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Abstract

In this paper, we consider approximation to the upper percentiles of the statistic

for pairwise comparison among components of mean vector in elliptical distributions.

The first order and modified second order approximations based on the Bonferroni

inequalities are given by asymptotic expansion procedure. We investigate the ef-

fects of nonnormality on upper percentiles of this statistic in elliptical distribution.

Finally, numerical results by Monte Carlo simulations are given.
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1. Introduction

Let us consider the simultaneous confidence intervals for pairwise comparisons

among components of the mean vector. Such a situation arises, for example, in

multiple comparisons of the components of repeated measurements of the same

quantity in different conditions. Under the multivariate normal population, these

simultaneous confidence intervals are discussed by many authors. Lin, Seppänen
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and Uusipaikka (1990) and Nishiyama (2009) considered the simultaneous confi-

dence intervals by Tukey-Kramer type procedure. Also, Seo (1995) considered the

simultaneous confidence intervals by asymptotic expansion procedure. Here, we

discuss the simultaneous confidence intervals under the elliptical populations.

Let Π be the population distributed as a p-dimensional elliptical distribution

with mean vector µ and covariance matrix Σ, i.e., Ep(µ,Λ) (see, e.g., Muirhead

(1982), Fang, Kotz and Ng (1989)). A probability density function and characteristic

function of the elliptical distribution are of the form

f(x; µ,Λ) = cp|Λ|−1/2g
{
(x − µ)′Λ−1(x − µ)

}
,

for some nonnegative function g, where cp is the normalizing constant and Λ is

positive definite, and

φ(t) = exp(it′µ)ψ(t′Λt),

for some function ψ, where i =
√
−1, respectively. Note that E(X) = µ and

Cov(X) = Σ = −2ψ′(0)Λ. We also define the kurtosis parameter by κ = {ψ′′(0)/

(ψ′(0))2}−1. Elliptical distributions include the multivariate normal, the multivari-

ate t, the contaminated normal distributions and so on.

Let x1, . . . , xN be N independent sample vectors from Ep(µ,Λ). Then the sam-

ple mean vector and the sample covariance matrix are

x =
1

N

N∑
i=1

xi,

S =
1

N − 1

N∑
i=1

(xi − x)(xi − x)′,

respectively. In general, simultaneous confidence intervals for pairwise comparisons

among components of mean vector are of the form

b′
`mµ ∈

[
b′

`mx ± w
√

b′
`mSb`m/N

]
, 1 ≤ ` < m ≤ p,

2



where b`m = e` − em and e` is a unit vector of the p-dimensional space having 1

at `-th component and 0 at others. We note that the value w (> 0) is the upper α

percentile of the F 2
max ·p statistics,

F 2
max ·p = max

1≤`<m≤p

{
b′

`mzz′b`m

b′
`mSb`m

}
,

where z =
√

N(x − µ). In order to construct actually simultaneous confidence

intervals with the confidence level α, it is necessary to find the value w. However,

it is difficult to find the exact value w even under the multivariate normality.

In this paper, we consider approximation to the upper percentiles of F 2
max ·p

statistics based on the Bonferroni inequalities to construct approximate simultane-

ous confidence intervals in elliptical distributions. Note that, under the elliptical

populations, approximate simultaneous confidence intervals for pairwise compar-

isons among mean vectors based on the Bonferroni inequalities are discussed by Seo

(2002), Okamoto (2005) and so on.

The organization of this paper is as follows. In Section 2, the First order and

modified second order approximations to the upper percentiles of F 2
max ·p statistic

based on the Bonferroni inequalities are described. In Section 3, the First order and

modified second order approximate upper percentiles of F 2
max ·p statistic by asymp-

totic expansion procedure are given. Finally, the accuracy of the approximations is

investigated by Monte Carlo simulations for selected parameters in Section4.

