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Abstract

In this paper, we consider approximation to the upper percentiles of the statistic
for pairwise comparison among components of mean vector in elliptical distributions.
The first order and modified second order approximations based on the Bonferroni
inequalities are given by asymptotic expansion procedure. We investigate the ef-
fects of nonnormality on upper percentiles of this statistic in elliptical distribution.

Finally, numerical results by Monte Carlo simulations are given.
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1. Introduction

Let us consider the simultaneous confidence intervals for pairwise comparisons
among components of the mean vector. Such a situation arises, for example, in
multiple comparisons of the components of repeated measurements of the same
quantity in different conditions. Under the multivariate normal population, these

simultaneous confidence intervals are discussed by many authors. Lin, Seppanen
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and Uusipaikka (1990) and Nishiyama (2009) considered the simultaneous confi-
dence intervals by Tukey-Kramer type procedure. Also, Seo (1995) considered the
simultaneous confidence intervals by asymptotic expansion procedure. Here, we
discuss the simultaneous confidence intervals under the elliptical populations.

Let II be the population distributed as a p-dimensional elliptical distribution
with mean vector p and covariance matrix X, ie., E,(u, A) (see, e.g., Muirhead
(1982), Fang, Kotz and Ng (1989)). A probability density function and characteristic

function of the elliptical distribution are of the form

flaipm A) = | A7 {(x — p) A (@ — p)},

for some nonnegative function g, where ¢, is the normalizing constant and A is

positive definite, and

O(t) = exp(it’ ) v (t'At),

for some function ¢, where i = \/—1, respectively. Note that E(X) = p and
Cov(X) =¥ = —2¢/(0)A. We also define the kurtosis parameter by x = {¢”(0)/
(¢/(0))?} — 1. Elliptical distributions include the multivariate normal, the multivari-
ate t, the contaminated normal distributions and so on.

Let 1,...,zy be N independent sample vectors from E,(p, A). Then the sam-

ple mean vector and the sample covariance matrix are

1 N
Nzwia
o
S = mZ(wi—E)(azi—i)’,

=1

8|
I

respectively. In general, simultaneous confidence intervals for pairwise comparisons

among components of mean vector are of the form

TR { /@mfﬂ:U)\/bzmezm/N} , 1<l <m<p,



where by, = e, — e,, and e, is a unit vector of the p-dimensional space having 1

at (-th component and 0 at others. We note that the value w (> 0) is the upper «

percentile of the F2,.  statistics,
/ /
z22'by,
F? — max <{ mZZ7tm
max -p 1<€<m<p{ b/ngbgm )
where z = VN(x — p). In order to construct actually simultaneous confidence

intervals with the confidence level a, it is necessary to find the value w. However,
it is difficult to find the exact value w even under the multivariate normality.

In this paper, we consider approximation to the upper percentiles of Fr%laxp
statistics based on the Bonferroni inequalities to construct approximate simultane-
ous confidence intervals in elliptical distributions. Note that, under the elliptical
populations, approximate simultaneous confidence intervals for pairwise compar-
isons among mean vectors based on the Bonferroni inequalities are discussed by Seo
(2002), Okamoto (2005) and so on.

The organization of this paper is as follows. In Section 2, the First order and
modified second order approximations to the upper percentiles of F?2__ p Statistic
based on the Bonferroni inequalities are described. In Section 3, the First order and
modified second order approximate upper percentiles of Fﬁlax.p statistic by asymp-

totic expansion procedure are given. Finally, the accuracy of the approximations is

investigated by Monte Carlo simulations for selected parameters in Section4.

2. Approximation procedures based on Bonferroni inequalities

In this section, to construct approximate simultaneous confidence intervals, we
describe first order and modified second order approximations based on the Bonfer-
roni inequalities (see, e.g., Siotani (1959), Seo (2002)). By the first order Bonferroni

inequality for Pr(F2___ > w?);

max -p

Pr(F2. ., > w’) < ZZPI"(FEQ,” > w?),

l<m
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where

by, 22 b,
Fim = Ii’ Sby, |
m Im

the first order approximation w? is given as a critical value that satisfies the equality

ZZPr(Ffm > w?) = a.

l<m

We note taht w? is overestimated, and the statistic F?, is essentially distributed as F’
distribution under normality. However, under the class of the elliptical distributions,
F?, is not distributed as F distribution. Hence the first order approximation cannot
be exactly expressed as the upper percentiles of F' distribution. Therefore, we discuss
an asymptotic expansion for the first order approximation in Section 3.

