivation of the

MLEs, see Shutoh, Hyodo and Seo (2009). The MLEs are

µ̂(g) =

(
µ̂

(g)
1

µ̂
(g)
2

)
=

(
x

(g)
1T

x
(g)
2F − Ψ̂21(x

(g)
1F − x

(g)
1T )

)
,

Σ̂ =

(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)
=

(
Ψ̂11 Ψ̂11Ψ̂12

Ψ̂21Ψ̂11 Ψ̂22 + Ψ̂21Ψ̂11Ψ̂12

)
,

where

Ψ̂11 =
1

n

[
n1S11 + n2S

(2) +
2∑

g=1

{
N

(g)
1 N

(g)
2

N (g)
(x

(g)
1F − x

(g)
1L )(x

(g)
1F − x

(g)
1L )′

}]
,

Ψ̂12 = S−1
11 S12,

Ψ̂22 = S22·1,

S(2) =
1

n2

2∑
g=1

N(g)∑
j=N

(g)
1 +1

(x
(g)
1j − x

(g)
1L )(x

(g)
1j − x

(g)
1L )′,

and S`m denotes p` × pm partitioned matrix of S. Also random matrices

which construct Σ̂ have the following distributions.

n1S ∼ Wp(n1, Σ),

n1S11 ∼ Wp1(n1, Σ11),

nΨ̂11 ∼ Wp1(n, Σ11),

n1Ψ̂22 ∼ Wp2(n1 − p1, Σ22·1),

where Wd(m, Ω) denotes Wishart distribution with the parameters m and Ω.

These results are derived in Lemma 2.1 of Shutoh, Hyodo and Seo (2009).

Now we consider of the conditional distribution of LDF Wm. By the MLEs,

Wm is constructed as

Wm = (µ̂(1) − µ̂(2))′Σ̂−1

[
x − 1

2
(µ̂(1) + µ̂(2))

]
.
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The probabilities of misclassification in Wm are

em(2|1) ≡ Pr
[
Wm ≤ c|x ∈ Π(1)

]
, (5)

em(1|2) ≡ Pr
[
Wm > c|x ∈ Π(2)

]
(6)

= 1 − Pr
[
Wm ≤ c|x ∈ Π(2)

]
.

If we define

D2
m = (µ̂(1) − µ̂(2))′Σ̂−1(µ̂(1) − µ̂(2)),

Fm = (µ̂(1) − µ̂(2))′Σ̂−1(µ̂(1) − µ(1)),

Vm = (µ̂(1) − µ̂(2))′Σ̂−1ΣΣ̂−1(µ̂(1) − µ̂(2)),

Zm = V
− 1

2
m (µ̂(1) − µ̂(2))′Σ̂−1(x − µ(1)),

the probability (5) can be written by

Pr

[
Wm − 1

2
∆2

∆
≤ u|x ∈ Π(1)

]
= (7)

Pr

[
Zm ≤

(
u∆ + Fm − 1

2
(D2

m − ∆2)

)
V

− 1
2

m |x ∈ Π(1)

]
,

where u = (c − (1/2)∆2)/∆. Under x ∈ Π(1), the conditional distribution

of Zm given µ̂(1), µ̂(2) and Σ̂ is standard normal distribution. Therefore, the

expectation of (5) can be expressed as

E

[
Φ

({
u∆ + Fm − 1

2
(D2

m − ∆2)

}
V

− 1
2

m

)
|x ∈ Π(1)

]
,

where E(·) denotes expectation with respect to µ̂(1), µ̂(2) and Σ̂. Similarly,

probability (6) is related to

Pr

[
Wm + 1

2
∆2

∆
≤ u|x ∈ Π(2)

]
. (8)
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Since we can achieve the purpose in this paper to consider of only (7), we

show derivation for (7) mainly.

On the other hand, we can also consider the expectation of both estimated

probabilities of misclassification under c = 0 which is similar to McLachlan

(1973), i.e.,

E

[
Φ

(
−1

2
Dm

)]
. (9)

We will show derivations asymptotic expansions of (7) and (9) in the next

section.