2. Approximation procedures based on Bonferroni inequalities

In this section, to construct approximate simultaneous confidence intervals, we

describe first order and modified second order approximations based on the Bonfer-

roni inequalities (see, e.g., Siotani (1959), Seo (2002)). By the first order Bonferroni

inequality for Pr(F 2
max ·p > w2);

Pr(F 2
max ·p > w2) <

∑ ∑
`<m

Pr(F 2
`m > w2),
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where

F 2
`m =

b′
`mzz′b`m

b′
`mSb`m

,

the first order approximation w2
1 is given as a critical value that satisfies the equality∑∑

`<m

Pr(F 2
`m > w2

1) = α.

We note taht w2
1 is overestimated, and the statistic F 2

`m is essentially distributed as F

distribution under normality. However, under the class of the elliptical distributions,

F 2
`m is not distributed as F distribution. Hence the first order approximation cannot

be exactly expressed as the upper percentiles of F distribution. Therefore, we discuss

an asymptotic expansion for the first order approximation in Section 3.

Next, a modified second order Bonferroni procedure is described to improve the

first order approximation.

Let a1 = e1 − e2, a2 = e1 − e3, . . . , aM = ep−1 − ep and M = p(p − 1)/2. By

the Bonferroni inequalities for Pr(F 2
max ·p > w2), i.e.,∑∑

`<m

Pr(F 2
`m > w2) − β(w2) < Pr(F 2

max ·p > w2) <
∑∑

`<m

Pr(F 2
`m > w2),

where

β(w2) =
∑∑

j<k

Pr

{
a′

jzz′aj

a′
jSaj

> w2,
a′

kzz′ak

a′
kSak

> w2

}
,

the modified second order approximation w2
M by the modified second Bonferroni

procedure is defined as a critical value that satisfies the equality∑∑
`<m

Pr(F 2
`m > w2

M) − β(w2
1) = α.

In order to obtain the modified second order approximation w2
M , we discuss the

evaluation of β(w2
1). To evaluate β(w2

1), consider two cases of joint probabilities,

that is,

β1(w
2
1) = Pr

{
F 2

ij > w2
1, F

2
k` > w2

1

}
, (i 6= j 6= k 6= `),
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and

β2(w
2
1) = Pr

{
F 2

ij > w2
1, F

2
ik > w2

1

}
, (i 6= j 6= k),

under the elliptical distribution set up. We note that

β(w2
1) =

1

8
p(p − 1)(p − 2)(p − 3)β1(w

2
1) +

1

2
p(p − 1)(p − 2)β1(w

2
2).

For large sample approximations, in Section 3, asymptotic expansions of these

joint probabilities obtained by using the perturbation method are presented.

3. First order and modified second order approximations

3.1 First order approximation

In this subsection, we give an asymptotic expansion for the first order Bonferroni

approximation by using the perturbation method. Note that

(N − 1)S = NW − zz′,

where

W =
1

N

N∑
j=1

(xj − µ)(xj − µ)′.

Without loss of generality, we can assume Σ = Ip. Let

x = µ +
1√
N

z, W = Ip +
1√
N

Z,

then we can write

b′
`mSb`m =

N

N − 1

(
1 +

1

2
√

N
b′

`mZb`m − 1

2N
b′

`mzz′b`m

)
.

Therefore,

(b′
`mSb`m)

−1
=

1

2

{
1 − 1√

N
a

(0)
`m +

1

N

(
a

(0)2

`m + a
(1)2

`m − 1
)

+ op(N
−1)

}
,

where

a
(0)
`m =

1

2
b′

`mZb`m, a
(1)
`m =

1√
2
b′

`mz.
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Hence, calculating the characteristic function of F 2
`m with z and Z by using the joint

density of z and Z given by Iwashita (1997), we obtain

E[exp(itF 2
`m)] = (1−2it)−1/2

{
1 +

1

4N
(c0+c1(1−2it)−1+c2(1−2it)−2)+o(N−1)

}
,

where

c0 = −1 − 15

4
κ, c1 = −2 +

15

2
κ, c2 = 3 − 15

4
κ.

Therefore, inverting the characteristic function, we have the following theorem.

