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This paper provides an asymptotic expansion for the distribution of the Stu-

dentized linear discriminant function with k-step monotone missing training

data. It turns out to be a certain generalization of the result derived by

Shutoh and Seo (2010). Furthermore, we also derive the cut-off point that

controls a conditional probability of misdiscrimination using the result and

the idea of McLachlan (1977). Finally, we perform Monte Carlo simulation

to evaluate our result.
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1. Introduction

Discriminant analysis is well known as one of the statistical procedures

for discriminating p–dimensional sample vector x which arises from one of

the considered groups. In this paper, we primarily discuss the linear discrim-

ination for two considered groups Π(1) : Np(µ
(1),Σ) and Π(2) : Np(µ

(2),Σ).

In this case, we usually estimate µ(g) and Σ using the sample vectors

x
(g)
j (j = 1, . . . , N

(g)
1 , g = 1, 2) from Π(g) and construct the linear discrimi-

nant function:

W1 = (x(1) − x(2))′S−1

[
x− 1

2
(x(1) + x(2))

]
,

where

n1 = N
(1)
1 +N

(2)
1 − 2, x(g) =

1

N
(g)
1

N
(g)
1∑

j=1

x
(g)
j ,

S =
1

n1

2∑
g=1

N
(g)
1∑

j=1

(x
(g)
j − x(g))(x

(g)
j − x(g))′.

On the basis of the cut-off point c, x may be assigned to Π(1) if W1 > c.

Several authors have been interested in the following misdiscrimination

probabilities:

e1(2|1) = Pr

[
W1 ≤ c

∣∣∣∣x ∈ Π(1)

]
, e1(1|2) = Pr

[
W1 > c

∣∣∣∣x ∈ Π(2)

]
.

In order to handle these probabilities, it has been desired to study the dis-

tribution of W1. Under an asymptotic framework N
(g)
1 → ∞ (g = 1, 2) and

N
(2)
1 /N

(1)
1 → k1, the limiting distribution of W1 is N((−1)g−1(1/2)∆2,∆2) if

x arises from Π(g) for g = 1, 2, where k1 is a positive const., δ = µ(1) −µ(2),

and ∆2 = δ′Σ−1δ.
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Okamoto (1963) derived an asymptotic expansion for the distribution of

[W1 − (−1)g−1(1/2)∆2]/∆. We can consider the asymptotic approximation

for the conditional probabilities of misdiscrimination using the result derived

by Okamoto (1963). The similar results have been also derived in Memon and

Okamoto (1971), Wakaki (1994), and Shutoh (2010). Memon and Okamoto

(1971) provided an asymptotic expansion for distribution of the discriminant

function based on the maximum likelihood. Wakaki (1994) derived the same

and several useful results under elliptical populations. Shutoh (2010) con-

sidered the same in the case of k-step monotone missing training data under

multivariate normality using the results presented in Kanda and Fujikoshi

(1998).

Some authors also considered the relations between the probabilities of

misdiscrimination and the cut-off point c, as discussed in Anderson (1973)

and McLachlan (1977). Anderson (1973) also derived an asymptotic expan-

sion for the distribution of the Studentized W1 by perturbation method:

Pr

[
W1 − 1

2
D2

1

D1

≤ v

∣∣∣∣x ∈ Π(1)

]
= Φ(v) +

ϕ(v)

n1

b1(v) + O(n−2
1 ), (1)

where Φ(·) denotes the cumulative distribution function of the standard nor-

mal distribution, ϕ(·) denotes the probability distribution function of the

same,

D2
1 = (x(1) − x(2))′S−1(x(1) − x(2)),

v =
c− 1

2
D2

1

D1

, b1(v) =
p− 1

∆
(1 + k1)−

(
p− 1

4
+

1

2
k1

)
v − 1

4
v3.

Under x ∈ Π(2), the cumulative distribution function of [W1 + (1/2)D2
1]/D1

can be also expanded by using the result inverting k1 in (1). Further, under

x ∈ Π(2), McLachlan (1977) derived the cut-off point c which controls the

3



conditional probability of misdiscrimination expressed as Φ((vD1+F1)V
− 1

2
1 ),

where

F1 = (x(1) − x(2))′S−1(x(1) − µ(1)),

V1 = (x(1) − x(2))′S−1ΣS−1(x(1) − x(2)).

In other words, McLachlan (1977) derived the cut-off point c such that

Pr

[
Φ((vD1 + F1)V

− 1
2

1 ) < M

]
= 1− α +O(n−2

1 ),

where 1 − α is the desired level of confidence and M is a specified upper

bound. It could be obtained as c = (1/2)D2
1 + vD1, where

v = m− h1√
n1

− ĥ2

n1

− ĥ3

n1
√
n1

, (2)

where m satisfies that M = Φ(m), zα is the upper 100α percentage point of

the standard normal distribution, bi = bi(m) (i = 1, 2), ĥi (i = 2, 3) denotes

hi with the estimates of ∆,

b2(v) = 1 + k1 +
1

2
v2,

h1 = zαb
1
2
2 ,

h2 = b1 +
1

2
z2αm(b2 − 1),

h3 = zαb
1
2
2

[
mb1 +

m

8b2
(z2αm− 4b1) +

z2αb2
3

(m2 − 1)

+
3m2

4
(1− z2α) +

1

4
z2α + p− 1

4
+

1

2
k1

]
.