3. Derivation of asymptotic expansions

We prepare the following expressions of random vectors:

y
(g)
1T =

√
n(x

(g)
1T − µ

(g)
1 ), y

(g)
`F =

√
n1(x

(g)
`F − µ

(g)
` ), y

(g)
1L =

√
n2(x

(g)
1L − µ

(g)
1 ),

z1T =
√

n(x
(1)
1T − x

(2)
1T − δ1), z`F =

√
n1(x

(1)
`F − x

(2)
`F − δ`),

y
(g)
F =

(
y

(g)
1F

y
(g)
2F

)
=

√
n1(x

(g)
F −µ(g)), zF =

(
z1F

z2F

)
=

√
n1(x

(1)
F −x

(2)
F −δ),

Similarly, we consider of random matrices:

T (1) =
√

n1(S − Σ), T
(1)
`m =

√
n1(S`m − Σ`m), T (2) =

√
n2(S

(2) − Σ11),

for g = 1, 2, ` = 1, 2 and m = 1, 2. Also we can rewrite the MLEs of

covariance matrix as

Ψ̂11 = ρΣ11 +
1√
n

(√
ρ1T

(1)
11 +

√
ρ2T

(2)
)

+
1

n

2∑
g=1

v(g)v(g)′ ,

Ψ̂12 =

(
Σ11 +

1
√

n1

T
(1)
11

)−1 (
Σ12 +

1
√

n1

T
(1)
12

)
,

9



Ψ̂22 = Σ22·1 +
1

√
n1

T
(1)
22·1,

S = Σ +
1

√
n1

T (1),

where

v(g) =

√
N

(g)
1 N

(g)
2

nN (g)

(
1

√
ρ1

y
(g)
1F − 1

√
ρ2

y
(g)
1L

)
.

By using (
I +

1√
m

A

)−1

= I +
∞∑

j=1

(−1)jm− j
2 Aj,

(
I +

1√
m

A

)−2

= I +
∞∑

j=1

(−1)j(j + 1)m− j
2 Aj,

where A is a matrix with finite eigenvalues, D2
m, Fm and Vm are expressed as

D2
m ≡ ∆2

1 +
1√
n

Dm1 +
1

n
Dm2 +

1

n
√

n
Rd + Op(n

−2), (10)

Fm ≡ 1√
n

Fm1 +
1

n
Fm2 +

1

n
√

n
Rf + Op(n

−2), (11)

Vm ≡ ∆2
2 +

1√
n

Vm1 +
1

n
Vm2 +

1

n
√

n
Rv + Op(n

−2),

where

∆2
1 = ∆2 −

(
1 − 1

ρ

)
δ2
11, ∆2

2 = ∆2 −
(

1 − 1

ρ2

)
δ2
11, δ2

11 = δ′
1Σ

−1
11 δ1

and Rd, Rf and Rv denotes homogeneous polynomial of degree 3 in the el-

ements of random vectors and matrices. Dmi, Fmi and Vmi (i = 1, 2) are

presented in Appendix A. By using the above results, we derive two asymp-

totic expansions for discrimination based on 2-step monotone missing sam-

ples. We review the results derived by Shutoh and Seo (2010) in subsection

3.1. The main results in this paper are provided in subsections 3.2 and 3.3.
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3.1. Asymptotic expansion for the studentized LDF

Shutoh and Seo (2010) considered an asymptotic expansion for the dis-

tributions of

Pr

[
Wm − 1

2
D2

m

Dm

≤ w|x ∈ Π(1)

]
(12)

and

Pr

[
Wm + 1

2
D2

m

Dm

≤ w′|x ∈ Π(2)

]
, (13)

where w = (c − (1/2)D2
m)/Dm. Therefore (12) can be rewritten as

E

[
Φ

(
(wDm + Fm)V

− 1
2

m

)]
.

Besides Dm and V
− 1

2
m have the following forms respectively:

Dm = ∆1 +
1√
n

(
1

2∆1

Dm1

)
+

1

n

(
1

2∆1

Dm2 −
1

8∆3
1

D2
m1

)
(14)

+
1

n
√

n
R′

d + Op(n
−2)

and

V
− 1

2
m =

1

∆2

+
1√
n

(
− 1

2∆3
2

Vm1

)
+

1

n

(
− 1

2∆3
2

Vm2 +
3

8∆5
2

V 2
m1

)
(15)

+
1

n
√

n
R′

v + Op(n
−2),

where R′
d has the property same as Rd and R′

v has the property same as Rv.

