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Abstract

This paper provides an asymptotic expansion for the distribution of the Stu-
dentized linear discriminant function with k-step monotone missing training
data. It turns out to be a certain generalization of the result derived by
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controls a conditional probability of misdiscrimination using the result and
the idea of McLachlan (1977). Finally, we perform Monte Carlo simulation

to evaluate our result.
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1. Introduction

Discriminant analysis is well known as one of the statistical procedures
for discriminating p-dimensional sample vector & which arises from one of
the considered groups. In this paper, we primarily discuss the linear discrim-
ination for two considered groups IV : N,(u®, %) and I® : N, (u?,%).

In this case, we usually estimate 9 and ¥ using the sample vectors
(9)

xz” (j=1,... ,Nl(g), g = 1,2) from I1¥ and construct the linear discrimi-

nant function:

w, = @V -—z?)ys! [az — %(z“) + 5@)} ,

where
1 Nl(g)
st - Nl(l) + N1(2) - 27 5(9) - (g) Z m§g)7
Ny j=1
2 Nl(g)
1 _ _
S = - Z Z(mgﬂ) _ w(g))<w§9) —zy,
g=1 j=1

On the basis of the cut-off point ¢,  may be assigned to IIV if W, > c.
Several authors have been interested in the following misdiscrimination

probabilities:

e1(2]1) = Pr[ngc Wi > ¢

wEH(l)], e (12) = Pr

x € H(z)] .

In order to handle these probabilities, it has been desired to study the dis-
tribution of W;. Under an asymptotic framework Nl(g) — o0 (g =1,2) and
NP /NY 5 k)| the limiting distribution of W, is N((—=1)9=1(1/2)A2, A?) if
x arises from 19 for g = 1,2, where k, is a positive const., § = p — p?,

and A? = §2716.



Okamoto (1963) derived an asymptotic expansion for the distribution of
(W, — (=1)971(1/2)A?]/A. We can consider the asymptotic approximation
for the conditional probabilities of misdiscrimination using the result derived
by Okamoto (1963). The similar results have been also derived in Memon and
Okamoto (1971), Wakaki (1994), and Shutoh (2010). Memon and Okamoto
(1971) provided an asymptotic expansion for distribution of the discriminant
function based on the maximum likelihood. Wakaki (1994) derived the same
and several useful results under elliptical populations. Shutoh (2010) con-
sidered the same in the case of k-step monotone missing training data under
multivariate normality using the results presented in Kanda and Fujikoshi
(1998).

Some authors also considered the relations between the probabilities of
misdiscrimination and the cut-off point ¢, as discussed in Anderson (1973)
and McLachlan (1977). Anderson (1973) also derived an asymptotic expan-
sion for the distribution of the Studentized W; by perturbation method:

1
Pr [I/Vll_)—gD% <vlx € H(l)} = ®(v)+ @bl(v) +0(ny?), (1)
. 1

where ®(-) denotes the cumulative distribution function of the standard nor-
mal distribution, ¢(:) denotes the probability distribution function of the
same,

D% _ (5(1) _ 5(2))’5—1(5(1) _ 5(2))’
12
c—1p? p—1 11 1,
= —=— b :—1k—(—— —k:)——.
v D 1(v) A(+1) P 4—1—211} 1
Under & € II®, the cumulative distribution function of [W; + (1/2)D?]/D;
can be also expanded by using the result inverting k; in (1). Further, under

x € 11® McLachlan (1977) derived the cut-off point ¢ which controls the
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1
conditional probability of misdiscrimination expressed as ®((vD1+ F1)V] ?),

where

o= (V- 5(2))/5—1@(1) — M(l)),

Vi = (@Y -z?Ystus iz —z®?).
In other words, McLachlan (1977) derived the cut-off point ¢ such that
Pr|®((wDy + F)V,2) < M| = 1—a+0@m?),
where 1 — « is the desired level of confidence and M is a specified upper

bound. Tt could be obtained as ¢ = (1/2)D? + vD;, where

hy e s
\/71_1 ny nl\/n_1’

where m satisfies that M = ®(m), z, is the upper 100« percentage point of

-~

the standard normal distribution, b; = b;(m) (i = 1,2), h; (i = 2,3) denotes

(2)

h; with the estimates of A,
1,
bg(v) = 1+l{?1+§U s
1
hl = Zab22,

«

1
hg = bl + 522m(b2 — 1),

1 2y
hy = b3 [mbl+ﬁ(z§m—4bl)+za 2(m? — 1)
8bs 3
3m? 1 11
A N —k:].
+ 4 ( Za)+4za+p 4+2 1

