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Abstract

Let S be a p × p random matrix having a Wishart distribution
Wp(n, n−1Σ). For testing a general covariance structure Σ = Σ(ξ), we
consider a class of test statistics Th = nρh(S,Σ(ξ̂)), where ρh(Σ1,Σ2)
=

∑p
i=1 h(λi) is a distance measure from Σ1 to Σ2, λi’s are the eigen-

values of Σ1Σ−1
2 , and h is a given function with certain properties.

Wakaki, Eguchi, Fujikoshi (1990) suggested this class and gave an
asymptotic expansion of the null distribution of Th. This paper gives
an asymptotic expansion of the non-null distribution of Th under a
sequence of alternatives. By using results, we derive the power, and
compare the power asymptotically in the class. Especially we investi-
gate the power of the sphericity tests.
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1 Introduction

Let S be a p×p random matrix having a Wishart distribution Wp(n, n−1Σ).
It is assumed that n ≥ p. We consider the problem of testing

H0 : Σ = Σ(ξ) against H1 : Σ ̸= Σ(ξ),

where ξ ∈ Ξ. Here, Ξ is an open subset of Rq. We assume that

A1. All the elements of Σ(ξ) are known C4-class functions on Ξ,
and the Jacobian matrix of Σ(ξ) is of full rank.

Σ(Ξ) is a smooth subsurface in Rp(p+1)/2 with coordinates ξ = (ξ1, · · · , ξq)′.
The hypothesis H0 represents various covariance structures as special cases.

We consider a class of test statistics via minimization of the following
divergence measure from S to Σ(ξ). Let h be a C4-function on (0,∞) sat-
isfying that

A2. h(1) = 0, h1 = 0, and h2 = 1,
A3. h(λ) > 0 for any λ ̸= 1,

where hr denotes the rth derivative of h at λ = 1. For arbitrary two matrices
Σ1 and Σ2 we define a distance measure from Σ1 to Σ2 by

ρh(Σ1,Σ2) =

p∑
i=1

h(λi),

where λi’s are the eigenvalues of Σ1Σ
−1
2 . Note that ρh(Σ1,Σ2) ≥ 0 with

equality if and only if Σ1 = Σ2 because of A3. However, in general, ρh is not
symmetric and does not satisfy the triangle law.

Wakaki, Eguchi, Fujikoshi [10] suggested a class of test statistics

Th = n inf
‰∈Ξ

ρh(S,Σ(ξ)) = nρh(S,Σ(ξ̂)), (1.1)

where ξ̂ is the minimizing point. For example, using h(λi) = − log λi+λi−1,
ρh is the Kullback divergence and the corresponding statistic Th is just based
on the log-likelihood ratio criterion. Another typical example is h(λi) =
(λi − 1)2/2.
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It may be noted that the asymptotic expansions of the null distributions
of Th’s in some special cases have been obtained by many authors (e.g., An-
derson [1], Muirhead [4], Siotani, Hayakawa, Fujikoshi [7], etc.). An emphasis
in Wakaki, Eguchi, Fujikoshi [10] is put on an asymptotic expansion of the
null distribution of Th in a general case. Many authors also gave the asymp-
totic expansions of the non-null distributions of Th’s in some special cases
(e.g., Hayakawa [2], Nagao [5], Sugiura [8], etc.). This paper gives an asymp-
totic expansion of the non-null distribution of Th in a general case under a
sequence of alternatives converging to the null hypothesis with the rate of
convergence n−1/2. In Section 2 we give stochastic expansions of ξ̂ as well as
Th. In Section 3 we obtain an asymptotic expansion of the non-null distri-
bution of Th under the local alternatives up to the order n−1/2. In Section
4 we derive the power, and compare the power asymptotically in the class.
Especially we consider the power of the sphericity tests.