Theorem 1. The distribution of F 2
`m can be expanded as

Pr
{
F 2

`m > w2
}

= Pr
{
χ2

1 > w2
}

+
1

4N

2∑
j=0

cjPr
{
χ2

1+2j > w2
}

+ o(N−1),

and also its upper α percentiles can be expanded as

w2
`m(α) = χ2

1(α) − 1

2N
χ2

1(α)

{
c0 −

1

3
c2χ

2
1(α)

}
+ o(N−1),

where χ2
1(α) is the upper α percentiles of χ2 distribution with 1 degrees of freedom.

Since F 2
`m is essentially distributed as F distribution under normality, we have

w2
`m(α) = F1,ν(α) − 1

2N
χ2

1(α)

{
(c0 + 1) −

(
1

3
c2 − 1

)
χ2

1(α)

}
+ o(N−1),

where ν = N −1 and F1,ν(α) is the upper α percentiles of F distribution with 1 and

ν degrees of freedom.

For large N , an asymptotic expansion for w2
1, we can write

w2
1 = χ2

1(α
∗) − 1

2N
χ2

1(α
∗)

{
c0 −

1

3
c2χ

2
1(α

∗)

}
+ o(N−1),

where α∗ = α/M and M = p(p − 1)/2, and an another expression, we can write

w2
1 = F1,ν(α

∗) − 1

2N
χ2

1(α
∗)

{
(c0 + 1) −

(
1

3
c2 − 1

)
χ2

1(α
∗)

}
+ o(N−1).
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Thus, the approximate simultaneous confidence intervals for pairwise compar-

isons among components of mean vector are given by

b′
`mµ ∈

[
b′

`mx ± w1

√
b′

`mSb`m/N

]
, 1 ≤ ` < m ≤ p.

3.2 Modified second order approximation

In this subsection, we give an asymptotic expansion for the modified second order

Bonferroni approximation. In order to obtain the modified second order approxi-

mation w2
M , we discuss the evaluation of

β(w2
1) =

∑∑
j<k

Pr

{
a′

jzz′aj

a′
jSaj

> w2
1,

a′
kzz′ak

a′
kSak

> w2
1

}
,

that is, we consider the following two cases of joint probability;

β1(w
2
1) = Pr

{
F 2

ij > w2
1, F

2
k` > w2

1

}
, (i 6= j 6= k 6= `),

and

β2(w
2
1) = Pr

{
F 2

ij > w2
1, F

2
ik > w2

1

}
, (i 6= j 6= k).

At first, we discuss an asymptotic expansion for β1(w
2
1). On the same line in

Section 3.1, let x = µ + 1√
N

z, W = Ip + 1√
N

Z. For convenience, we consider the

joint characteristic function of F 2
12 and F 2

34. Then the joint characteristic function

can be written as

C1(it1, it2) = E[exp(it1F
(1)
12 + it2F

(1)
34 )]

[
1 +

1√
N

B1 +
1

N
B2

]
+ o(N−1),

where

B1 = (−it1)F
(2)
12 + (−it2)F

(2)
34 ,

B2 = it1F
(3)
12 +

(it1)
2

2
(F

(2)
12 )2 + it2F

(3)
34 +

(it2)
2

2
(F

(2)
34 )2 + (it1)(it2)F

(2)
12 F

(2)
34 ,
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and

F
(1)
12 = (a

(1)
12 )2, F

(2)
12 = a

(0)
12 (a

(1)
12 )2, F

(3)
12 = (a

(1)
12 )2

(
(a

(0)
12 )2 + (a

(1)
12 )2 − 1

)
,

F
(1)
34 = (a

(1)
34 )2, F

(2)
34 = a

(0)
34 (a

(1)
34 )2, F

(3)
34 = (a

(1)
34 )2

(
(a

(0)
34 )2 + (a

(1)
34 )2 − 1

)
.

Calculating the expectation E[exp(it1F
2
12+it2F34)] with respect to z and Z, we have

C1(it1, it2) = (u1u2)
−1/2 +

1

N
(u1u2)

−1/2

×
{
A1 + (A21u

−1
1 + A22u

−1
2 ) + (A31u

−2
1 + A32u

−2
2 ) + A4(u1u2)

−1
}

+ o(N−1),

where

A1 = −1

2
− 17

8
κ, A21 = A22 = −1

2
+

17

8
κ,

A31 = A32 =
3

4
− 15

4
κ, A4 = −1

4
κ,

and u1 = 1 − 2it1, u2 = 1 − 2it2.