Also, the similar result for x ∈ Π(2) can be obtained by inverting k1 in (2).

This paper primarily provides the results stated in (1) and (2) in the

case of Wk, where Wk denotes the linear discriminant function with k-step
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monotone missing training data. In other words, this paper provides certain

generalizations of Anderson’s (1973) and McLachlan’s (1977) results. For a

special case k = 2, the result similar to (1) could be obtained in Shutoh and

Seo (2010).

Besides, these asymptotic results in this asymptotic framework turn out

to be poorer in high dimensional case. Fujikoshi and Seo (1998) proposed the

asymptotic approximation for the probabilities of misdiscrimination under

another asymptotic framework N
(g)
1 → ∞, p → ∞, N

(2)
1 /N

(1)
1 → k1, n1−p →

∞, and ∆2 = O(1). Matsumoto (2004) obtained an asymptotic expansion for

the distributions of the discriminant functions in this asymptotic framework

using the results derived by Fujikoshi and Seo (1998).

This paper is organized as follows. Section 2 reviews the statistics that

construct the linear discriminant function Wk. Section 3 derives main results

in this paper, i.e., an asymptotic expansion for the distribution of the Stu-

dentized Wk and a method for determining the cut-off point which controls

the conditional probability of misdiscrimination. Section 4 conducts Monte

Carlo simulation and compares the proposed procedure with the existing

procedure derived by McLachlan (1977). Finally, Section 5 concludes our

paper.

2. The conditional probabilities of misdiscrimination in Wk

At first, we express the conditional probabilities of misdiscrimination in

Wk to derive main results shown in Section 3. In this paper, we assume
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k-step monotone missing data in training data, i.e., the sample vectors

x
(g)
(k−t+1)j =

 x
(g)
1j
...

x
(g)
k−t+1,j

 ∼ Np[k−t+1]
(µ

(g)
(k−t+1),Σ(k−t+1))

(g = 1, 2, t = 1, . . . , k, j = N
(g)
[t−1] + 1, . . . , N

(g)
[t] )

can be obtained from Π(g) (g = 1, 2), where x
(g)
ij for i = 1, . . . , k and

j = 1, . . . , N
(g)
[k−i+1] is pi–dimensional partitioned sample vector, µ

(g)
α is pα–

dimensional partitioned vector of µ(g), Σαβ is pα × pβ partitioned matrix of

Σ for α = 1, . . . , k, β = 1, . . . , k,

µ
(g)
(k−t+1) =

 µ
(g)
1
...

µ
(g)
k−t+1

 ,Σ(k−t+1) =

 Σ11 · · · Σ1,k−t+1
...

. . .
...

Σk−t+1,1 · · · Σk−t+1,k−t+1

 ,

p[k−t+1] = p1 + · · ·+ pk−t+1, N
(g)
[0] ≡ 0,

N
(g)
[t] = N

(g)
1 + · · ·+N

(g)
t (t = 1, . . . , k),

and it should be noted that p ≡ p[k] and N (g) ≡ N
(g)
[k] .

Then, we can obtain the estimates of µ(g) and Σ and construct the linear

discriminant function Wk:

Wk = (µ̂(1) − µ̂(2))′Σ̂−1
[
x− 1

2
(µ̂(1) + µ̂(2))

]
,

where the estimates of µ(g) is denoted by µ̂(g) and the same of Σ is denoted

by Σ̂. The discriminant rule is as follows: if Wk > c, then x may be assigned

to Π(1), otherwise it may be assigned to Π(2) on the basis of the cut-off point

c. Thus, the conditional probabilities of misdiscrimination can be expressed

as

ek(2|1) = Pr

[
Wk ≤ c

∣∣∣x ∈ Π(1)

]
= Pr

[
Wk − 1

2
D2

k

Dk

≤ u
∣∣∣x ∈ Π(1)

]
, (3)
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ek(1|2) = Pr

[
Wk > c

∣∣∣x ∈ Π(2)

]
= Pr

[
Wk +

1
2
D2

k

Dk

> −u∗
∣∣∣x ∈ Π(2)

]
, (4)

where u = (c− (1/2)D2
k)/Dk, −u∗ = (c+ (1/2)D2

k)/Dk, and

D2
k = (µ̂(1) − µ̂(2))′Σ̂−1(µ̂(1) − µ̂(2)). (5)

By (3), as considered in Shutoh and Seo (2010) in the case of k = 2, we

expand the following distribution function

Φ((uDk + Fk)V
− 1

2
k ), (6)

where

Fk = (µ̂(1) − µ̂(2))′Σ̂−1(µ̂(1) − µ(1)), (7)