By Taylor series expansion of Φ and the results of expectations, Shutoh and

Seo (2010) gave the following theorem.
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Theorem 1. The distributions for the studentized discriminant function of

(12) and (13) can be expanded as

Φ(w) +
1

nr1

φ(w)

[
∆2

11 + p2 − 1

∆
(1 + k1) −

{(
p − 1

4
+

k1

2

)
+

7

4
∆4

11

−
(

p1 +
3

2
+

k1

2

)
∆2

11

}
w − 1

4
(1 − ∆4

11)w
3

]
+

1

n
φ(w)

[
p1 − ∆2

11

∆
(1 + k) −

{(
p1 +

1

2
+

k

2

)
∆2

11 −
7

4
∆4

11

}
w

−1

4
∆4

11w
3

]
+ O(n−2)

and

Φ(w′) − 1

nr1

φ(w′)

[
∆2

11 + p2 − 1

∆

(
1 +

1

k1

)
+

{(
p − 1

4
+

1

2k1

)
+

7

4
∆4

11 −
(

p1 +
3

2
+

1

2k1

)
∆2

11

}
w′ +

1

4
(1 − ∆4

11)w
′3
]

− 1

n
φ(w′)

[
p1 − ∆2

11

∆

(
1 +

1

k

)
+

{(
p1 +

1

2
+

1

2k

)
∆2

11 −
7

4
∆4

11

}
w′

+
1

4
∆4

11w
′3
]

+ O(n−2)

respectively, where ∆11 = δ11/∆.

3.2. Asymptotic expansion for LDF

In this subsection, we consider the asymptotic expansion for the distri-

bution of linear discriminant function based on 2-step monotone missing

samples, i.e., the versions for 2-step monotone missing samples of Okamoto

(1963). By (10), (11) and (15), we can obtain(
u∆ + Fm − 1

2
(D2

m − ∆2)

)
V

− 1
2

m

= u∗ +
1√
n

g1 +
1

n
g2 +

1

n
√

n
R1 + Op(n

−2),

12



where R1 denotes homogeneous polynomial of degree 3 in the elements of

random vectors and matrices,

u∗ =

(
u∆ +

1

2

(
1 − 1

ρ

)
δ2
11

)
∆−1

2 ,

g1 =
1

∆2

Fm1 −
1

2∆2

Dm1 −
1

2∆2
2

u∗Vm1,

g2 =
1

∆2

Fm2 −
1

2∆2

Dm2 −
1

2∆2
2

u∗Vm2 +
3

8∆4
2

u∗V 2
m1 −

1

2∆3
2

Fm1Vm1

+
1

4∆3
2

Dm1Vm1.

Thus, by Taylor series expansion of Φ, we can rewrite (7) as

Φ(u∗) + φ(u∗)

[
1√
n

E(g1) +
1

n

(
E(g2) −

1

2
u∗E(g2

1)

)
+

1

n
√

n
E(R2)

]
+ O(n−2),

where R2 has the property same as R1. By making use of expectations derived

by Lemmas in Section 4, we can obtain the following theorem. Besides

the terms included in E(R2)/(n
√

n) are either 0 or O(n−2). For details of

expectations, see Shutoh and Seo (2010).

Theorem 2. The distributions of linear discriminant function based on 2-

step monotone missing samples described in (7) and (8) can be expanded

as

Pm
(2|1)(u,N

(1)
1 , N

(2)
1 , N

(1)
2 , N

(2)
2 , ∆, δ11)

= Φ(u) − 1

2

[
a11

N
(1)
1 ∆2

+
a12

N
(2)
1 ∆2

+
a13

2n1

+
a21

N (1)∆2
+

a22

N (2)∆2
+

a23

2n

]
φ(u)

+ O2,

and 1−Pm
(2|1)(−u,N

(2)
1 , N

(1)
1 , N

(2)
2 , N

(1)
2 , ∆, δ11) respectively, where O2 denotes

13



O(N
(1)−2

1 , N
(2)−2

1 , n−2
1 , N (1)−2

, N (2)−2
, n−2),

a11 = (1 − ∆2
11)u

3 + (p2 − 3(1 − ∆2
11))u − p2∆,

a12 = (1 − ∆2
11)u

3 + 2(∆ − δ11∆11)u
2 + (p2 − 3(1 − ∆2

11) + ∆2 − δ2
11)u

+(p2 − 2)∆ + 2δ11∆11,

a13 = 4(1 − ∆4
11)u

3 + 4(∆ − δ11∆
3
11)u

2

+(6p − 6 − 6(p1 + 1)∆2
11 + 12∆4

11 + ∆2 − δ2
11∆

2
11)u

+2(p − 1)∆ − 2(p1 + 1)δ11∆11 + 4δ11∆
3
11,

a21 = ∆2
11u

3 + (p1 − 3∆2
11)u − p1∆,

a22 = ∆2
11u

3 + 2δ11∆11u
2 + (p1 − 3∆2

11 + δ2
11)u + p1∆ − 2δ11∆11,

a23 = 4∆4
11u

3 + 4δ11∆
3
11u

2 + (2(3p1 − 1) − 12∆2
11 + δ2

11)∆
2
11u

+((p1 − 1)δ11 − 2δ11∆
2
11)2∆11,

∆11 = δ11/∆.