Next, a modified second order Bonferroni procedure is described to improve the
first order approximation.

Letay =e; —ey, a0 =€ —e€;,...,ay =€, 1 —e, and M =p(p—1)/2. By

the Bonferroni inequalities for Pr(F?2,__. p > > w?), ie.,

ZZPT(FE% > w?) = B(w?) < Pr(Fiu., > w?) < ZZPI(FZQm > w?),

<m <m

where
a’zz'a; a,zz'a
D) I e T
P a;Sa; a,Sa
the modified second order approximation w3, by the modified second Bonferroni
procedure is defined as a critical value that satisfies the equality

> Pr(FL, > wiy) — Blui) = o

<m

In order to obtain the modified second order approximation w?,, we discuss the
evaluation of 3(w?). To evaluate 3(w?), consider two cases of joint probabilities,

that is,

Gu(wd) = Pr{F2 > wh, By > wl}, (i#] # k#0)
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and

Ba(wy) = Pri{Fjj > wy, F > wi}, (i #]j#k),

under the elliptical distribution set up. We note that

Bu) = 2p(p— 1o~ 2)(p — 3 () + 3o — 1o — 2 (u3).

For large sample approximations, in Section 3, asymptotic expansions of these

joint probabilities obtained by using the perturbation method are presented.

3. First order and modified second order approximations
3.1 First order approximation
In this subsection, we give an asymptotic expansion for the first order Bonferroni

approximation by using the perturbation method. Note that
(N-1)S=NW — z2/,

where

Without loss of generality, we can assume 3 = I,. Let

1 1
E:u—l—ﬁz, W:Ip‘f‘\/—NZ,

then we can write

1 1
blemeZm = m (1 + mblémbem - 2szmzz bgm) .

Therefore,
_ 1 1 1
(b}, Sby,) " = 3 {1 ———aV 4 — (aé?r)bz + aé}f — 1) + op(N_l)} :

where



Hence, calculating the characteristic function of FZ, with z and Z by using the joint

density of z and Z given by Iwashita (1997), we obtain
1
Elexp(itF2,)] = (1—2it)~'/? {1 + W(c()—l—cl(l—%t)_l—kcz(l—22'15)_2)—1—0(]\7_1)} ,

where

15 15 15
00:—1—Z/{, 01:—2+?/§, 02:3—Z/{.

Therefore, inverting the characteristic function, we have the following theorem.

Theorem 1. The distribution of F?, can be expanded as

i
Pr{F};, >w*} =Pr{xi>w’} + v Zochr {Xlig; > 0} +o(N7T),
‘]:

and also its upper o percentiles can be expanded as

1

tala) = 33(@) ~ @) { = gend(@) b+ o)

where x3() is the upper o percentiles of x* distribution with 1 degrees of freedom.

Since F7, is essentially distributed as F' distribution under normality, we have

bala) = Fiofe) = 5nd(@) (ot 1) = (Geo = 1) ) | + o),

where v = N —1 and Fy ,(«) is the upper « percentiles of F' distribution with 1 and

v degrees of freedom.

For large N, an asymptotic expansion for w}, we can write

. 1 . 1 . _
it = () - g {an - et o)

where o = /M and M = p(p — 1)/2, and an another expression, we can write

ut = Fiufe’) = o) { @+ )= (ga - 1))} + o,
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Thus, the approximate simultaneous confidence intervals for pairwise compar-

isons among components of mean vector are given by

TS {bsziwm/bzmegm/N} , 1<t<m<p.

3.2 Modified second order approximation
In this subsection, we give an asymptotic expansion for the modified second order
Bonferroni approximation. In order to obtain the modified second order approxi-

mation w3,, we discuss the evaluation of

azza a.zz'a
it latadinl) 2 g k 2
E g > Wy, —a— > Wi ¢,
a, Sa

i<k

that is, we consider the following two cases of joint probability;

Pi(w?) = Pri{Fj > wi, Fiy > wi}, (i #j#k#0),

and

Bo(wi) = Pr{E; > wi, Fj, > wi}, (i #j#Fk).