Vk = (µ̂(1) − µ̂(2))′Σ̂−1ΣΣ̂−1(µ̂(1) − µ̂(2)). (8)

It follows from

Zk = V
− 1

2
k (µ̂(1) − µ̂(2))′Σ̂−1(x− µ(1))

is distributed as the standard normal distribution given µ̂(1), µ̂(2), Σ̂ and

x ∈ Π(1). We primarily consider the case of (3) since the result for (4) can

be also derived using the same for (3). Indeed, (4) can be described as

Φ((u∗D∗
k + F ∗

k ){V ∗
k }−

1
2 ), (9)

where

F ∗
k = (µ̂(2) − µ̂(1))′Σ̂−1(µ̂(2) − µ(2)),

D∗
k = (µ̂(2) − µ̂(1))′Σ̂−1(µ̂(2) − µ̂(1)) = D2

k,

V ∗
k = (µ̂(2) − µ̂(1))′Σ̂−1ΣΣ̂−1(µ̂(2) − µ̂(1)) = Vk.
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Using the idea stated in Shutoh (2010), (5), (7), and (8) can be rewritten

as

D2
k = D2

1 +
k∑

ℓ=2

[
d
[ℓ]′

(k−ℓ+1)Ψ̂
−1
(k−ℓ+1)d

[ℓ]
(k−ℓ+1) − d

[ℓ−1]′

(k−ℓ+1)Ψ̃
−1
(k−ℓ+1)d

[ℓ−1]
(k−ℓ+1)

]
, (10)

Fk = F1 +
k∑

ℓ=2

[
d
[ℓ]′

(k−ℓ+1)Ψ̂
−1
(k−ℓ+1)e

[ℓ]
(k−ℓ+1) − d

[ℓ−1]′

(k−ℓ+1)Ψ̃
−1
(k−ℓ+1)e

[ℓ−1]
(k−ℓ+1)

]
, (11)

Vk = V1 +
k∑

ℓ=2

[
d
[ℓ]′

(k−ℓ+1)Ψ̂
−1
(k−ℓ+1)Σ(k−ℓ+1)Ψ̂

−1
(k−ℓ+1)d

[ℓ]
(k−ℓ+1) (12)

− d
[ℓ−1]′

(k−ℓ+1)Ψ̃
−1
(k−ℓ+1)Σ(k−ℓ+1)Ψ̃

−1
(k−ℓ+1)d

[ℓ−1]
(k−ℓ+1)

]
+2

k∑
ℓ=2

k∑
i=k−ℓ+2

[{
d
[ℓ]′

(k−ℓ+1)Ψ̂
−1
(k−ℓ+1)

× (Σ(k−ℓ+1)i − Σ(k−ℓ+1)(i−1)Ψ̂(i−1)i)Ψ̂
−1
ii αi,k

}
−
{
d
[ℓ−1]′

(k−ℓ+1)Ψ̃
−1
(k−ℓ+1)

× (Σ(k−ℓ+1)i − Σ(k−ℓ+1)(i−1)Ψ̃(i−1)i)Ψ̃
−1
ii αi,k

}]
,

where ns = N
(1)
s +N

(2)
s −2, n[s] =

∑s
t=1 nt = N[s]−2s, N[s] = N

(1)
[s] +N

(2)
[s] ,

Γ
(q)
αβ is pα × pβ partitioned matrix of Γ(q) (q = 1, . . . , k, α = 1, . . . , k − q +

1, β = 1, . . . , k − q + 1),

x
[g,s]
(k−ℓ+1) =

1

N
(g)
[s]

N
(g)
[s]∑

j=1

x
(g)
(k−ℓ+1)j (g = 1, 2, ℓ = 1, . . . , k, s = 1, . . . , ℓ),

x
(g,s)
(k−ℓ+1) =

1

N
(g)
s

N
(g)
[s]∑

j=N
(g)
[s−1]

+1

x
(g)
(k−ℓ+1)j (g = 1, 2, ℓ = 1, . . . , k, s = 1, . . . , ℓ),

Γ(q) = nqS
(q)

=
2∑

g=1

N
(g)
[q]∑

j=N
(g)
[q−1]

+1

(x
(g)
(k−q+1)j − x

(g,q)
(k−q+1))(x

(g)
(k−q+1)j − x

(g,q)
(k−q+1))

′
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=

 Γ
(q)
11 · · · Γ

(q)
1,k−q+1

...
. . .

...

Γ
(q)
k−q+1,1 · · · Γ

(q)
k−q+1,k−q+1

 (q = 1, . . . , k),

Γ
[s]
αβ =

s∑
q=1

Γ
(q)
αβ (α = 1, . . . , k − s+ 1, β = 1, . . . , k − s+ 1),

Γ
[s]
(k−ℓ+1) =

 Γ
[s]
11 · · · Γ

[s]
1,k−ℓ+1

...
. . .

...