Inverting this joint characteristic function C1(it1, it2), we have the following the-

orem.

Theorem 2. For large N , an asymptotic expansion for the joint probability β1(w
2
1)

is given by

Pr
{
F 2

ij >w2
1, F

2
k` >w2

1

}
= G2

1/2(η1)+
1

N

{
d1g1/2(η1)G1/2(η1)+d2g

2
1/2(η1)

}
+o(N−1),

where

η1 =
1

2
w2

1, G1/2(η1) =

∫ ∞

η1

g1/2(t)dt, g1/2(η1) =
1

Γ(1
2
)
t−1/2e−t,

and

d1 =
η1

4
{8η1 + 4 + (−10η1 + 15)κ} , d2 = −η2

1κ.
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Secondly, we consider β2(w
2
1). In this case, the joint characteristic function

C2(it1, it2) = E[exp(it1F
2
12 + it2F

2
13)] can be written as

C2(it1, it2) = E[exp(it1F
(1)
12 + it2F

(1)
13 )]

[
1 +

1√
N

D1 +
1

N
D2

]
+ o(N−1),

where

D1 = (−it1)F
(2)
12 + (−it2)F

(2)
13 ,

D2 = it1F
(3)
12 +

(it1)
2

2
(F

(2)
12 )2 + it2F

(3)
13 +

(it2)
2

2
(F

(2)
13 )2 + (it1)(it2)F

(2)
12 F

(2)
13 ,

and

F
(1)
12 = (a

(1)
12 )2, F

(2)
12 = a

(0)
12 (a

(1)
12 )2, F

(3)
12 = (a

(1)
12 )2

(
(a

(0)
12 )2 + (a

(1)
12 )2 − 1

)
,

F
(1)
13 = (a

(1)
13 )2, F

(2)
13 = a

(0)
13 (a

(1)
13 )2, F

(3)
13 = (a

(1)
13 )2

(
(a

(0)
13 )2 + (a

(1)
13 )2 − 1

)
.

Calculating the expectation E[exp(it1F
2
12 + it2F13)] with respect to z and Z, we

have

C2(it1, it2) = φ−1/2

[
1 +

1

N
(u1φ

−1 + u2φ
−2)

]
+ o(N−1),

where

φ =
1

3
(4λ1λ2 − 1),

u1 =
1

6
[1 + 7(λ1 + λ2) − 15λ1λ2 + {3 + 17(λ1 + λ2) − 37λ1λ2}κ] ,

u2 =
1

18
{3b21 + 3b22 + (b23 + b24)κ} ,

and

λ1 = 1 − 3

2
it1, λ2 = 1 − 3

2
it2,

b21 = 8(λ2
1 + λ2

2) − λ1 − λ2 + 1, b22 = λ1λ2 {16λ1λ2 − 16(λ1 + λ2) + 1} ,

b23 = −18(λ2
1 + λ2

2) + 7(λ1 + λ2) − 1, b24 = λ1λ2 {88λ1λ2 − 28(λ1 + λ2) − 9} .

Therefore, we have the following theorem.
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Theorem 3. For large N , an asymptotic expansion for the joint probability β2(w
2
1)

is given by

Pr
{
F 2

ij > w2
1, F

2
ik > w2

1

}
=

(
3

4

)1/2 ∞∑
m=0

(
1
2

)
m

m!

(
1

4

)m

×
[
G2

m+1/2(η2) +
1

N

{
d1gm+1/2(η2)Gm+1/2(η2) + d2g

2
m+1/2(η2)

}]
+ o(N−1),

where

η2 =
2

3
w2

1, Gm+1/2(η2) =

∫ ∞

η2

gm+1/2(t)dt, gm+1/2(η2) =
1

Γ(m + 1
2
)
tm−1/2e−t,

and

d1 = η2(2η2 − 2m + 1) +
η2

4
(−4η2 − 14m + 19)κ,

d2 =
η2

2

6(2m + 1)(2m + 3)

[
3(η2

2+2m+3)+
{
−η2

2+18η2+4m2+6(5+2η2)m
}

κ
]
.