Also, the similar result for € II® can be obtained by inverting k; in (2).
This paper primarily provides the results stated in (1) and (2) in the

case of Wy, where W, denotes the linear discriminant function with k-step

4



monotone missing training data. In other words, this paper provides certain
generalizations of Anderson’s (1973) and McLachlan’s (1977) results. For a
special case k = 2, the result similar to (1) could be obtained in Shutoh and
Seo (2010).

Besides, these asymptotic results in this asymptotic framework turn out
to be poorer in high dimensional case. Fujikoshi and Seo (1998) proposed the
asymptotic approximation for the probabilities of misdiscrimination under
another asymptotic framework Nl(g) — 00, p — 00, N1(2)/N1(1) — ki, n1—p —
00, and A? = O(1). Matsumoto (2004) obtained an asymptotic expansion for
the distributions of the discriminant functions in this asymptotic framework
using the results derived by Fujikoshi and Seo (1998).

This paper is organized as follows. Section 2 reviews the statistics that
construct the linear discriminant function Wj,. Section 3 derives main results
in this paper, i.e., an asymptotic expansion for the distribution of the Stu-
dentized W} and a method for determining the cut-off point which controls
the conditional probability of misdiscrimination. Section 4 conducts Monte
Carlo simulation and compares the proposed procedure with the existing

procedure derived by McLachlan (1977). Finally, Section 5 concludes our
paper.
2. The conditional probabilities of misdiscrimination in Wy,

At first, we express the conditional probabilities of misdiscrimination in

Wy to derive main results shown in Section 3. In this paper, we assume



k-step monotone missing data in training data, i.e., the sample vectors

(@) i »
w(i—t—&—l)j = : ~ Np[kftJrl] (M(i_tﬂ), E(k—t-i—l))
w(g)
k—t+1,5
(.g: ]_,2, t= ]_,...,k,” j:N[Efgjl}+1,,N[§]g))

can be obtained from II¢ (¢ = 1,2), where w%’) for « = 1,...,k and

ji=1,..., N[Sfli ] is p;—dimensional partitioned sample vector, ,u,((f’) iS pPa—

dimensional partitioned vector of 9, YaB 18 pa X pg partitioned matrix of
Yfora=1,...,k 6=1,...,k,
(9)

( 1251 X s Y k—tt1

) . ) ) .

“(Z—tﬂ) = U (k—ttl) = : .. : ,
Pl’](gg_)t_;,_l Ek—t-f—l,l e Zk—t+1,k—t+1

p[k*t+1} = P +eoe Pr—t+1, N[((ﬁ) = 07

NG = NP+t NO (=1, k),

and it should be noted that p = py; and NGO = N[(,f}).
Then, we can obtain the estimates of u(¥) and ¥ and construct the linear

discriminant function Wp:

~

~ ~ - L. ~
Wi = @ - @S e - 5@ + ),

where the estimates of u(9 is denoted by ﬁ(g) and the same of ¥ is denoted
by 5. The discriminant rule is as follows: if Wy > ¢, then « may be assigned
to IIM, otherwise it may be assigned to II® on the basis of the cut-off point
c. Thus, the conditional probabilities of misdiscrimination can be expressed
as

% <4

ex(2[1) = Pr [Wk <clx € H(l)} = Pr{ = H(l)}, (3)
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> —u*

Wy, + 3D}
er(1]2) = Pr [Wk > c‘az € H(Q)] = Pr [M

Dy,

s H<2>] L (4)
where u = (¢ — (1/2)D2)/Dy,, —u* = (c+ (1/2)D3)/ Dy, and
Dp = (" —R®)yST @Y - a®). (5)

By (3), as considered in Shutoh and Seo (2010) in the case of k = 2, we

expand the following distribution function

((uDe+ F)V *). (6)

where
Fe = (p—a®)yS @ - pt), (7)
Vi = (- pPySTes @t - a?) (8)