2 Stochastic Expansion of Th

We consider a sequence of alternative hypotheses

Hn : Σ = Σ(ξ0) +
1√
n
Σ(ξ0)

1/2∆Σ(ξ0)
1/2

for Σ /∈ Σ(Ξ), where ∆ is a symmetric matrix and ξ0 ∈ Ξ. For simplicity,
let us denote as Σ0 = Σ(ξ0) and Σ̂ = Σ(ξ̂). We shall expand Th in terms of

V =
√

nΣ−1/2(S − Σ)(Σ−1/2)′ (2.1)

which is Op(1).
First we summarize the notations used in this paper. Let

∂a =
∂

∂ξa
, Jab··· = Σ

1/2
0

[
∂a∂b · · ·Σ(ξ)−1

]
‰=‰0

Σ
1/2
0 ,

Ĵab··· = Σ
1/2
0

[
∂a∂b · · ·Σ(ξ)−1

]
‰=b‰

Σ
1/2
0 ,

V =
√

nΣ−1/2(S − Σ)(Σ−1/2)′,

sa = −1

2
tr(JaV ), (a = 1, · · · , q),
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and

G = (gab), gab = E[sasb] =
1

2
tr(JaJb), (a, b = 1, · · · , q),

It follows from A1 that G is nonsingular. Let gab is the (a, b) element of G−1.
As another version of Jab, let

J[ab] = Jab −
1

2
Jcg

cdtr(JdJab),

with Einstein’s summation convention. The summation convention is used
throughout this paper. For example, Jcg

cd means
∑q

c=1 Jcg
cd.

Considering the Taylor expansion of h around λi = 1, we have

ρh(S,Σ) = tr

[
1

2
(SΣ−1 − Ip)

2 +
1

3!
h3(SΣ−1 − Ip)

3 +
1

4!
h4(SΣ−1 − Ip)

4

]
+O

(
tr

{
(SΣ−1 − Ip)

4
})

.
(2.2)

Let
Λ =

√
nΣ

−1/2
0 (SΣ̂−1 − Ip)Σ

1/2
0 . (2.3)

Then we obtain an expansion of Th,

Th = tr

[
1

2
Λ2 +

1

3!
√

n
h3Λ

3 +
1

4!n
h4Λ

4

]
+ Op(n

−3/2). (2.4)

In order to obtain an explicit expansion of Th, it is necessary to obtain an
expansion of Λ. It is shown similarly as in Swain [9] that

ξ̄a =
√

n(ξ̂a − ξa
0)

is asymptotically normal and hence Op(1). The Taylor expansion of Σ̂−1

around ξ0 is given by

√
nΣ

1/2
0 (Σ̂−1 − Σ−1

0 )Σ
1/2
0 = Jbξ̄

b +
1

2
√

n
Jbcξ̄

bξ̄c + Op(n
−1). (2.5)

Using (2.1),

S = Σ
1/2
0

{
Ip +

1√
n

(V + ∆) +
1

n
(V ∆ + ∆V )

}
Σ

1/2
0 + Op(n

−3/2). (2.6)
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Then using (2.5), and (2.6), (2.3) is expanded as

Λ = V + ∆ + Jbξ̄b

+
1√
n

{
1

2
Jbcξ̄bξ̄c + (V + ∆)Jbξ̄b +

1

2
(V ∆ + ∆V )

}
+ Op(n

−1).

(2.7)

In order to obtain an explicit expansion of Λ, it is necessary to obtain an
expansion of ξ̄a. The estimates ξ̂a, (a = 1, · · · , q), satisfy the system of
equations

[∂aρ(S,Σ)]‰=‰̂ = 0, (a = 1, · · · , q).

Using (2.2) it can be seen that ξ̂a’s satisfy

tr

[
S[∂aΣ

−1]‰=b‰

{
SΣ̂−1 − Ip +

1

2
h3(SΣ̂−1 − Ip)

2

}]
= Op(n

−3/2),

or equivalently

tr

[{
Ip +

1√
n

(V + ∆)

}
Ĵa(Λ +

1

2
√

n
h3Λ

2)

]
= Op(n

−1). (2.8)

Substituting (2.7) and

Ĵa = Ja +
1√
n

Jabξ̄
b + Op(n

−1)

into (2.8), it is seen that ξ̄a’s satisfy

tr
[
Ja(V + ∆ + Jbξ̄

b)
]
+

1√
n

tr

[
h̃3Ja(V + ∆ + Jbξ̄

b)2 + Ja(
1

2
Jbc − JbJc)ξ̄

bξ̄c

+Jab(V + ∆ + Jcξ̄
c)ξ̄b + JaV ∆

]
= Op(n

−1), (a = 1, · · · , q), (2.9)

where h̃3 = 1+ 1
2
h3. The solution of ξ̄a in (2.9) can be found in an expanded

form

ξ̄a = κa +
1√
n

εa + Op(n
−1). (2.10)
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In fact, substituting (2.10) into (2.9), we obtain

κa = ea + δa, εa = −1

2
gabtr

[
JbM + JbcW̃ (ec + δc)

]
, (2.11)

where

ea = gabsb, δa = −1

2
gabtr(Jb∆), W̃ = W + Wδ, W = V + Jbe

b,

Wδ = ∆ + Jbδ
b, M = h̃3W̃

2 + (
1

2
Jbc − JbJc)(e

b + δb)(ec + δc) + V ∆.