At first, we discuss an asymptotic expansion for (;(w?). On the same line in
Section 3.1, let ® = u + \/Lﬁz, W=1,+ \/LNZ. For convenience, we consider the
joint characteristic function of F, and Fj,. Then the joint characteristic function

can be written as

o : . 1 1 _
Cy(ity,ity) = E[exp(ztlFS) + ztng(i))] 1+ \/_NBI + NBQ +o(N71),

where

By = (—it)F2 + (—ity) F{2,

ity)? its)?
B, — it Ay + S 21) (FQ) + ity F + 22k §> (F5) + (i) (it2) F By



and

1 1 2 0), (1 3 1 0 1
F1(2) = (a§2))2, F1(2) = a12)(a§2)>27 F1(2) = (ag2))2 ((agz)f + (ag;)Q - 1> )

1 1 2 0, (1 3 1 0 1
F3(4) = (a:(M))Q, F?)(4) = a§4)(a§4))2, F?s(4) = (a:(,)4))2 <(ag4))2 + (a:(,)4))2 - 1) '
Calculating the expectation Elexp(it; 'S +ito F34)] with respect to z and Z, we have

L. _ 1 _
Ch(ity,its) = (uquz) 172 4 N(uﬂtz) 1/2

X {Al + (Aglul_l + Agguz_l) + (A31’LL1_2 + A32U2_2) + A4<U1U2)_1} + O(N_l),

where

1 17 1 17
Al =———K, An=Apn=——+ —k,

2 8
3 15 1
Azl = Agy = 11 =
and U = 1-— 2it1, Ug = 1-— 22t2
Inverting this joint characteristic function C(ity, its), we have the following the-

orern.

Theorem 2. For large N, an asymptotic expansion for the joint probability 3;(w?)

s given by

1 _
Pr{F}>w?, Fy>wi} = G%/Q(nl)—i_ﬁ {d1g12(m)G1/2(m)+dagij(m) }+o(N71),

where

1

—wi, G1/2(771):/ Gr2(t)dt,  gij2(m) =

t—l/ze—t
2 m

=

Y

I'(z)

and

d; = % {8m +4+4 (=10 + 15)k}, dy = —77%/{.



Secondly, we consider B»(w?). In this case, the joint characteristic function

Co(ity, ity) = Elexp(it; FE + ito F3)] can be written as

1 1
Coity, ity) = Elexp(iti FS) + ita F)] |1+ —=Dy + — Dy | + o(N71),

VN N
where
Dy = (=it)) 3 + (—it2) F3,
Do — it m® 0 mone o p@, (#2)° pope @) pe)
2 =1y + B (Fip)” + il + 5 (Fi3)" + (it1) (it2) Fiy Fiy
and

1 1 2 0), (1 3 1 0 1
F1(2) = (a&Q))Z, F1(2) = a§2)(a§2))2, F1(2) = (a%Q))Q <(a§2))2 + (a%Q))Z - 1) )

1 1 2 0), (1 3 1 0 1
F1(3) = (a%S))2, F1(3) = a§3)(a§3))2, F1(3) = (a§3))2 <(a§3))2 + (a§3))2 - 1) .

Calculating the expectation E[exp(it; FE, + ity F13)] with respect to z and Z, we

have
1
Cg(itl, Ztg) = (b71/2 1+ N(Ul(bil + U2¢2>] + O(Nil),
where
1
¢ = §<4)\1)\2 - 1)»
1
UL = 6 [1 + 7()\1 + /\2) — 15)\1/\2 + {3 + 17(/\1 + )\2) — 37)\1)\2} li} s
1
Ug = E {3b21 + 3b22 + (bgg + b24)l'€} s
and

3. 3.
)\1 =1- ilth )\2 =1- 5@152,
bt =8(AT+A3) — At — Aa+ 1, boy = A Ao {16A1 A0 — 16(A; + o) + 1},

623 == —18<>\% + )\g) ‘|‘ 7()\1 + )\2) - 1, b24 - )\1)\2 {88)\1)\2 - 28()\1 + )\2) - 9} .