Γ
[s]
k−ℓ+1,1 · · · Γ

[s]
k−ℓ+1,k−ℓ+1

 (ℓ = 1, . . . , k, s = 1, . . . , ℓ),

Γ
[k−i+1]
(i−1) =

 Γ
[k−i+1]
11 · · · Γ

[k−i+1]
1,i−1

...
. . .

...

Γ
[k−i+1]
i−1,1 · · · Γ

[k−i+1]
i−1,i−1

 (i = k − ℓ+ 2, . . . , k),

Γ
[k−i+1]
i(i−1) =

(
Γ
[k−i+1]
i1 · · · Γ

[k−i+1]
i,i−1

)
(i = k − ℓ+ 2, . . . , k),

Γ
[k−i+1]
ii·(1...i−1) = Γ

[k−i+1]
ii − Γ

[k−i+1]
i(i−1)

{
Γ
[k−i+1]
(i−1)

}−1

Γ
[k−i+1]
(i−1)i (i = k − ℓ+ 2, . . . , k),

d
[ℓ]
(k−ℓ+1) = x

[1,ℓ]
(k−ℓ+1) − x

[2,ℓ]
(k−ℓ+1), d

[ℓ−1]
(k−ℓ+1) = x

[1,ℓ−1]
(k−ℓ+1) − x

[2,ℓ−1]
(k−ℓ+1),

d
[k−i+1]
(i−1) = x

[1,k−i+1]
(i−1) − x

[2,k−i+1]
(i−1) , d

[k−i+1]
i = x

[1,k−i+1]
i − x

[2,k−i+1]
i ,

e
[ℓ]
(k−ℓ+1) = x

[1,ℓ]
(k−ℓ+1) − µ

(1)
(k−ℓ+1), e

[ℓ−1]
(k−ℓ+1) = x

[1,ℓ−1]
(k−ℓ+1) − µ

(1)
(k−ℓ+1),

αi,k = d
[k−i+1]
i − Ψ̂i(i−1)d

[k−i+1]
(i−1) ,

Ψ̂(k−ℓ+1) =
1

n[ℓ]

Γ
[ℓ]
(k−ℓ+1), Ψ̃(k−ℓ+1) =

1

n[ℓ−1]

Γ
[ℓ−1]
(k−ℓ+1),

Ψ̂i(i−1) = Ψ̃i(i−1) = Γ
[k−i+1]
i(i−1)

{
Γ
[k−i+1]
(i−1)

}−1

,

Ψ̂ii = Ψ̃ii =
1

n[k−i+1]

Γ
[k−i+1]
ii·(1...i−1),

respectively. It should be noted that S = S(1). Then, we have the following

lemmas for the distributions.

Lemma 1. The statistics based on the sample mean vectors have the follow-
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ing distributions:

d
[ℓ]
(k−ℓ+1) ∼ Np[k−ℓ+1]

(δ(k−ℓ+1),
N[ℓ]

N
(1)
[ℓ] N

(2)
[ℓ]

Σ(k−ℓ+1)),

d
[ℓ−1]
(k−ℓ+1) ∼ Np[k−ℓ+1]

(δ(k−ℓ+1),
N[ℓ−1]

N
(1)
[ℓ−1]N

(2)
[ℓ−1]

Σ(k−ℓ+1)),

e
[ℓ]
(k−ℓ+1) ∼ Np[k−ℓ+1]

(0,
1

N
(1)
[ℓ]

Σ(k−ℓ+1)),

e
[ℓ−1]
(k−ℓ+1) ∼ Np[k−ℓ+1]

(0,
1

N
(1)
[ℓ−1]

Σ(k−ℓ+1)),

where δ(k−ℓ+1) = µ
(1)
(k−ℓ+1) − µ

(2)
(k−ℓ+1), for ℓ = 1, . . . , k.

Lemma 2. The statistics based on the sample covariance matrices have the

following distributions:

Γ
[ℓ]
(k−ℓ+1) ∼ Wp[k−ℓ+1]

(n[ℓ],Σ(k−ℓ+1)),

Γ
[ℓ−1]
(k−ℓ+1) ∼ Wp[k−ℓ+1]

(n[ℓ−1],Σ(k−ℓ+1)),

Γ
[k−i+1]
(i) =

(
Γ
[k−i+1]
(i−1) Γ

[k−i+1]
(i−1)i

Γ
[k−i+1]
i(i−1) Γ

[k−i+1]
ii

)
∼ Wp[i](n[k−i+1],Σ(i)),

Γ
[k−i+1]
ii·(1...i−1) ∼ Wpi(n[k−i+1] − p[i−1],Σii·(1...i−1)),

where Γ
[k−i+1]
(i−1)i is the transposed matrix of Γ

[k−i+1]
i(i−1) ,

Σii·(1...i−1) = Σii − Σi(i−1)

{
Σ(i−1)

}−1

Σ(i−1)i,

Σi(i−1) = Σ′
(i−1)i = ( Σi1 · · · Σi,i−1 ) ,

for ℓ = 2, . . . , k and i = k − ℓ+ 2, . . . , k.