Hence, from (2.4), (2.7), and (2.11), we obtain an expansion of Th given by

Th =
1

2
tr(W̃ 2) +

1√
n

T1(V ) + Op(n
−1), (2.12)

where

T1(V ) = −1

2
gabtr

[
JaM + JabW̃ (eb + δb)

]
tr(JbW̃ )+tr

{
(
1

2
Jbc − JbJc)W̃

}

×(eb + δb)(ec + δc) + tr(JbW̃
2)(eb + δb) + tr(V ∆W̃ ) +

1

6
h3tr(W̃

3). (2.13)

3 Asymptotic Expansion of the Non-null Dis-

tribution of Th under the Local Alternative

We can write the characteristic function of Th as

ϕ(t) = E[exp(itTh)] = E

[{
etr(

1

2
θW̃ 2)

}
T (V )

]
+ O(n−1), (3.1)

where

θ = it, T (V ) = 1 +
1√
n

θT1(V ), (3.2)

with the expression T1(V ) in (2.13). The probability density function (pdf)
of V is expressed as (see e.g., Siotani, Hayakawa, Fujikoshi [7, p.160])

f(V ) = f0(V )Q(V ) + O(n−3/2), (3.3)
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where　
f0(V ) = apetr(−1

4
V 2), ap = π−p(p+1)/42−p(p+1)/4,

Q(V ) = 1 + 1√
n
Q1(V ) + 1

n
Q2(V ),

Q1(V ) = −1
2
(p + 1)tr(V ) + 1

6
tr(V 3), (3.4)

Q2(V ) = 1
2
{Q1(V )}2 − 1

24
p(2p2 + 3p − 1) + 1

4
(p + 1)tr(V 2) − 1

8
tr(V 4).

Therefore, we have

ϕ(t) =

∫
ap

{
etr

(
−1

4
V 2 +

1

2
θW̃ 2

)}
Q(V )T (V )dV + O(n−1), (3.5)

where dV = dv11dv12 · · · dvp−1,pdp,p.

We prepare some lemmas useful for reductions of (3.5). Note that G−1 =
(gab) exists. Let

ea = −1

2
gabtr(JbV ), U = −Jae

a, and W = V − U , (3.6)

and similarly

δa = −1

2
gabtr(Jb∆), Uδ = −Jaδ

a, and Wδ = ∆ − Uδ. (3.7)

Further, let
M = (vec∗(J1), · · · , vec∗(Jq)),

where for any p × p symmetric matrix A = (aij),

vec∗(A) =

(
a11√

2
, · · · ,

app√
2
, a12, · · · , ap−1,p

)′

.

Note that {vec∗(A)}′ vec∗(B) = 1
2
tr(AB). We obtain the following lemmas.

Lemma 3.1 Let PM = M (M ′M )−1M ′. Then,

e = (e1, · · · , eq)′ = −(M ′M )−1Mvec∗(V ),

δ = (δ1, · · · , δq)′ = −(M ′M )−1M ′vec∗(∆),

vec∗(U) = PMvec∗(V ),

vec∗(Uδ) = PMvec∗(∆),

vec∗(W ) = (Ip(p+1)/2 − PM )vec∗(V ),

vec∗(Wδ) = (Ip(p+1)/2 − PM )vec∗(∆).
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Lemma 3.2 Let θ be any complex number whose real part is smaller than
−1

2
. Let g(V , U , W ) be a function of V , U , and W . Then,

∫
etr

{
−1

4
V 2 +

1

2
θ(W + Wδ)

2

}
×g(V ,U , W )dV = (1−2θ)−r/2

× exp

[
θ(1 − 2θ)−1

{
1

2
tr(W 2

δ )

}]
×

∫ (
−1

4
V 2

)
g(V̇ ,U , Ẇ )dV , (3.8)

where r = p(p + 1)/2 − q, V̇ = U + (1 − 2θ)−1/2W + 2θ(1 − 2θ)−1Wδ,
Ẇ = (1 − 2θ)−1/2W + 2θ(1 − 2θ)−1Wδ.