It follows from
Zy =V, 5(&(1) _ ﬁ(z))/i_l(m _ N(l))

is distributed as the standard normal distribution given ﬁ(l), ﬁ(Q), S and
x € TV, We primarily consider the case of (3) since the result for (4) can

be also derived using the same for (3). Indeed, (4) can be described as
O((u" Dy + FO{VE2), (9)
where

o= (@ =a")S - u),
Dp = (@ —a"yST @ @) = i,

vio= (@Y - p)ySTsst @ - at) = vio



Using the idea stated in Shutoh (2010), (5), (7), and (8) can be rewritten

as

2 2 [ - [ [¢—1) — [e—1]
Dp = D +Z[d(k 0+1) k £+1)d(kf£+1) _d(kfﬁJrl)\Ij(k 0+1) dk e+1)} (10)

_ d¥ U 4] [-1" g-1 [¢-1]
Iy = F1+Z[ (k—t+1) k —+1)€ (k:—ﬁ—i—l)_d(k:—(—i—l)\P(k—é—l—l)e(kz—f—i-l)}’ (11)

_ T (4]
Vk = %"’Z[ (k—t+1) (k £+1)E(k_g+1)\11k 041) dk 04+1) (12>

-1 T -1 =1 [e—1]
- d(k—ﬁ-i—l)qj(k—é—i—l)z(k—f‘f‘l)\lj(k—é—&-l d(k e+1)}
k k
e
+22 Z Hd(k 0+1) ‘I’(kl 0+1)
5 T — (—1] _
X (Xeeryi — E<k—f+1><i—1>‘I’u—l)i)‘lﬁilaak} - {dEk—€]+1)\Ij(k —e41)

X (B(k—t41)i — Z(ké+1)(i1)‘,17(1'1)2‘){172‘_2‘1ai,k}:| )

wheren, = N4 N =2, n = Y0 m = Nig=2s, Nig = N+,

F((fg is pa X pg partitioned matrix of 19 (¢ =1,...,k, a=1,....k—q+
1, B=1,....k—q+1),

[s]

—lg,5] _ 1 £ _ _ _
0 = 2o Ty 9=12 =1,k s=1,...,0),

N[s] 7=1

(9)
(9:5) 1 - £
—(9,s o g _ _ _
Tley = vw >oowl L g=12 =1,k s=1,...0),
s j:N[(sg—)l]+1



respectively.

o T,
@ @

k—q+1,1 777t k—qt+1lk—g+1

ZFEJZ; (a=1,....k—s+1, f=1,....k—s+1),
q=1

i THh
: : (6217 "k7S:1’ 76)7
FE]—£+1,1 U FE]—K—H,k—K—H
ISR PP &
: . : (i=k—0+2,....k),
k—i+1 k—i+1
rit e
( ple—itl FE’Z‘_?” ) (i=k—0+2,....k),

-1
k—i+1]  nlk—it1] [ lk—it1] lk—i+1] .
L — Loy {F(ifl) } Loy (i=k—=0+2,... k),

—[1,4] —[2,4] d[ﬁ—l] —[1,6—1] —[2,6—1]

= Plo—ty1) T Tlh—t41)y Yk—t+1) = Ll—t+1) ~ Lk—r41)
o _[Lk—itl]  —[2k—it1] —i+1]  —[Lk—it1]  —[2k—it]]
—_ m(i—l) —:B(Z._l) s dl = :BZ. _wi ,
_ =14 (1) [¢—1] _ =] 1)
= Teler) — He—ev1y Ch—t+1) = Th—e+1) — P—r+1)
o glk=it] 3 [k—i+1]
= d; - \Iji(i—l)d(i—l) )

1 ¢ = 1 (-1
N -

ni (k—0+1) (k—£+1) 1] (k—£4+1)

. . -1

T . [k—i+1] [k—i+1]
= Vi) = Fi(i—l) {F(i—l) } )

~ 1 (k—it1]
= Uy = o Fii-(l...i71)7

[k—i+1]

It should be noted that S = SM. Then, we have the following

lemmas for the distributions.