If Ψ11 is estimated by the simple estimator

Ψ̃11 =
1

n12

(n1S11 + n2S
(2)), n12 = n1 + n2,

the distributions of (7) and (8) are expanded as

Pm
(2|1)(u,N

(1)
1 , N

(2)
1 , N

(1)
2 , N

(2)
2 , ∆, δ11) (16)

= Φ(u) − 1

2

[
a11

N
(1)
1 ∆2

+
a12

N
(2)
1 ∆2

+
a13

2n1

+
a21

N (1)∆2
+

a22

N (2)∆2
+

a∗
23

2n12

]
φ(u)

+ O∗
2,

and 1−Pm
(2|1)(−u,N

(2)
1 , N

(1)
1 , N

(2)
2 , N

(1)
2 , ∆, δ11) respectively, where O∗

2 denotes

O(N
(1)−2

1 , N
(2)−2

1 , n−2
1 , N (1)−2

, N (2)−2
, n−2

12 ) and

a∗
23 = 4∆4

11u
3 + 4δ11∆

3
11u

2 + (6(p1 + 1) − 12∆2
11 + δ2

11)∆
2
11u

+((p1 + 1)δ11 − 2δ11∆
2
11)2∆11.
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Then we can obtain the following corollary.

Corollary 3. The results obtained in (16) can be reduced to (3) up to the

terms of the first order of (N
(1)−1

1 , N
(2)−1

1 , n−1
1 ) by putting N (g) = N

(g)
1 , i.e.,

N
(g)
2 = 0.

3.3. Asymptotic expansion for the expectation of estimated probabilities of

misclassification

In this subsection, we derive the asymptotic expansion for the expectation

of estimated probabilities of misclassification, i.e., the versions for 2-step

monotone missing samples of McLachlan (1973). By (14), we can obtain

−1

2
Dm = −1

2
∆1 +

1√
n

h1 +
1

n
h2 +

1

n
√

n
R3 + Op(n

−2),

where

h1 = − 1

4∆1

Dm1,

h2 = − 1

4∆1

Dm2 +
1

16∆3
1

D2
m1

and R3 denotes the terms which have the property same as R1. Therefore,

by Taylor series expansion of Φ, we can rewrite (9) as

Φ

(
−1

2
∆1

)
+ φ

(
−1

2
∆1

)[
1√
n

E(h1)

+
1

n

(
E(h2) +

1

4
∆1E(h2

1)

)
+

1

n
√

n
E(R4)

]
+ O(n−2),

where R4 denotes the terms which have the property same as R1. Since we

find

h2 +
1

4
∆1h

2
1 = − 1

4∆1

Dm2 +
1

64∆3
1

(∆2
1 + 4)D2

m1

15



and the terms included in E(R4)/(n
√

n) are either 0 or O(n−2), we can also

obtain the following theorem by making use of expectations derived in Section

4.

Theorem 4. The expectation of estimator of the probabilities of misclas-

sification based on 2-step monotone missing samples similar to McLachlan

(1973) is expanded as follows:

E

[
Φ

(
−1

2
Dm

)]
= Φ

(
−1

2
∆

)
+ bm1 + O2,

where

bm1 =
1

16
φ

(
−1

2
∆

)[(
1

N
(1)
1

+
1

N
(2)
1

)
{∆ − 4

∆
(p2 − 1) − ∆2 + 4

∆
∆2

11}

+

(
1

N (1)
+

1

N (2)

)
{− 4

∆
p1 +

∆2 + 4

∆
∆2

11}

+
∆

2n1

{∆2 − 4(2p + 1) + 8(p1 + 1)∆2
11 − (∆2 + 4)∆4

11}

+
∆

2n
{−8(p1 − 1)∆2

11 + (∆2 + 4)∆4
11}

]
,

∆11 = δ11/∆.