Lemma 3. Γ
[k−i+1]
ii·(1...i−1) is independent of (Γ

[k−i+1]
(i−1) ,Γ

[k−i+1]
i(i−1) ).
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3. Main results

3.1. Asymptotic expansion for the distribution of Studentized Wk

We prepare the following expressions of the random vectors and the ran-

dom matrices for the perturbation method:

d
[ℓ]
(k−ℓ+1) = δ(k−ℓ+1) +

1
√
nρ[ℓ]

z
[ℓ]
(k−ℓ+1),

d
[ℓ−1]
(k−ℓ+1) = δ(k−ℓ+1) +

1
√
nρ[ℓ−1]

z
[ℓ−1]
(k−ℓ+1),

d
[k−i+1]
(i−1) = δ(i−1) +

1
√
nρ[k−i+1]

z
[k−i+1]
(i−1) , δ(i−1) = µ

(1)
(i−1) − µ

(2)
(i−1),

d
[k−i+1]
i = δi +

1
√
nρ[k−i+1]

z
[k−i+1]
i , δi = µ

(1)
i − µ

(2)
i ,

e
[ℓ]
(k−ℓ+1) =

1
√
nρ[ℓ]

y
[ℓ]
(k−ℓ+1), e

[ℓ−1]
(k−ℓ+1) =

1
√
nρ[ℓ−1]

y
[ℓ−1]
(k−ℓ+1),

S = Σ+
1

√
nρ1

T (1), S
(q)
(k−ℓ+1) = Σ(k−ℓ+1) +

1
√
nρq

T
(q)
(k−ℓ+1),

Sii·(1...i−1) = Sii − Si(i−1)S
−1
(i−1)S(i−1)i = Σii·(1...i−1) +

1
√
nρ1

U
(1)
ii·(1...i−1),

S
(q)
ii·(1...i−1) = S

(q)
ii − S

(q)
i(i−1)

{
S
(q)
(i−1)

}−1

S
(q)
(i−1)i

= Σii·(1...i−1) +
1

√
nρq

U
(q)
ii·(1...i−1),

ρ[ℓ] = ρ1 + · · ·+ ρℓ, ρi =
ni

n
, n = n[k].

for ℓ = 2, . . . , k, q = 2, . . . , k, and i = k − ℓ + 2, . . . , k. It should be noted

that Lemma 3 holds.

Thus, using the above expressions, we can also write

Ψ̂(k−ℓ+1) = Σ(k−ℓ+1) +
1√
nρ[ℓ]

ℓ∑
q=1

√
ρqT

(q)
(k−ℓ+1),

11



Ψ̃(k−ℓ+1) = Σ(k−ℓ+1) +
1√

nρ[ℓ−1]

ℓ−1∑
q=1

√
ρqT

(q)
(k−ℓ+1),

Ψ̂i(i−1) = Ψ̃i(i−1) =

[
Σi(i−1) +

1√
nρ[k−i+1]

k−i+1∑
q=1

√
ρqT

(q)
i(i−1)

]

×
[
Σ(i−1) +

1√
nρ[k−i+1]

k−i+1∑
q=1

√
ρqT

(q)
(i−1)

]−1

,

Ψ̂ii = Ψ̃ii = Σii·(1...i−1) +
1√

nρ[k−i+1]

k−i+1∑
q=1

√
ρqU

(q)
ii·(1...i−1).

Furthermore, for (10), (11), and (12), we can determine the terms of

D2
k = ∆2 +

1√
n
Dk1 +

1

n
Dk2 + op(n

−1),

Fk =
1√
n
Fk1 +

1

n
Fk2 + op(n

−1),

Vk = ∆2 +
1√
n
Vk1 +

1

n
Vk2 + op(n

−1),

using (
I +

1√
m
A

)−1

= I +
∞∑
s=1

m− s
2 (−A)s,(

I +
1√
m
A

)−2

= I +
∞∑
s=1

m− s
2 (s+ 1)(−A)s,

where A is a matrix. Therefore, it holds that

Φ((uDk + Fk)V
− 1

2
k ) = Φ(u) + ϕ(u)

[
1√
n
wk1 +

1

n
wk2

]
+ op(n

−1), (13)

where

wk1 = − 1

2∆2
uVk1 +

1

2∆2
uDk1 +

1

∆
Fk1,

wk2 =
1

4∆4
u(u2 − 1)Dk1Vk1 +

1

2∆3
(u2 − 1)Fk1Vk1 −

1

8∆4
u(u2 + 1)D2

k1

12



− 1

8∆4
u(u2 − 3)V 2

k1 −
1

2∆3
u2Dk1Fk1 −

1

2∆2
uF 2

k1 +
1

2∆2
uDk2

+
1

∆
Fk2 −

1

2∆2
uVk2.

For the outline of the derivation, refer Shutoh and Seo (2010).

Although we require too much calculation for our purpose, we use the

following results in order to reduce the calculation.