Lemma 1. The statistics based on the sample mean vectors have the follow-



ing distributions:

Ny
d!! ~ Ny o Bleiin)y — DS 1))
(k—0+1) Plh—e41) \O (k—=0+1)> 0y o) < (k—£+1) )
Na'Nyg
- Nip_q
d[f 1] ~ N (6 B [—E B )
(k—e+1) Plh—e41) \@ (k=£+1)> ~ ) 2) (k—€+1) )5
Nyp—y N2y
[ 1
Clh—tr1) Np[k—ff+1] (0’ N(l)E(k—f+1))a
[€]
[e—1] 1
e(k—E—H) ~ Np[k7£+1] (07 Tz(k—é+1))a
NieZy

1
where & (p—¢41) = /J’Ek)7€+1) “Ek (+1) ,fort=1,... k.

Lemma 2. The statistics based on the sample covariance matrices have the

following distributions:

FE@ +1) ™ Wp[k z+1]( [5]7Z(k74+1))a
F[(l;c_—ll;-i-l) ~ P[k e+1] Nije— 1]7Z(k €+1))
k—i k—i
FE];)_HI] = ( F[k Z;)E F[k iﬂ ) ~ Wiy (Mp—iva)s X)),
FEI;Zf+Zl]_1) ~ Wp Nk—i+1] — Pli— 1},21‘1‘.(1..4’71)),

F[k i+1]

where I';_ )" is the transposed matriz of F[k il

i(i—1)

Dii(1.i-1) = Zii—2i<i—1>{2<i—1>} Si-1i
Yiii-1) = E/(i—l)i = (Za - Y ),

fort=2,....kandi=k—0+2,.... k.

[k—i+1]

Lemma 3. T/ ", ) is independent of( il pleily

-1) (i-1)
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3. Main results

3.1. Asymptotic expansion for the distribution of Studentized Wy,

We prepare the following expressions of the random vectors and the ran-

dom matrices for the perturbation method:

dl’ O(k—t+1) 2l

(k—0+1) (k—£+1) \/W 2 (k—t+1)

1] L ey
di_ 41 O(k—t41) + \/W Z(k—t+1)

(k—it1] ' 1 k—it1] ¢ (1) (2
d; ‘5(2—1)4‘—\/m -1y 5 0G-1) = Kyl — Mgy
g+l 5, + 1 L s M(l) _'u(?)

! NPk—i+1] ‘ '

ol L, N JE S
(k‘—f-‘r—l) np[f} (k—Z+1) (k‘—f'i‘l) \/m (k‘ f'f‘l)
| L)
S X+ \/n_plT( ), Stecern) = Ste-trn) T \/quT(lg e+1)
1
-1 _ (1)
Sii-(1...i—1) Sii = Sii-1)9;_1yS(-1)i = Yii-(1.i-1) + \/n_plU”"(l i)
~1
(9) (@) (@) (@)
Sii~(1...z 1) S Sz(z 1 {S( 71)} S(ifl)i
L @
Yii(Lio1) T o Uifu...i—l)’
n;
Ple] prtccc TP pi = = T
fort=2,....,k,q=2,...,k,and i = k—{+2,...,k. It should be noted

that Lemma 3 holds.

Thus, using the above expressions, we can also write

{I}(kf@rl)

Yk—t41) \/_P[f] Z \/_ (k +1))
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Vik—rr1)y = Bp—tt1) + —F=—— Z\/_ T((,f +1)
\/_P[e 14

k—i+1
~ ~ 1
Vi) = Y-y = | Li—1) + —F—— \P Ti(ql-), ]
(= (= |: =0 \/ﬁp[k—i—‘rl] qzl i

k—i+1 —
VSIS T(”} |
Zen+ T X Ay
k—i+1

\/I}“:\Dn - Ezzlzl+ - (1..i—
( ) \/_p[kz—i-lz\/_ S

q=1
Furthermore, for (10), (11), and (12), we can determine the terms of

1 1
Di = AQ -+ %Dkl + ﬁDkQ + op(nfl),
1 1 _
Fk = ﬁFkl + EFkQ —i—op(n 1),
1

1
Vi = A%+ %Vm + Esz + Op<n_1)a

using
1 —1 0o
I+ —A) = I+ m2(—A),
(7 >
1 N\’ >
I+ —A) = T+ m2(s+1)(—A),
(1 7 >
where A is a matrix. Therefore, it holds that