Proof. We shall show that (3.8) is obtained by considering the transfor-
mation V → V̆ , where

V̆ = U + (1 − 2θ)1/2W − 2θ(1 − 2θ)−1/2Wδ. (3.9)

Using Lemma 3.1, we have

vec∗(V̆ ) =
{
PM + (1 − 2θ)1/2(Ip(p+1)/2 − PM )

}
×

{
vec∗(V ) − 2θ(1 − 2θ)−1vec∗(Wδ)

}
.

This implies that the inverse transformation is

vec∗(V ) =
{
PM + (1 − 2θ)−1/2(Ip(p+1)/2 − PM )

}
vec∗(V̆ )

+2θ(1 − 2θ)−1vec∗(Wδ).

It is equivalent to

V = Ŭ + (1 − 2θ)−1/2W̆ + 2θ(1 − 2θ)−1Wδ,

where Ŭ = 1
2
Jag

abtr(JbV̆ ), and W̆ = V̆ − Ŭ . Therefore, the Jacobian of
the transformation (3.9) is

J(V → V̆ ) = |PM + (1 − 2θ)−1/2(Ip(p+1)/2 − PM )| = (1 − 2θ)−r/2,

since the characteristic roots of PM are one or zero and rank(PM ) = q.
Further, it holds that U = Ŭ , and W = (1 − 2θ)−1/2W̆ + 2θ(1 − 2θ)−1Wδ,
since vec∗(Ŭ) = PMvec∗(V̆ ) = vec∗(U ), and W̆ = (1 − 2θ)1/2W − 2θ(1 −
2θ)−1/2Wδ. These complete the proof.
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Lemma 3.3 Let V be a p × p symmetric random matrix with pdf f0(V ) in
(3.3). Let ea, U , and W be the random variables defined by (3.6). Then
(1) e = (e1, · · · , eq)′ and W are independent,
(2) e is distributed as Nq(0,G−1),
(3) vec∗(U) and vec∗(W ) are independently distributed as Np(p+1)/2(0,PM )

and Np(p+1)/2(0, Ip(p+1)/2 − PM ), respectively.

Proof. The results are easily obtained by using Lemma 3.1 and the fact
that vec∗(V ) is distributed as Np(p+1)/2(0, Ip(p+1)/2).

Using Lemmas 3.2 and 3.3, we can write the characteristic function (3.5)
as

ϕ(t) = (1−2θ)−r/2 exp

[
θ(1 − 2θ)−1

{
1

2
tr(W 2

δ )

}]
×E

[
Q(V̇ )T (V̇ )

]
+O(n−1),

(3.10)
where V̇ is given by Lemma 3.2.
Here the expectation in (3.10) is taken with respect to the distribution of U
(or e) and W given in Lemma 3.3. After calculation of these expectations,
we obtain

ϕ(t) = (1 − 2θ)−r/2 exp

[
θ(1 − 2θ)−1

{
1

2
tr(W 2

δ )

}]

×

{
1 +

1√
n

3∑
j=0

cj(1 − 2θ)−j

}
+ O(n−1), (3.11)

where the coefficients cj’s are given by
c0 = 1

2
(gab + δaδb)Kabδ − 1

4
(gab + δaδb)K(ab)δ − 1

2
Kaδ2δa + 1

3
Kδ3 ,

c1 = 1
4
(gab + δaδb)K(ab)δ + (1

4
h3g

ab − 1
2
δaδb)Kabδ − 1

2
h̃3(p + 1)Kδ

+1
2
Kaδ2δa − 1

2
Kδ3 ,

c2 = 1
2
h̃3

{
(p + 1)Kδ − gabKabδ

}
− 1

12
h3Kδ3 , c3 = 1

6
h̃3Kδ3 . (3.12)

Here we use the following notations:

Kabδ = tr(JaJbWδ), K(ab)δ = tr(J(ab)Wδ), Kδk = tr(W k
δ ),

and so on. The formulae needed for calculating expectations are given in
Appendix A. By inverting the characteristic function term by term, we obtain
an expansion of the non-null distribution of Th under the local alternative as
in the following theorem.
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Theorem 3.1 Let Th be the test statistic given by (1.1) with a function h
satisfying A2 and A3. Suppose that a given covariance structure Σ = Σ(ξ)
satisfies A1. Then under the local alternative hypothesis Hn, the distribution
of Th can be expanded for large n as

P(Th ≤ x) = Gr(x; τ) +
1√
n

3∑
j=0

cjGr+2j(x; τ) + O(n−1), (3.13)

where r = p(p + 1)/2 − q, τ = tr(W 2
δ )/2, Gk(·; τ) is the noncentral χ2 dis-

tribution function with k degrees of freedom and the noncentrality parameter
τ , and the coefficients cj’s are given by (3.12).