Lemma 4. For i = k − ℓ+ 2, . . . , k, it holds that

Σ(k−ℓ+1)i = Σ(k−ℓ+1)(i−1)Σ
−1
(i−1)Σ(i−1)i,

where

Σ(k−ℓ+1)i =

 Σ1i
...

Σk−ℓ+1,i

 ,

Σ(k−ℓ+1)(i−1) =

 Σ11 · · · Σ1,i−1
...

. . .
...

Σk−ℓ+1,1 · · · Σk−ℓ+1,i−1

 ,

Σ(i−1) =

 Σ11 · · · Σ1,i−1
...

. . .
...

Σi−1,1 · · · Σi−1,i−1

 , Σ(i−1)i =

 Σ1i
...

Σi−1,i

 .

Proof. For i = k−ℓ+2, it clearly holds. For i = k−ℓ+3, . . . , k, consider the

inverse matrix of Σ(i−1) partitioned by Σ(k−ℓ+1) and the other three blocks.

Lemma 5. For ℓ = 2, . . . , k, i = k − ℓ + 2, . . . , k, and q = 1, . . . , k − i + 1,

it holds that

E(T
(q)
(i−1)i|T

(q)
(i−1)) = T

(q)
(i−1)Σ

−1
(i−1)Σ(i−1)i.

13



Proof. It should be noted that

Γ
(q)
(i−1)i|Γ

(q)
(i−1) ∼ Np[i−1]×pi(Γ

(q)
(i−1)Σ(i−1)Σ(i−1)i, Σ−1

ii·(1...i−1) ⊗ Γ
(q)
(i−1)).

Thus, it follows from (13) and the lemmas shown in Section 2 that the

following theorem holds. It should be noted that the expectation of the sum

of the terms with Op(n
− 3

2 ) turns out to be O(n−2).

Theorem 6. The cumulative distribution function of the Studentized linear

discriminant function, i.e., [Wk − (1/2)D2
k]/Dk under x ∈ Π(1) stated in (3)

is expanded as

Φ(u) +
ϕ(u)

n
bk1(u) + O(n−2), (14)

where

bk1(u) = c0 + c1u+ c3u
3,

c0 =
p− 1

r1∆
(1 + k1) +

k∑
ℓ=2

p[k−ℓ+1] −∆2
k−ℓ+1

∆

(1 + k[ℓ]
r[ℓ]

−
1 + k[ℓ−1]

r[ℓ−1]

)
,

c1 = − 1

r1

(
p− 1

4
+

1

2
k1

)
−

k∑
ℓ=2

∆2
k−ℓ+1

{ 1

r[ℓ]

(
p[k−ℓ+1] +

3

2
+

1

2
k[ℓ] −

7

4
∆2

k−ℓ+1

)
− 1

r[ℓ−1]

(
p[k−ℓ+1] +

3

2
+

1

2
k[ℓ−1] −

7

4
∆2

k−ℓ+1

)}
,

c3 = − 1

4r1
−

k∑
ℓ=2

∆4
k−ℓ+1

4

( 1

r[ℓ]
− 1

r[ℓ−1]

)
,

δ2k−ℓ+1 = δ′
(k−ℓ+1)Σ

−1
(k−ℓ+1)δ(k−ℓ+1), ∆k−ℓ+1 = δk−ℓ+1/∆,

r1 denotes the limit of n1/n, r[ℓ] denotes the limit of n[ℓ]/n, k1 = k[1], and k[ℓ]

denotes the limit of N
(2)
[ℓ] /N

(1)
[ℓ] , for ℓ = 2, . . . , k.

14



Proof. It follows from the result derived by the lemmas that E(wk1) = 0 and

E(wk2) = bk1(u) hold.

Corollary 7. The cumulative distribution function of the Studentized linear

discriminant function [Wk+(1/2)D2
k]/Dk under x ∈ Π(2) is also expanded as

Φ(u′)− ϕ(u′)

n
b′k1(−u′) + O(n−2),

where b′k1(u) can be obtained by inverting k1 = k[1] and k[ℓ] for ℓ = 2, . . . , k

in bk1(u) and u′ = [c+ (1/2)D2
k]/Dk.

Proof. It follows from (9) that this corollary holds. It should be noted that

the cumulative distribution function can be expressed as

1− Φ((u∗D∗
k + F ∗

k ){V ∗
k }−

1
2 )

and u∗ = −u′ holds.

Corollary 8. For k = 2, Theorem 6 and Corollary 7 coincide with the result

derived by Shutoh and Seo (2010).