Therefore, we have the following theorem.
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Theorem 3. For large N, an asymptotic expansion for the joint probability Bs(w?)

s given by
3 1/2 oo (l) "
2 2 12 2\ _ 2)m
Pr{Fj > i, Fj, > wi} = (Z_l) n;] m! <Z>
2 1 ) .
X | Grgr/2(n2) + N {d1gms1/2(12) Gros1/2(n2) + d29m+1/z(772)} +o(N7),
where
T2 = gw%’ Gm+1/2(772) — /'OO gm+1/2(t)dt’ gm+1/2(772) — ;ltmfl/Qeft,
3 s T(m+ 1)
and
dy = 1m2(2m2 — 2m + 1) + %(—4772 — 14m + 19),
2
"2 2 2 2
dy = 3 2m—+3 — 18n9+4 6(5+2 :
? 6(2m + 1)(2m + 3) [3(n3+2m+3)+{—n3 +18n2+4m*+6(5+2n;)m } k|
For large N, an asymptotic expansion for w?, is given by
Wl = x3(a™) = = (0™) d o — Teaxt(a™) b+ o(N )
2N 3 '

where o™ = (a + f(w?}))/M and M = p(p — 1)/2, and an another expression, we

can write

ity = Fuula™) = gdie) { @+ 1) = (e = 1) ) | + o)

Thus, the approximate simultaneous confidence intervals for pairwise compar-

isons among components of mean vector are given by

b, 1 € [bémij:wM\/bzmegm/N] , 1<t<m<p.
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4. Numerical examinations

In this section, we examine accuracy of the obtained approximation. We give
some numerical results of the upper percentiles of Fiaxp (= y/F2,,.,) statistic by
Monte Carlo simulation. The Monte Carlo simulations are made from 10° trials for
selected values of parameters; p, k, a and N.

Tables 1, 2 and 3 give four kinds of approximation as follows;
(i) wi., : the first order approximation based on x? distribution,
(ii) wy.p : the first order approximation based on F' distribution,
(iii) was. : the modified second order approximation based on x? distribution,
(iv) warr : the modified second order approximation based on F distribution.

Each value is calculated for the following combinations of parameter values: p =
3,5,10, N = 20,40,80 and o = 0.1,0.05,0.01. For the distributions of population,
the multivariate normal (x = 0), the e-contaminated normal (¢ = 0.1,0 =3 : kK =
1.78) and the e-contaminated normal (¢ = 0.1,0 =4 : k = 3.24) are treated.

For the multivariate normal case, it can be seen from Tables 1 that the values
of wy.r are always become conservative and modified second order approximation is
close to the simulated value. We note that there is a trend that when p is small, the
approximate values become be better. And it can be seen from Tables 1 that the
approximate values converge to the simulated values when the sample size is large.
Also, when « is small, wys.p is better than wys.,. But, when o and sample size
are small, it can be seen that first order approximation is better than the modified
second order approximation.

For the contaminated normal case, it can be seen from Tables 2 and 3 that the
first order and modified second order approximations in this paper become better

when k is small. But, we note that there is a case that the first order approximation

11



is smaller that the simulated value. So, in these cases, there is a trend that the

modified second order approximation is become worth.
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Table 1: Approximate and simulated values.

Multivariate normal distribution (x = 0)

P N «o Wy W1.F WL WM F w
0.01 3.269 3.354 3.247  3.393 3.334
20 0.05 2.588 2.679 2.545 2.634 2.571
0.1 2.270 2.343 2.210 2.279 2.213
0.01 3.107 3.127  3.085 3.138 3.104
3 40 0.05 2.493 2.530 2.450 2.487 2.450
0.1 2.200 2.232 2.140 2.170 2.128
0.01 3.022 3.027  3.001 3.023 3.007
80 0.05 2.444 2.461 2.402 2.418 2.395
0.1 2.164 2.179 2.105 2.118 2.088
0.01 3.746 3.883 3.708 3.910 3.848
20 0.05 3.103 3.235 3.029 3.154 3.090
0.1 2.811 2.918 2.714 2.814 2.736
0.01 3.525 3.558 3.483 3.551 3.523
5 40 0.05 2.959 3.009 2.886 2.933 2.894
0.1 2.696 2.738 2.600 2.640 2.587
0.01 3.410 3.418 3.369 3.396 3.383
80 0.05 2.884 2.905 2.813 2.833 2.807
0.1 2.637 2.655 2.541 2.559 2.521
0.01 4.315 4.543 4.278 4.574 4.502
20 0.05 3.705 3.906 3.607  3.796 3.736
0.1 3.432 3.599 3.301 3.453 3.386
0.01 4.016 4.070 3.954 4.046 4.025
10 40 0.05 3.490 3.559 3.382 3.446 3.424
0.1 3.251 3.310 3.117  3.172 3.133
0.01 3.857 3.871 3.792 3.826 3.827
80 0.05 3.377 3.405 3.274 3.300 3.288
0.1 3.156 3.181 3.027  3.050 3.022
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Table 2: Continued.