For large N , an asymptotic expansion for w2
M is given by

w2
M = χ2

1(α
∗∗) − 1

2N
χ2

1(α
∗∗)

{
c0 −

1

3
c2χ

2
1(α

∗∗)

}
+ o(N−1),

where α∗∗ = (α + β(w2
1))/M and M = p(p − 1)/2, and an another expression, we

can write

w2
M = F1,ν(α

∗∗) − 1

2N
χ2

1(α
∗∗)

{
(c0 + 1) −

(
1

3
c2 − 1

)
χ2

1(α
∗∗)

}
+ o(N−1).

Thus, the approximate simultaneous confidence intervals for pairwise compar-

isons among components of mean vector are given by

b′
`mµ ∈

[
b′

`mx ± wM

√
b′

`mSb`m/N

]
, 1 ≤ ` < m ≤ p.
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4. Numerical examinations

In this section, we examine accuracy of the obtained approximation. We give

some numerical results of the upper percentiles of Fmax ·p (=
√

F 2
max ·p) statistic by

Monte Carlo simulation. The Monte Carlo simulations are made from 106 trials for

selected values of parameters; p, κ, α and N .

Tables 1, 2 and 3 give four kinds of approximation as follows;

(i) w1·χ : the first order approximation based on χ2 distribution,

(ii) w1·F : the first order approximation based on F distribution,

(iii) wM ·χ : the modified second order approximation based on χ2 distribution,

(iv) wM ·F : the modified second order approximation based on F distribution.

Each value is calculated for the following combinations of parameter values: p =

3, 5, 10, N = 20, 40, 80 and α = 0.1, 0.05, 0.01. For the distributions of population,

the multivariate normal (κ = 0), the ε-contaminated normal (ε = 0.1, σ = 3 : κ =

1.78) and the ε-contaminated normal (ε = 0.1, σ = 4 : κ = 3.24) are treated.

For the multivariate normal case, it can be seen from Tables 1 that the values

of w1·F are always become conservative and modified second order approximation is

close to the simulated value. We note that there is a trend that when p is small, the

approximate values become be better. And it can be seen from Tables 1 that the

approximate values converge to the simulated values when the sample size is large.

Also, when α is small, wM ·F is better than wM ·χ. But, when α and sample size

are small, it can be seen that first order approximation is better than the modified

second order approximation.

For the contaminated normal case, it can be seen from Tables 2 and 3 that the

first order and modified second order approximations in this paper become better

when κ is small. But, we note that there is a case that the first order approximation
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is smaller that the simulated value. So, in these cases, there is a trend that the

modified second order approximation is become worth.
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Table 1: Approximate and simulated values.
Multivariate normal distribution (κ = 0)

p N α w1·χ w1·F wM ·χ wM ·F w
0.01 3.269 3.354 3.247 3.393 3.334

20 0.05 2.588 2.679 2.545 2.634 2.571
0.1 2.270 2.343 2.210 2.279 2.213
0.01 3.107 3.127 3.085 3.138 3.104

3 40 0.05 2.493 2.530 2.450 2.487 2.450
0.1 2.200 2.232 2.140 2.170 2.128
0.01 3.022 3.027 3.001 3.023 3.007

80 0.05 2.444 2.461 2.402 2.418 2.395
0.1 2.164 2.179 2.105 2.118 2.088
0.01 3.746 3.883 3.708 3.910 3.848

20 0.05 3.103 3.235 3.029 3.154 3.090
0.1 2.811 2.918 2.714 2.814 2.736
0.01 3.525 3.558 3.483 3.551 3.523

5 40 0.05 2.959 3.009 2.886 2.933 2.894
0.1 2.696 2.738 2.600 2.640 2.587
0.01 3.410 3.418 3.369 3.396 3.383

80 0.05 2.884 2.905 2.813 2.833 2.807
0.1 2.637 2.655 2.541 2.559 2.521
0.01 4.315 4.543 4.278 4.574 4.502