3.2. Constrained discriminant rule with Studentized Wk

The another main result is derived in this subsection. For this purpose,

we are interested in the conditional distribution of the probabilities of mis-

discrimination given x ∈ Π(1). Therefore, we consider the characteristic

function of (6):

c(t) = E

[
exp
{
itΦ((uDk + Fk)V

− 1
2

k )
}]

,

15



where i =
√
−1. Furthermore, it holds that

c(t) = exp
[
itE
{
Φ((uDk + Fk)V

− 1
2

k )
}]

×
[
1 +

(it)2

2
Var
{
Φ((uDk + Fk)V

− 1
2

k )
}
+ o(t2)

]
= exp

[
itE
{
Φ((uDk + Fk)V

− 1
2

k )
}

− t2

2
Var
{
Φ((uDk + Fk)V

− 1
2

k )
}]

(1 +R),

where R is the remainder terms starting with (it)3. Using the result stated

in (13), the required results have the following forms:

E
[
Φ((uDk + Fk)V

− 1
2

k )
]

= Φ(u) + ϕ(u)
[ 1√

n
E(wk1) +

1

n
E(wk2)

]
+O(n−2),

Var
[
Φ((uDk + Fk)V

− 1
2

k )
]

=
{ϕ(u)}2

n
Var(wk1) + O(n−2),

and they have been obtained via the derivation of the result shown in Theo-

rem 6. It should be noted that the expectation of the sum of the terms with

Op(n
− 3

2 ) turns out to be O(n−2). Thus, we can obtain the following lemma

by considering up to the terms of the first order with respect to n−1.

Lemma 9. Φ((uDk + Fk)V
− 1

2
k ) given x ∈ Π(1) is asymptotically distributed

as N(ξk, σ
2
k), where

ξk = Φ(u) +
ϕ(u)

n
bk1(u), σ2

k =
{ϕ(u)}2

n
bk2(u),

bk1(u) = c0 + c1u+ c3u
3, bk2(u) = d0 + d2u

2,

d0 =
1 + k1
r1

+
k∑

ℓ=2

∆2
k−ℓ+1

{1 + k[ℓ]
r[ℓ]

−
1 + k[ℓ−1]

r[ℓ−1]

}
,

d2 =
1

2

{ 1

r1
+

k∑
ℓ=2

∆4
k−ℓ+1

( 1

r[ℓ]
− 1

r[ℓ−1]

)}
.
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Corollary 10. Φ((u∗D∗
k +F ∗

k ){V ∗
k }−

1
2 ) given x ∈ Π(2) is asymptotically dis-

tributed as the normal distribution whose mean and variance can be obtained

inverting k1 = k[1] and k[ℓ] for ℓ = 2, . . . , k in ξk and σ2
k, respectively.

Proof. It clearly holds by (9) and Lemma 9.

In this subsection, we consider the cut-off point such that

Pr
[
Φ((uDk + Fk)V

− 1
2

k ) < M
]

= 1− α.

However, Φ((uDk + Fk)V
− 1

2
k ) is asymptotically distributed as N(ξk, σ

2
k), as

shown in Lemma 9. Therefore, we determine u = (c − (1/2)D2
k)/Dk that

satisfies the following equation

Pr
[
Φ((uDk + Fk)V

− 1
2

k ) < M
]

= 1− α +O(n−2). (15)

It follows from Lemma 9 that the following theorem holds.

Theorem 11. The cut-off point c = (1/2)D2
k + uDk which satisfies (15) can

be obtained by

u = m− ĥk1√
n
− ĥk2

n
− ĥk3

n
√
n
,

where

hk1 = zαb
1
2
k2,

hk2 = bk1 +
1

2
z2αm(bk2 − 2d2),

hk3 = zαb
1
2
k2

[
mbk1 +

md2
2bk2

(z2αmd2 − 2bk1) +
z2αbk2
3

(m2 − 1)

− 3m2

2
(z2αd2 + 2c3) +

z2αd2
2

− c1

]
,

bk1 = bk1(m), bk2 = bk2(m), and ĥki’s (i = 1, 2, 3) are hki’s with the estimates

of δk−ℓ+1 and ∆.
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Proof. Using Lemma 9, we express (15) as follows:

Φ
(M − ξk

σk

)
= 1− α +O(n−2).

Thus, it is sufficient to derive the cut-off point satisfies

M = ξk + zασk (16)

in order to achieve our purpose. To determine the point u, we put the solution

of (16) as

u = m− hk1√
n
− hk2

n
− hk3

n
√
n
,

where hi’s (i = 1, 2, 3) are the unknown finite constants. Using

Φ(u) = M +
ϕ(m)√

n

{
−hk1

}
+

ϕ(m)

n

{
−hk2 −

1

2
mh2

k1

}
+

ϕ(m)

n
√
n

{
−hk3 −mhk1hk2 −

1

6
(m2 − 1)h3

k1

}
+ o(n− 3

2 ),

ϕ(u) = ϕ(m) +
ϕ(m)√

n

{
mhk1

}
+
ϕ(m)

n

{
mhk2 +

1

2
(m2 − 1)h2

k1

}
+ o(n−1),

bk1(u) = bk1 +
1√
n

{
−(c1 + 3c3m

2)hk1

}
+ o(n− 1

2 ),

{bk2(u)}
1
2 = b

1
2
k2 +

1√
n

{
−md2b

− 1
2

k2 hk1

}
+

1

n

{
−md2b

− 1
2

k2 hk2 +
1

2
d2(1−m2d2b

−1
k2 )b

− 1
2

k2 h2
k1

}
+ o(n−1),

we equate the terms of order n− 1
2 , n−1, and n− 3

2 in (16) and determine the

unknown hki’s (i = 1, 2, 3), which proves Theorem 11. It should be noted

that determined hki’s depend on the unknown parameters for i = 1, 2, 3.
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Corollary 12. The cut-off point c = −(1/2)D2
k − u∗Dk which satisfies