If Ψ11 is estimated by Ψ̃11,

E

[
Φ

(
−1

2
Dm

)]
= Φ

(
−1

2
∆

)
+ b∗m1 + O∗

2, (17)

where

b∗m1 =
1

16
φ

(
−1

2
∆

)[(
1

N
(1)
1

+
1

N
(2)
1

)
{∆ − 4

∆
(p2 − 1) − ∆2 + 4

∆
∆2

11}

+

(
1

N (1)
+

1

N (2)

)
{− 4

∆
p1 +

∆2 + 4

∆
∆2

11}

+
∆

2n1

{∆2 − 4(2p + 1) + 8(p1 + 1)∆2
11 − (∆2 + 4)∆4

11}

+
∆

2n12

{−8(p1 + 1)∆2
11 + (∆2 + 4)∆4

11}
]
.
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Also we can find the following corollary.

Corollary 5. The results obtained in (17) can be reduced to (4) up to the

terms of the first order of (N
(1)−1

1 , N
(2)−1

1 , n−1
1 ) by putting N (g) = N

(g)
1 , i.e.,

N
(g)
2 = 0.

4. On the results for obtaining asymptotic expansions

For obtaining asymptotic expansions, we need some results of inverse of

partitioned matrix and expectations of random vectors or matrices. First we

give a Lemma for inverse of partitioned matrix.

Lemma 6. Let Ω be the following partitioned matrix:

Ω =

(
Ω11 Ω12

Ω21 Ω22

)
,

where Ω and Ω`m denotes d× d matrix and d` × dm partitioned matrix of Ω,

i.e., d = d1 + d2. If Ω11 and Ω22·1 are nonsingular, then Ω−1 is

Ω−1 =

(
Ω−1

11 + Ω−1
11 Ω12Ω

−1
22·1Ω21Ω

−1
11 −Ω−1

11 Ω12Ω
−1
22·1

−Ω−1
22·1Ω21Ω

−1
11 Ω−1

22·1

)
and it holds that

Ω−1

(
Ω11

Ω21

)
Ω−1

11 =

(
Ω−1

11

O21

)
,

where O`m denotes d` × dm matrix with 0’s.

Also, by making use of expectations and the conditional distribution for par-

titioned vectors which are distributed as normal distribution, Shutoh and Seo

(2010) showed the following results concerning partitioned Wishart matrix.
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Lemma 7. Suppose that G has Wd(m, Ω). Then the following expectations

can be obtained:

(i) E(G12C21G11) = m2Ω12C21Ω11 + mΩ11C
′
21Ω21 + mtr(C21Ω12)Ω11,

(ii) E(G12C22G21) = m2Ω12C22Ω21 + mΩ12C
′
22Ω21

+ mtr(C22Ω22·1)Ω11 + mtr(C22Ω21Ω
−1
11 Ω12)Ω11,

(iii) E(G22C21G11) = m2Ω22·1C21Ω11 + m2Ω21Ω
−1
11 Ω12C21Ω11

+ mΩ21C
′
21Ω21 + mtr(C21Ω12)Ω21,

(iv) E(G21C11G11) = m2Ω21C11Ω11 + mΩ21C
′
11Ω11 + mtr(C11Ω11)Ω21,

where G`m denotes d` × dm partitioned matrix of G, C`m denotes d` × dm

constant matrix and d = d1 + d2 respectively.

For details of the derivation, see Shutoh and Seo (2010). By the expectations

with limit of ρ, we can obtain the asymptotic expansions shown in Theorem

2 and Theorem 4 with noting ∆1 = ∆2 = ∆ and u∗ = u in asymptotic sense.

5. Simulation studies

We can obtain two asymptotic expansions in Section 3. Therefore we

evaluate accuracy in approximating the probabilities of misclassification by

Monte Carlo simulations with selected parameters under x ∈ Π(1) and c = 0.

In simulations, especially, we compare the following results:

• The result of subsection 3.2 denoted by O–type,

• The result of Shutoh, Hyodo and Seo (2009) denoted by L–type.
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Besides Shutoh, Hyodo and Seo (2009) is the version for 2-step monotone

missing samples of Lachenbruch (1968) and regarded as both type I and

type II approximation.

All the values are compared with expected probabilities of misclassifi-

cation (EPMC) of Wm calculated by simulations under various settings of

sample sizes and dimensionality. As concerns ∆, we are interested in the

situation under small ∆ since the approximations of this type play an impor-

tant role if the exact probabilities of misclassification are higher. Thus, in

these simulations, we set the value of ∆ as 1.05. Then the exact probabilities

of misclassification are nearly equal to 0.2998.