B(Dx+ BV ) = 8(0) 4 00)| i + L] +o,(0), (13

where
1 1 1
Wp = —EUVM + EUDM + KFkla
1 1 1
w2 = JAd w(u? — 1) Dy Vi + F(U — 1) F Vig — W“(U +1)Dj,
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1 1 1 1
—@U(Ug — 3)Vk21 — @UQDlekl — WUFkQI + WUD]Q
1 1
+ZFk2 - QAQU‘/RQ'

For the outline of the derivation, refer Shutoh and Seo (2010).
Although we require too much calculation for our purpose, we use the

following results in order to reduce the calculation.

Lemma 4. Fori=k—{¢+2,...,k, it holds that

-1
Dlh—t41)i = D(h—t+1)(i—1) D7) B (i~1)i»

where
Y1
Vh—t41)i = : ;
Yh—t41,i
11 e X1i-1
Yh—tr1)(i-1) = : . : ;
Dh—t+11 "t Dk—t41i—1
211 Tt El,i*l Eli
-1y = : P : NEDICEEIEES :
Zi—l,l e Ei—l;i—l Zi—l,i

Proof. For i =k—{+2, it clearly holds. For7=k—/¢+3,...,k, consider the
inverse matrix of Y;_;) partitioned by ¥(_s41) and the other three blocks.

]

Lemma 5. For{=2,....k,i=k—0+2,....k,andq=1,... )k —1+1,
it holds that

(a) (@ \ _ pla) -1
E(T(iq—l)i‘T(iq—l)) = T(z'q—1)2(z‘—1)2(i—1)i'

13



Proof. 1t should be noted that
'y~ N T Sy Sy, Sk @I )
(i—1) Xpi\t (—1) = (E—1) = (i—1)is “(1..4—1) (i-1)/"

O

Thus, it follows from (13) and the lemmas shown in Section 2 that the
following theorem holds. It should be noted that the expectation of the sum
of the terms with Op(n_%) turns out to be O(n=?2).

Theorem 6. The cumulative distribution function of the Studentized linear
discriminant function, i.e., Wy — (1/2)D?]/ Dy, under = € IV stated in (3)

1s expanded as

u
o) + by, (u) + O(n™2), (14)
where
bii(u) = co+ cru+ csu®,
k 2
p—1 Plo—tr1] — Di_ppr 1+ kg 1+ Ky
o = 1+ k) + ( — )7
’ ra ) ; A g Tie-1]
1 1 1
- et
“ (p 1Tl
3 1 7
- Z AF e+1{ ( P+ + 5 + §k‘m - ZAi_gH)
3 1 7
s e Lot
e (P[k 1] + 5 + M= = Rk )
1 : Ai—fﬂ( 1 1 )
C = e — R — —_
3 47’1 — 4 T[@ 7“[4_1}
Shpp = 6,(k7£+1)2(_k; o110 k—t+1); Dp—esr = Sp—r1/ 4N,

r1 denotes the limit of ny/n, ry denotes the limit of n[g]/n, ki = kpy, and kg

denotes the limit of N[(e] /N%), fort=2,... k.
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Proof. 1t follows from the result derived by the lemmas that E(wy;) = 0 and
E(wk2) = by (u) hold. O

Corollary 7. The cumulative distribution function of the Studentized linear

discriminant function Wy, +(1/2)D?]/ Dy, under x € T1? is also expanded as

o(u)
n

o(u) - by (') + O(n ™),

where by, (u) can be obtained by inverting ky = kpy and kg for £ = 2,...,k
in by (u) and v’ = [c+ (1/2) D3]/ Dy..

Proof. 1t follows from (9) that this corollary holds. It should be noted that
the cumulative distribution function can be expressed as

L= ®((u D+ F){V} )
and u* = —u’ holds. O

Corollary 8. For k =2, Theorem 6 and Corollary 7 coincide with the result
derived by Shutoh and Seo (2010).