4 Applications

4.1 Power Comparisions

Wakaki, Eguchi, Fujikoshi [10] gave an asymptotic expansion of the null
distribution of Th in a general case as

P(Th ≤ x|H0) = Gr(x) +
1

n

3∑
j=0

ajGr+2j(x) + O(n−3/2), (4.1)

where Gk(·) is the χ2 distribution function with k degrees of freedom, the
coefficients aj’s are given by

a0 = 1
72

{
−3p(p2 + 3p − 1) − 9gabcdKabcd + gabcdefKabc,def

}
+ 1

16
gabgcd

{
4K[ab]cd − K[ab][cd] + 2K[ab][cd]

}
,

a1 = −a0 + h̃3

2
C − (h4 − 6)B + h̃3D,

a2 = −h̃3

2
(A+C)+(h4−6)B− h̃3D, a3 = h̃3

2
A, (4.2)

and the coefficients A,· · · ,D are given by
A = 1

72

{
6p(4p2 + 9p + 7) − 36q(3p + 4) − 9(p2 + 2p + 3)gabKa,b

+6(p + 1)gabcdKabc,d + 18gabcdKabcd − gabcdefKabc,def

}
,

B = 1
48

{
p(p2 + 5p + 5) − 4q(2p + 3) − 2gabKa,b + gabcdKabcd

}
,

C = 1
12

{
p(4p2 + 9p + 7) − 12q(p + 1) − 3gabgcdKabcd (4.3)

−2gabgcdgefKace,bdf

}
,

D = −1
6
p(p2 + 3p + 4) + q(2p + 3) + 1

2
gabKa,b

−1
4
(p + 1)gabgcdKabc,d − 1

2
gabcdKabcd + 1

36
gabcdefKabc,def

−1
4
(p + 1)gabK[ab] +

1
4
gabgcdK[ab]cd.
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Here we use the following notations:

gabcd =
∑
[3]

gabgcd, gabcdef =
∑
[5]

gabgcdef , Kabc··· = tr(JaJbJc · · · ),

K[ab]cd = tr(J[ab]JcJd), Kabc,def = KabcKdef ,

and so on.
Let tα be the upper 100α percent point of the null distribution of Th and

χ2
α be the upper 100α percent point of the χ2 distribution with r degrees of

freedom. By a Cornish-Fisher expansion, we obtain

tα = χ2
α − 1

n

{
1

gr(χ2
α)

3∑
j=0

ajGr+2j(χ
2
α)

}
+ O(n−3/2)

= χ2
α + O(n−1). (4.4)

Using (3.13), (4.1), and (4.4), we can calculate the power βh,

βh = P(Th > tα|H1) = 1−Gr(χ
2
α; τ)− 1√

n

3∑
j=0

cjGr+2j(χ
2
α; τ)+O(n−1). (4.5)

We use useful formulas for reductions of (4.5). Noncentral χ2 distribution
function and χ2 distribution can be expanded as (see e.g., Muirhead [4])

Gr(x; τ) =
∞∑

k=1

PkGr+2k(x), where Pk =
e−τ/2(1

2
τ)k

k!
, (4.6)

Gr+2(x) = −2gr+2(x) + Gr(x), (4.7)

respectively, where gk(·) is the pdf of the χ2 distribution with k degrees of
freedom. Using (4.6) and (4.7), we can obtain

3∑
j=0

cjGr+2j(χ
2
α; τ) = (c1 + c2 + c3 + c4)

∞∑
k=0

PkGr+2k(χ
2
α) − 2(c1 + c2 + c3)

×
∞∑

k=0

Pkgr+2k+2(χ
2
α) − 2(c2 + c3)

∞∑
k=0

Pkgr+2k+4(χ
2
α) − 2c3

∞∑
k=0

Pkgr+2k+6(χ
2
α),

(4.8)
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where coefficients cj’s are given by (3.12). After calculating (4.8), we can
rewrite (4.5) as

βh =
1√
n

h̃3

[{
(p + 1)Kδ − gabKabδ

}
gr+4(χ

2
α; τ) +

1

3
Kδ3gr+6(χ

2
α; τ)

]
+βLR + O(n−1), (4.9)

where gk(·; τ) is the pdf of the noncentral χ2 distribution with k degrees
of freedom and the noncentrality parameter τ and βLR is the power of the
likelihood ratio statistic.