In all simulations, for i = 1, 2, the sample sizes N
(1)
i and N

(2)
i are equal and

they are denoted by Mi respectively. Also M1 and M2 have same order. Since

two types of approximations include unknown ∆ and δ11, we use estimators

of them.

Tables 1–3 give the results under p = 3, 5, 9 and δ11 = ∆ respectively. In

approximating EPMC, we can see that O–type provides better approximation

for p = 3 and p = 5. Also we can see large dimensionality makes O–type

poorer. For this case, L–type has good accuracy. Compare the case of M2 = 0

and that of M2 > 0 which have equal M1, e.g., the first row and the second

row for all the three tables. It seems that both of two approximations derived

by Okamoto (1963) and Lachenbruch (1968) are improved by the versions for

2-step monotone missing samples.

In Tables 1–3, the results under δ11 = ∆ are presented. However, un-

der M2 > 0, the result of O–type given in Theorem 2 depends on ratio

of δ11 to ∆. Therefore, in Table 4, the simulation results under ∆11 =

19



0.2, 0.4, 0.6, 0.7, 0.8, 1.0 and p = 3 are presented. Note that ∆11 = 0 implies

p1 variables are redundant for discrimination. We see that larger ∆11 makes

the values of approximation proposed in Theorem 2 lower and EPMC are not

influenced by ∆11. By these simulations, our result is useful for large ∆11 in

approximating EPMC.

6. Conclusion and future problems

This paper has provided extensions of Okamoto (1963) and McLachlan

(1973) in the case of 2-step monotone missing samples up to the terms of

the first order. Also the type of Okamoto (1963) given in subsection 3.2

has been evaluated numerically by comparing with Shutoh, Hyodo and Seo

(2009). In these numerical evaluations, with small dimensionality and large

∆11, we have seen that our result have better accuracy. However, in approx-

imating EPMC, approximations for the type of Okamoto (1963) are lower

than EPMC. The two results provided in this paper may lead to discussion

for interval estimations for the probabilities of misclassification mentioned

by McLachlan (1975) in the case of 2-step monotone missing samples and

it is one of the future problems. On the other approximation for EPMC

in 2-step monotone missing samples, the approximation similar to Fujikoshi

and Seo (1998) will be needed since the result have good accuracy for large

dimensionality. As the other future problems, the discussions for maximum

likelihood discrimination will be considerable. Also, by making use of Fu-

jikoshi, Ulyanov and Shimizu (2010), we may consider the error bounds for

the results of this paper, Shutoh, Hyodo and Seo (2009) and Shutoh and Seo

(2010) when Ψ11 is estimated by Ψ̃11.
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Appendix A. Details for the terms

The terms included in D2
m, Fm and Vm are as follows:

Dm1 =
2

√
ρ1

δ′Σ−1zF − 1
√

ρ1

δ′Σ−1T (1)Σ−1δ − 2
√

ρ1

δ′
1Σ

−1
11 z1F

+
1

√
ρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 δ1 +
2

ρ
δ′

1Σ
−1
11 z1T

−
√

ρ1

ρ2
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 δ1 −
√

ρ2

ρ2
δ′

1Σ
−1
11 T (2)Σ−1

11 δ1,

Dm2 =
1

ρ1

z′
F Σ−1zF − 2

ρ1

δ′Σ−1T (1)Σ−1zF +
1

ρ1

δ′Σ−1T (1)Σ−1T (1)Σ−1δ

− 1

ρ1

z′
1F Σ−1

11 z1F +
2

ρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 z1F

− 1

ρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 T
(1)
11 Σ−1

11 δ1 +
1

ρ
z′

1T Σ−1
11 z1T

−
2
√

ρ1

ρ2
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 z1T −
2
√

ρ2

ρ2
δ′

1Σ
−1
11 T (2)Σ−1

11 z1T

+
ρ1

ρ3
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T
(1)
11 Σ−1

11 δ1 +
2
√

ρ1ρ2

ρ3
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T (2)Σ−1
11 δ1

+
ρ2

ρ3
δ′

1Σ
−1
11 T (2)Σ−1

11 T (2)Σ−1
11 δ1 −

1

ρ2

2∑
g=1

δ′
1Σ

−1
11 v(g)v(g)′Σ−1

11 δ1,

Fm1 =
1

√
ρ1

δ′Σ−1y
(1)
F − 1

√
ρ1

δ′
1Σ

−1
11 y

(1)
1F +

1

ρ
δ′

1Σ
−1
11 y

(1)
1T ,

Fm2 =
1

ρ1

z′
F Σ−1y

(1)
F − 1

ρ1

z′
1F Σ−1

11 y
(1)
1F − 1

ρ1

δ′Σ−1T (1)Σ−1y
(1)
F

+
1

ρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 y
(1)
1F +

1

ρ
z′

1T Σ−1
11 y

(1)
1T −

√
ρ1

ρ2
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 y
(1)
1T

−
√

ρ2

ρ2
δ′

1Σ
−1
11 T (2)Σ−1

11 y
(1)
1T ,

Vm1 =
2

√
ρ1

δ′Σ−1zF − 2
√

ρ1

δ′Σ−1T (1)Σ−1δ − 2
√

ρ1

δ′
1Σ

−1
11 z1F

+
2

√
ρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 δ1
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+
2

√
ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1Σ21Σ

−1
11 δ1

− 2
√

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
12 Σ−1

22·1Σ21Σ
−1
11 δ1

− 2
√

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1δ2

+
2

√
ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
12 Σ−1

22·1δ2

+
2

ρ2
δ′

1Σ
−1
11 z1T −

2
√

ρ1

ρ3
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 δ1

−
2
√

ρ2

ρ3
δ′

1Σ
−1
11 T (2)Σ−1

11 δ1,

Vm2 =
1

ρ1

z′
F Σ−1zF − 4

ρ1

δ′Σ−1T (1)Σ−1zF +
3

ρ1

δ′Σ−1T (1)Σ−1T (1)Σ−1δ

− 1

ρ1

z′
1F Σ−1

11 z1F +
4

ρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 z1F

− 3

ρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 T
(1)
11 Σ−1

11 δ1

+
2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1Σ21Σ

−1
11 z1F

− 2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
12 Σ−1

22·1Σ21Σ
−1
11 z1F

− 2

ρ1

δ′
1Σ

−1
11 Σ12Σ

−1
22·1T

(1)
21 Σ−1

11 z1F

+
2

ρ1

δ′
1Σ

−1
11 Σ12Σ

−1
22·1Σ21Σ

−1
11 T

(1)
11 Σ−1

11 z1F

+
2

ρ1

(
2 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T
(1)
12 Σ−1

22·1Σ21Σ
−1
11 δ1

− 2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1T

(1)
22·1Σ

−1
22·1Σ21Σ

−1
11 δ1

+
2

ρ1

(
1 − 2

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1T

(1)
21 Σ−1

11 δ1

+
2

ρρ1

δ′
1Σ

−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1Σ21Σ

−1
11 T

(1)
11 Σ−1

11 δ1
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+
2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
12 Σ−1