3.2. Constrained discriminant rule with Studentized W,

The another main result is derived in this subsection. For this purpose,
we are interested in the conditional distribution of the probabilities of mis-
discrimination given x € IIY). Therefore, we consider the characteristic

function of (6):

-

c(t) = E[exp{it‘b((uDk+Fk)Vk2)}},
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where i = y/—1. Furthermore, it holds that

c(t) = exp:itE{q)((uDk—i—Fk)Vk_%)H

x |1+ %V&r{@((uDk +FV; )} + o)

= exp :itE{CI)((UDk + Fk)‘/kz_%)}
— gVar{CI)((uDk + Fk)Vk_%)H (1+ R),

where R is the remainder terms starting with (it)®. Using the result stated

n (13), the required results have the following forms:

B[o(uD + AV 5] = 0() + 60 [=Bluwn) + Bl
+0(n™),
Var [@((uDk - Fk)Vk_%)] = {¢(n)} Var(wg;) + O(n™?),

and they have been obtained via the derivation of the result shown in Theo-
rem 6. It should be noted that the expectation of the sum of the terms with
O,(n~2) turns out to be O(n~2). Thus, we can obtain the following lemma

by considering up to the terms of the first order with respect to n=!.

Lemma 9. ®((uDy, + F)V,, 2) given = € I is asymptotically distributed
as N (&, 02), where

¢(u) {o(u)}”

gk = CI)(U) + Tbkl(u), 0']% = n ka(U),
bkl (u) = Cp+ciu+ 03u3, bkg(u) = do + d2u2,
k
1+ Kk 9 1+ /{[g] 1+ k[g,l]
R
° 1 ; hot Tl Tle—1]
6 = e abn (- L)
? T1 kot Tl Te-1] '
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Corollary 10. ®((u* D} + F){V;}~2) given x € II?® is asymptotically dis-
tributed as the normal distribution whose mean and variance can be obtained

inverting ki = kpy and ki for £ =2,... k in & and o}, respectively.
Proof. 1t clearly holds by (9) and Lemma 9. O
In this subsection, we consider the cut-off point such that
Pr|®((uDy + BV, ) < M| = 1—a.

1
However, ®((uDy, + F;)V, ?) is asymptotically distributed as N (&, 07), as
shown in Lemma 9. Therefore, we determine u = (¢ — (1/2)D?)/D;, that
satisfies the following equation
Pr|®((uDy + F)V, ?) < M] = 1—a+0(n?). (15)
It follows from Lemma 9 that the following theorem holds.

Theorem 11. The cut-off point ¢ = (1/2)D? 4+ uD), which satisfies (15) can
be obtained by

where

1
_ 2
hig = Zabkga

1
hie = bp1 + Ezim(bkz — 2dy),

1 d b
hk3 = 2066132 mbkl + %(ZZmdg — Qbkl) + Zalk? (m2 - 1)
k2
3m? 2d
— %(Zidg + 263) + Za2 2 C1y,

be1 = bp1(m), bry = bra(m), and /l;ki 's (1 =1,2,3) are hy; ’s with the estimates

of Ok_pyr1 and A.
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Proof. Using Lemma 9, we express (15) as follows:

@(M_§k> = 1—-a+0(n™?).

Ok
Thus, it is sufficient to derive the cut-off point satisfies

M = & + 240k (16)

in order to achieve our purpose. To determine the point u, we put the solution

of (16) as

where h;’s (i = 1,2,3) are the unknown finite constants. Using

Q(u) = M—FM{_hkl}‘l’@{_hm_lmh%l}

vn 2
+ i(—\/mﬁ){_hki{ - mhk‘lth — é(mZ . l)hil} 4 O(n_%)’

ow) = otm)+ 27 o}

Jr@{mhm + %(mQ - 1)@1} +o(n™),

1 1

bk1<u) = bkl + %{—<Cl + 303m2)hk1} + o(nii),
1 1 _1

b, + %{—mdgbk; i }

1 _1 1 _1
+ E{—mdzbk; i+ Sda(1 = mdabi} )by hil} +o(n),

[N

{bra(u)}

3
1 3

we equate the terms of order n’%, n~ ' and n”2 in (16) and determine the
unknown hy;’s (i = 1,2,3), which proves Theorem 11. It should be noted

that determined hy;’s depend on the unknown parameters for ¢ = 1,2,3. [
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Corollary 12. The cut-off point ¢ = —(1/2)D? — u* Dy, which satisfies
Pr|®((w' Df+ F{V} 5 < M| = 1-a+0(m™)

can be obtained by

where hy;’s are defined as the constants inverting ky = kpy and ki (¢ =
2,...,k) in hg's. E;Z 's are hy,’s with the estimates of dx_¢+1 and A, for

i=1,23.