4.2 Linear Structures

We consider the structure : Σ is a linear combination of matrices,

Σ(ξ) = ξ1G1 + ξ2G2 + · · · + ξqGq,

where Ga’s are given p×p symmetric matrices which are linearly independent,
satisfying that

G2
j = Gj, GiGj = O (i ̸= j),

and ξa’s are unknown such that Σ(ξ) is positive definite. We note that this
structure includes sphericity structure, intraclass correlation structure, and
so on.

We can easily calculate Ja and Kδ, Kabδ in this case as

Ja = −Ga, Kδ = 0, Kabδ = 0. (4.10)

Hence we can write the power (4.9) as

βh =
1

3
√

n
h̃3Kδ3gr+6(χ

2
α; τ) + βLR + O(n−1).

It is equivalent to

√
n(βh − βLR) → 1

3
h̃3Kδ3gr+6(χ

2
α; τ) (n → ∞). (4.11)

This shows that LR statistic has greater power than statistics with negative
values of h̃3 if Kδ3 > 0.
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In a special case that q = 1, this structure is the sphericity structure.
Since we can choose an arbitrary parametrization, we use Σ(ξ) = {exp(ξ1)} Ip,
then,

J1 = −Ip, Kδ3 =

p∑
i=1

(νi − ν)3, (4.12)

where νi’s are the eigenvalues of ∆ and ν = 1
p

∑p
i=1 νi. From (4.11) and

(4.12), when Kδ3 ̸= 0, power comparisions of sphericity test in the class
depend on a kind of skewness of ∆’s eigenvalues. When Kδ3 = 0, we can
not compare the power asymptotically in the class on order n−1/2. So we
consider an asymptotic expansion of the non-null distribution of Th under
the local alternatives up to the order n−1 taking focus on h3 and h4, we have

P(Th ≤ x) = Gr(x; τ) +
1√
n

1∑
j=0

c̃jGr+2j(x; τ) +
1

n

{
5∑

j=1

djGr+2j(x; τ)

+
4∑

j=1

fjGr+2j(x; τ) + bGr(x; τ)

}
+ O(n−3/2), (4.13)

where b does not depend on h3 and h4, the coefficients c̃j’s, dj’s, fj’s and the
formulae needed for calculating expectations are given in Appendix A.

Using (3.13), (4.13), (4.6), and (4.7) with noting (4.4), we can also cal-
culate the power βh as

βh =
1

n

[
5∑

j=2

ejgr+2j(χ
2
α; τ) +

{
(h2

3 + 4h3)E + h3D
} (χ2

α)2

r(r + 2)
gr(χ

2
α; τ)

]

+
1

n

[
4∑

j=2

gjgr+2j(χ
2
α; τ) − 2h4B

(χ2
α)2

r(r + 2)
gr(χ

2
α; τ)

]
+ c + O(n−3/2), (4.14)

where c does not depend on h3 and h4, and E are given by

c = 1 − Gr(χ
2
α; τ) − 1

n

(
bGr(χ

2
α; τ)

)
, E =

1

2

(
C − χ2

α

r + 4
A

)
,

and the coefficients ej’s, gj’s are given in Appendix B, the coefficients A,· · · ,D
are given by (4.3). The difference of local powers among the class is complex.
We can examine the difference numerically for specified values of p, α and ∆.
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Hayakawa [3], Pillai and Jayachandran [6] also gave the numerical examples
about the power of Th in some special cases.