20 0.05 3.705 3.906 3.607 3.796 3.736
0.1 3.432 3.599 3.301 3.453 3.386
0.01 4.016 4.070 3.954 4.046 4.025

10 40 0.05 3.490 3.559 3.382 3.446 3.424
0.1 3.251 3.310 3.117 3.172 3.133
0.01 3.857 3.871 3.792 3.826 3.827

80 0.05 3.377 3.405 3.274 3.300 3.288
0.1 3.156 3.181 3.027 3.050 3.022
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Table 2: Continued.
Contaminated normal distribution (κ = 1.78)

p N α w1·χ w1·F wM ·χ wM ·F w
0.01 2.828 2.926 2.782 2.941 3.172

20 0.05 2.414 2.454 2.364 2.456 2.481
0.1 2.184 2.209 2.124 2.195 2.157
0.01 2.882 2.904 2.847 2.904 2.991

3 40 0.05 2.404 2.413 2.357 2.394 2.395
0.1 2.156 2.162 2.096 2.126 2.099
0.01 2.909 2.914 2.881 2.904 2.935

80 0.05 2.399 2.401 2.354 2.371 2.366
0.1 2.142 2.144 2.082 2.096 2.076
0.01 3.053 3.221 2.917 3.114 3.614

20 0.05 2.737 2.817 2.615 2.741 2.911
0.1 2.562 2.616 2.433 2.533 2.587
0.01 3.174 3.210 3.081 3.152 3.340

5 40 0.05 2.772 2.790 2.671 2.720 2.763
0.1 2.569 2.581 2.453 2.493 2.479
0.01 3.233 3.241 3.168 3.196 3.250

80 0.05 2.790 2.794 2.703 2.724 2.713
0.1 2.572 2.575 2.466 2.484 2.441
0.01 3.251 3.548 2.947 3.154 4.261

20 0.05 3.036 3.196 2.765 2.920 3.533
0.1 2.911 3.030 2.646 2.777 3.232
0.01 3.479 3.541 3.266 3.352 3.834

10 40 0.05 3.150 3.185 2.947 3.009 3.289
0.1 2.986 3.012 2.776 2.829 3.027
0.01 3.587 3.601 3.453 3.487 3.690

80 0.05 3.206 3.214 3.054 3.080 3.202
0.1 3.023 3.029 2.853 2.875 2.959
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Table 3: Continued.
Contaminated normal distribution (κ = 3.24)

p N α w1·χ w1·F wM ·χ wM ·F w
0.01 2.406 2.520 2.381 2.535 3.077

20 0.05 2.261 2.304 2.213 2.307 2.416
0.1 2.110 2.136 2.055 2.127 2.113
0.01 2.684 2.707 2.639 2.698 2.906

3 40 0.05 2.328 2.228 2.279 2.317 2.349
0.1 2.119 2.125 2.060 2.091 2.073
0.01 2.812 2.818 2.779 2.802 2.875

80 0.05 2.361 2.364 2.315 2.332 2.341
0.1 2.124 2.125 2.064 2.078 2.063
0.01 2.334 2.549 2.300 2.414 3.498

20 0.05 2.395 2.486 2.280 2.389 2.813
0.1 2.337 2.396 2.207 2.300 2.503
0.01 2.853 2.893 2.725 2.793 3.228

5 40 0.05 2.609 2.628 2.489 2.537 2.683
0.1 2.459 2.472 2.331 2.371 2.417
0.01 3.079 3.088 2.991 3.020 3.165

80 0.05 2.710 2.714 2.611 2.632 2.658
0.1 2.518 2.521 2.403 2.421 2.400
0.01 1.986 2.442 1.588 1.629 4.145

20 0.05 2.347 2.551 2.074 2.148 3.450
0.1 2.399 2.542 2.115 2.194 3.238
0.01 2.964 3.037 2.691 2.755 3.708

10 40 0.05 2.841 2.879 2.579 2.633 3.191
0.1 2.749 2.777 2.488 2.536 2.947
0.01 3.348 3.363 3.147 3.179 3.585

80 0.05 3.058 3.067 2.863 2.888 3.132
0.1 2.908 2.914 2.703 2.726 2.906
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