4. Simulation studies

In this section, we perform Monte Carlo simulation in order to evaluate
our result derived in Theorem 11. Especially, we compare our result with
McLachlan’s (1977) result. We select the eight cases, as listed in Table
1. For each case, we set & = 3 for our result. The sample size is set as
Ny = Ny = Ny = Ny = 15, 20,40, 100, where N, = NV = NP (¢ =1,2,3).
For the result derived by McLachlan (1977), the sample size is set as N7 =
15,20, 40, 100.

In Tables 2-3, it can be observed that the larger sample sizes result in
large values of ex(2[1) for k£ = 1,3. We also can observe that e;(1]|2) has the
opposite asymptotic behavior. Further, for the most cases, we can observed
that the values of e(1|2) are lower when the same of ex(2|1) are larger. In
this section, we primarily evaluate eg(2|1) for k = 1,3 since we have derived
the cut-off point which focuses on e (2|1).

First, we compare the results of Cases 1-3. The desired level of confidence

1 — « for Case 2 is set as 0.90 and the same for Case 3 is set as 0.99,
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respectively. It can be also observed that the larger desired levels 1 — «
result in lower e (2|1) and larger ex(1]2).

Next, we compare the results of Cases 1, 4, and 5. In Case 4, the Ma-
halanobis distance A = ¢; is set as 0.50. In Case 5, the same is set as 1.36.
When the parameters are known, the exact probabilities of misdiscrimina-
tion ®(—(1/2)A) is nearly equal to 0.25. It can be observed that the exact
probabilities ®(—(1/2)A) closer to M result in lower ex(2|1) and ex(1]2) for
k = 1, i.e., the result derived by McLachlan (1977). However, e;(2|1) for
k = 3, i.e., our result does not have this property.

By the simulation results conducted in Shutoh (2011), it may depend
on the value of 6y_yyq for £ = 2,... k. So, we also conduct the additional
simulation listed in Table 5. It should be noted that Case 5(a) denotes the
result for Case 5 in Tables 1-4. The results in Tables 6-7 indicate that lower
A; and lower A, result in lower e, (2|1) and larger e(1]|2) for k£ = 3. On the
other hand, for £ = 1, we cannot observed that e;(2|1) depends on A; and
As. €(1]2) for k =1 has the property similar to ex(2|1) for k = 1.

Furthermore, we compare the results for Cases 1, 6, and 7 listed in Tables
2-3. The specified upper bound for Case 6 is set as 0.05 and the same
for Case 7 is set as 0.25. As a matter of course, it can be observed the
larger M results in larger ex(2|1) and lower e;(1|2). The result for Case 8
indicates that our and McLachlan’s (1977) results are poorer procedures for
large dimensionality.

Finally, we compare the values of 1 — « listed in Table 4 and Table 8. In
Cases 1, 3, 4, 5(b), 5(c), and 6, our result also provides the level 1 — « which

is closer to the specified value than the result for &k = 1.
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5. Conclusion

This paper provided the asymptotic expansion for the Studentized linear
discriminant function based on monotone missing training data in subsection
3.1. Moreover, subsection 3.2 provided a certain method for determining the
cut-off point which could be obtained using the result derived by subsection
3.1. As it turns out, we derive a certain extension of the results derived by
Anderson (1973), Shutoh and Seo (2010), and McLachlan (1977). Section 4
evaluated our result by Monte Carlo simulation for the selected parameters.
Especially, our result provided the better value of 1 — «, i.e., the value is
closer to the specified level than the result for McLachlan (1977) when «, A,
M, and A; (i =1,2) are lower.

As a future problem, if we can construct the discriminant rule based on
maximum likelihood with k-step monotone missing training data, we may

obtain the similar result.
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