Pr
[
Φ((u∗D∗

k + F ∗
k ){V ∗

k }−
1
2 ) < M

]
= 1− α+O(n−2)

can be obtained by

u∗ = m− ĥ∗
k1√
n
− ĥ∗

k2

n
− ĥ∗

k3

n
√
n
,

where h∗
ki’s are defined as the constants inverting k1 = k[1] and k[ℓ] (ℓ =

2, . . . , k) in hki’s. ĥ∗
ki’s are h∗

ki’s with the estimates of δk−ℓ+1 and ∆, for

i = 1, 2, 3.

4. Simulation studies

In this section, we perform Monte Carlo simulation in order to evaluate

our result derived in Theorem 11. Especially, we compare our result with

McLachlan’s (1977) result. We select the eight cases, as listed in Table

1. For each case, we set k = 3 for our result. The sample size is set as

N(3) ≡ N1 = N2 = N3 = 15, 20, 40, 100, where Nℓ ≡ N
(1)
ℓ = N

(2)
ℓ (ℓ = 1, 2, 3).

For the result derived by McLachlan (1977), the sample size is set as N1 =

15, 20, 40, 100.

In Tables 2–3, it can be observed that the larger sample sizes result in

large values of ek(2|1) for k = 1, 3. We also can observe that ek(1|2) has the

opposite asymptotic behavior. Further, for the most cases, we can observed

that the values of ek(1|2) are lower when the same of ek(2|1) are larger. In

this section, we primarily evaluate ek(2|1) for k = 1, 3 since we have derived

the cut-off point which focuses on ek(2|1).

First, we compare the results of Cases 1–3. The desired level of confidence

1 − α for Case 2 is set as 0.90 and the same for Case 3 is set as 0.99,
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respectively. It can be also observed that the larger desired levels 1 − α

result in lower ek(2|1) and larger ek(1|2).

Next, we compare the results of Cases 1, 4, and 5. In Case 4, the Ma-

halanobis distance ∆ = δ1 is set as 0.50. In Case 5, the same is set as 1.36.

When the parameters are known, the exact probabilities of misdiscrimina-

tion Φ(−(1/2)∆) is nearly equal to 0.25. It can be observed that the exact

probabilities Φ(−(1/2)∆) closer to M result in lower ek(2|1) and ek(1|2) for

k = 1, i.e., the result derived by McLachlan (1977). However, ek(2|1) for

k = 3, i.e., our result does not have this property.

By the simulation results conducted in Shutoh (2011), it may depend

on the value of δk−ℓ+1 for ℓ = 2, . . . , k. So, we also conduct the additional

simulation listed in Table 5. It should be noted that Case 5(a) denotes the

result for Case 5 in Tables 1–4. The results in Tables 6–7 indicate that lower

∆1 and lower ∆2 result in lower ek(2|1) and larger ek(1|2) for k = 3. On the

other hand, for k = 1, we cannot observed that ek(2|1) depends on ∆1 and

∆2. ek(1|2) for k = 1 has the property similar to ek(2|1) for k = 1.

Furthermore, we compare the results for Cases 1, 6, and 7 listed in Tables

2–3. The specified upper bound for Case 6 is set as 0.05 and the same

for Case 7 is set as 0.25. As a matter of course, it can be observed the

larger M results in larger ek(2|1) and lower ek(1|2). The result for Case 8

indicates that our and McLachlan’s (1977) results are poorer procedures for

large dimensionality.

Finally, we compare the values of 1− α listed in Table 4 and Table 8. In

Cases 1, 3, 4, 5(b), 5(c), and 6, our result also provides the level 1−α which

is closer to the specified value than the result for k = 1.
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5. Conclusion

This paper provided the asymptotic expansion for the Studentized linear

discriminant function based on monotone missing training data in subsection

3.1. Moreover, subsection 3.2 provided a certain method for determining the

cut-off point which could be obtained using the result derived by subsection

3.1. As it turns out, we derive a certain extension of the results derived by

Anderson (1973), Shutoh and Seo (2010), and McLachlan (1977). Section 4

evaluated our result by Monte Carlo simulation for the selected parameters.

Especially, our result provided the better value of 1 − α, i.e., the value is

closer to the specified level than the result for McLachlan (1977) when α, ∆,

M , and ∆i (i = 1, 2) are lower.

As a future problem, if we can construct the discriminant rule based on

maximum likelihood with k-step monotone missing training data, we may

obtain the similar result.
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