Contaminated normal distribution (k = 1.78)

P N « wl.x w1.F wM.X Wr-F w
0.01 | 2828 2926 2782 2941  3.172
20 | 0.05 | 2414 2454 2364 2456 @ 2.481
0.1 2184 2209 2124  2.195 2.157
0.01 2.882 2904 2847 2904 @ 2991
3 40 | 0.05 | 2404 2413 2357 2394 2.395
0.1 2156 2162 2.096 @ 2.126  2.099
0.01 2909 2914 2881 2904 2935
80 | 0.06 | 2399 2401 2354 2371  2.366
0.1 2.142 2,144 2.082 2.096 2.076
0.01 3.063  3.221 2917 3114  3.614
20 | 0.05 | 2737 2817 2615 2.7141 2.911
0.1 2.562 2.616 2433 2533 2.587
0.01 | 3.174 3210 3.081  3.152  3.340
) 40 | 0.05 | 2.772  2.790  2.671  2.720  2.763
0.1 2.569  2.581 2453 2493 2479
0.01 | 3.233  3.241  3.168  3.196  3.250
80 | 0.06 | 2.790  2.794  2.703  2.724  2.713
0.1 2572 2575 2466 2484  2.441
0.01 3.251 3.548 2,947  3.154  4.261
20 | 0.05 | 3.036 3.196  2.765 2920  3.533
0.1 2911 3.030  2.646  2.777  3.232
0.01 | 3479 3.541 3.266 3.352 3.834
10 | 40 | 0.05 | 3.150  3.185  2.947  3.009  3.289
0.1 298  3.012 2776 2829  3.027
0.01 | 3.587 3.601 3453 3487  3.690
80 | 0.05 | 3.206 3.214  3.054 3.080  3.202
0.1 3.023  3.029 2833 2875  2.959
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Table 3: Continued.

Contaminated normal distribution (k = 3.24)

P N « wl.x w1.F wM.X Wr-F w
0.01 | 2406 2520 2381 2535  3.077
20 | 0.05 | 2.261 2304 2213 2307  2.416
0.1 2.110 2,136 2.055 2,127 2113
0.01 | 2684 2707 2639 2.698  2.906
3 40 | 0.05 | 2.328  2.228  2.279 2317  2.349
0.1 2119 2125  2.060 2.091 @ 2.073
0.01 2.812 2818 2779  2.802 2.875
80 | 0.05 | 2.361 2.364  2.315 2.332 2.341
0.1 2.124 2125 2.064  2.078  2.063
0.01 2334 2549 2300 2414  3.498
20 | 0.05 | 2.395 2486 2280 2389  2.813
0.1 2337 2396 2207 2300 @ 2.503
0.01 | 283 2893 2725  2.793  3.228
) 40 | 0.05 | 2.609  2.628  2.489  2.537  2.683
0.1 2459 2472 2.331 2.371 2417
0.01 | 3.079  3.088 2991 3.020  3.165
80 | 0.05 | 2.710 2.714  2.611 2.632 2.658
0.1 2518 2521 2403 2421  2.400
0.01 1.986  2.442 1.588 1.629  4.145
20 | 0.05 | 2347 2551 2074 2148  3.450
0.1 2399 2542 2.115 2194  3.238
0.01 | 2964 3.037 2691 2.755  3.708
10 | 40 | 0.05 | 2.841 2879 2579 2633 3.191
0.1 2.7149 2777 2488 2536  2.947
0.01 | 3.348 3.363  3.147  3.179  3.585
80 | 0.05 | 3.058  3.067 2.863 2.888  3.132
0.1 2908 2914 2703  2.726  2.906
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