22·1T
(1)
22·1Σ

−1
22·1Σ21Σ

−1
11 δ1

− 2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
12 Σ−1

22·1T
(1)
21 Σ−1

11 δ1

− 2

ρ1

(
2 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T
(1)
11 Σ−1

11 Σ12Σ
−1
22·1Σ21Σ

−1
11 δ1

− 2

ρ1

z′
1F Σ−1

11 T
(1)
11 Σ−1

11 Σ12Σ
−1
22·1δ2 +

2

ρ1

z′
1F Σ−1

11 T
(1)
12 Σ−1

22·1δ2

− 2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1z2F

+
2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
12 Σ−1

22·1z2F

− 2

ρ1

(
2 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T
(1)
12 Σ−1

22·1δ2

+
2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 Σ12Σ
−1
22·1T

(1)
22·1Σ

−1
22·1δ2

− 2

ρ1

(
1 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
12 Σ−1

22·1T
(1)
22·1Σ

−1
22·1δ2

+
2

ρ1

(
2 − 1

ρ

)
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T
(1)
11 Σ−1

11 Σ12Σ
−1
22·1δ2

+
1

ρ2
z′

1T Σ−1
11 z1T −

4
√

ρ1

ρ3
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 z1T

−
4
√

ρ2

ρ3
δ′

1Σ
−1
11 T (2)Σ−1

11 z1T

+
3ρ1

ρ4
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T
(1)
11 Σ−1

11 δ1 +
6
√

ρ1ρ2

ρ4
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T (2)Σ−1
11 δ1

+
3ρ2

ρ4
δ′

1Σ
−1
11 T (2)Σ−1

11 T (2)Σ−1
11 δ1

− 2

ρ
√

ρ1

z′
1T Σ−1

11 T
(1)
11 Σ−1

11 Σ12Σ
−1
22·1Σ21Σ

−1
11 δ1

+
2

ρ
√

ρ1

z′
1T Σ−1

11 T
(1)
12 Σ−1

22·1Σ21Σ21Σ
−1
11 δ1

+
2

ρ2
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T
(1)
11 Σ−1

11 Σ12Σ
−1
22·1Σ21Σ

−1
11 δ1
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− 2

ρ2
δ′Σ−1

11 T
(1)
11 Σ−1

11 T
(1)
12 Σ−1

22·1Σ21Σ
−1
11 δ1

+
2

ρ2

√
ρ2

ρ1

δ′
1Σ

−1
11 T (2)Σ−1

11 T
(1)
11 Σ−1

11 Σ12Σ
−1
22·1Σ21Σ

−1
11 δ1

− 2

ρ2

√
ρ2

ρ1

δ′
1Σ

−1
11 T (2)Σ−1

11 T
(1)
12 Σ−1

22·1Σ21Σ
−1
11 δ1

+
2

ρ
√

ρ1

z′
1T Σ−1

11 T
(1)
11 Σ−1

11 Σ−1
11 Σ12Σ

−1
22·1δ2

− 2

ρ
√

ρ1

z′
1T Σ−1

11 T
(1)
12 Σ−1

22·1δ2

− 2

ρ2
δ′

1Σ
−1
11 T

(1)
11 Σ−1

11 T
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Table 1 The values of approximations and EPMC when

p = 3 (p1 = 2, p2 = 1).

M1 M2 O–type L–type EPMC
10 0 0.3258 0.3960 0.3470
10 10 0.3239 0.3660 0.3344
15 0 0.3161 0.3643 0.3309
15 10 0.3150 0.3461 0.3236
15 15 0.3146 0.3416 0.3224
20 0 0.3115 0.3478 0.3234
20 20 0.3105 0.3303 0.3162
40 40 0.3049 0.3145 0.3083

Table 2 The values of approximations and EPMC when

p = 5 (p1 = 3, p2 = 2).

M1 M2 O–type L–type EPMC
10 0 0.3354 0.4189 0.3702
10 10 0.3338 0.3981 0.3585
15 0 0.3218 0.3829 0.3511
15 10 0.3210 0.3665 0.3427
15 15 0.3207 0.3627 0.3403
20 0 0.3159 0.3635 0.3397
20 20 0.3150 0.3461 0.3311
40 40 0.3072 0.3224 0.3157

Table 3 The values of approximations and EPMC when

p = 9 (p1 = 5, p2 = 4).

M1 M2 O–type L–type EPMC
20 0 0.3232 0.3885 0.3658
20 20 0.3228 0.3743 0.3562
40 40 0.3112 0.3372 0.3304
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Table 4 The values of approximations of O–type and EPMC

when p = 3 (p1 = 2, p2 = 1).

M1 M2 ∆11 = 0.2 EPMC
10 10 0.3269 0.3337
15 10 0.3164 0.3232
15 15 0.3161 0.3202
20 20 0.3118 0.3154
40 40 0.3054 0.3072
M1 M2 ∆11 = 0.4 EPMC
10 10 0.3264 0.3334
15 10 0.3162 0.3233
15 15 0.3159 0.3204
20 20 0.3116 0.3155
40 40 0.3053 0.3071
M1 M2 ∆11 = 0.6 EPMC
10 10 0.3256 0.3335
15 10 0.3159 0.3234
15 15 0.3155 0.3209
20 20 0.3113 0.3162
40 40 0.3052 0.3075
M1 M2 ∆11 = 0.7 EPMC
10 10 0.3252 0.3336
15 10 0.3157 0.3232
15 15 0.3153 0.3212
20 20 0.3111 0.3163
40 40 0.3051 0.3077
M1 M2 ∆11 = 0.8 EPMC
10 10 0.3248 0.3338
15 10 0.3154 0.3234
15 15 0.3150 0.3215
20 20 0.3110 0.3162
40 40 0.3050 0.3079
M1 M2 ∆11 = 1.0 EPMC
10 10 0.3239 0.3344
15 10 0.3150 0.3236
15 15 0.3146 0.3224
20 20 0.3105 0.3162
40 40 0.3049 0.3083
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