We have shown that the difference of the asymptotic power in our class
of the test for linear structures which depend on only Kδ3 . Other impor-
tant covariance structures arise when we treat covariance structure analysis
(system of equation model) (see e.g., [11]). In this case, we have to consider
non-linear covariance structures. Sometimes the domain Ξ of Σ(Ξ) is not
an open set. If the minimizing point lies on the boundary, the asymptotic
expansion formulas derived in this paper are not applied. The problems of
deriving asymptotic expansion formulas in such case are left for the future.
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Appendix A

Let V be a p× p symmetric random matrix normal with pdf f0(V ) in (3.3).
Let e = (e1, · · · , eq)′ and W be the random vector and matrix defined by
(3.6). Then, it holds that any p × p matrices A and B,

E[eaeb] = gab, E[eaebeced] = gabcd, E[eaebecedeeef ] = gabcdef ,

E[tr(AW )tr(BW )] = 2tr(AB) − gabtr(AJa)tr(BJb),

E[tr(AWBW )] = trAtrB′ + tr(AB′) − gabtr(AJaBJb),

14



E[tr(AW 2)tr(BW 2)] = 4tr(AB̄) + (p2 + 2p + 1)trAtrB

−(p + 1)gab {trAtr(BJaJb) + trBtr(AJaJb)}
−8gabtr(AJaB̄Jb) + gabcdtr(AJaJb)tr(BJcJd),

E[tr(AW )trW 3] = 6(p + 1)trA − 6gabtr(ĀJaJb)

−3(p + 1)gabtr(AJa)Kb + gabcdtr(AJaKbcd),

E[W 4] = p(2p2 + 5p + 5) − 4q(2p + 3)

−2gabKa,b + gabcdKabcd,

E[(W 3)2] = 6p(4p2 + 9p + 7)

−24q(2p + 3) − 12gab(2p + 3)Kab

−3gab(3p2 + 6p + 7)Ka,b + 6(p + 1)gabcdKa,bcd

+18gabcdKabcd − gabcdefKabc,def ,

where Ā = 1
2
(A + A′). The expectations are obtained by using Lemma

3.3 and the fact that vec∗(V ) is distributed as Np(p+1)/2(0, Ip(p+1)/2). The
calculations can be simplified by using the properties such as

E[trW 2trW 2] = E[tr(W 2Ẅ 2) + 2tr(WẄ )tr(WẄ )],

where Ẅ is a symmetric random matrix having the same distribution W
and being independent of W .

Appendix B

The coefficients b and c̃j’s, dj’s, fj’s are given by
c̃0 = 1

2
νKδ2 , c̃1 = −c̃0,

f1 = −1
2
g2, f2 = 1

2
(g2 − g3), f3 = 1

2
(g3 − g4), f4 = 1

2
g4,

d1 = −1
2
e2, d2 = 1

2
(e2 − e3), d3 = 1

2
(e3 − e4), d4 = 1

2
(e4 − e5), d5 = 1

2
e5,

b = E
[
Q2(V1) + θQ1(V1)tr(W1K) + 1

2
θ2 {tr(W1M1)}2 + 1

2
tr(M 2

1 )
]
,

where Q1(·) and Q2(·) are given by (3.4), and the coefficients ej’s, gj’s, V1,
W1, M1 are given by

e2 = − 1
24

h2
3(4p

3 + 9p2 − 13p − 12 + 4p−1) + h3pKδ2 ,
e3 = −1

4
h2

3(p + 2 − 2p−1)Kδ2 + 1
2
h3p

−1Kδ2Kδ2 − 1
2
h3Kδ4

+ 1
144

(h2
3 + 4h3)(6p

3 + 18p2 − 24p − 72 + 96p−1),
e4 = 1

4
(h2

3 + 4h3)Kδ2 − 1
8
h2

3Kδ4 ,
e5 = 1

8
(h2

3 + 4h3)(Kδ4 − p−1Kδ2Kδ2),
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g2 = 1
24

h4(2p
3 + 5p2 − 7p − 12 + 12p−1),

g3 = 1
12

h4(2p + 3 − 6p−1)Kδ2 , g4 = 1
24

h4Kδ4 ,

V1 = U + (1 − 2θ)−
1
2 W + 2θ(1 − 2θ)−1Wδ,

W1 = (1 − 2θ)−
1
2 W + (1 − 2θ)−1Wδ,

M1 = −p−1 {tr(W 2
1 )} Ip − p−1 {tr(V1∆)} (e1 + δ1)Ip

−p−1 {tr(W1)} (e1 + δ1)Ip + (e1 + δ1)2Ip

−(e1 + δ1)(V1 + ∆) + 1
2
(V1∆ + ∆V1).
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