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Abstract

In this paper, we consider the simultaneous confidence intervals for multiple

comparisons with a control among mean vectors from the multivariate normal dis-

tributions. We discuss the approximate simultaneous confidence procedure proposed

by Seo (1995). Seo (1995) conjectured that this procedure always construct the con-

servative approximate simultaneous confidence intervals. In this paper, we give the

affirmative proof of this conjecture and give the upper bound for the conservative-

ness of this procedure in the case of five correlated mean vectors. Finally, numerical

results by Monte Carlo simulation are given.
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1. Introduction

Consider the simultaneous confidence intervals for multiple comparisons among

mean vectors from the multivariate normal populations. Let M = [µ1, . . . , µk] be

the unknown p × k matrix of k mean vectors corresponding to the k treatments,

where µi is the mean vector from i-th popultation. And let M̂ = [µ̂1, . . . , µ̂k] be

an estimator of M such that vec(X) has Nkp(0,V ⊗Σ), where X = [x1, . . . , xk] =

∗E-mail address: nishiyam@rs.kagu.tus.ac.jp
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M̂ − M , V = [vij] is a known k × k positive definite matrix and Σ is an unknown

p × p positive definite matrix, and vec(·) denotes the column vector formed by

stacking the columns of the matrix under each other. Further, we assume that S is

an unbiased estimator of Σ such that νS is independent of M̂ and is distributed

as a Wishart distribution Wp(Σ, ν). Then, in general, the simultaneous confidence

intervals for multiple comparisons among mean vectors are given by the following

form:

a′Mb ∈
[

a′M̂b ± t(b′V b)1/2(a′Sa)1/2
]
, ∀a ∈ Rp − {0}, b ∈ B, (1)

where Rp − {0} is a set of any nonzero real p-dimensional vectors, B is a subset

in k-dimensional space. Also, the square of value t(> 0) in (1) is the upper 100α

percentiles of T 2
max-type statistic defined by

T 2
max = max

b∈B

{
(Xb)′S−1Xb

b′V b

}
.

Then we note that the coverage probability for (1) is exactly 1 − α.

In order to construct the actually simultaneous confidence intervals (1) with the

confidence level α, it is necessary to find the value of t. However, it is difficult

to find the exact value. So some approximations for the upper 100α percentiles

of T 2
max-type statistic have been discussed by Siotani (1959a,b, 1960), Krishnaiah

(1979), Siotani, Hayakawa and Fujikoshi (1985), Seo and Siotani (1992, 1993), Seo,

Mano and Fujikoshi (1994), Seo (1995) and so on. Also, under elliptical distributions

and general distributions, some approximations based on the asymptotic expansion

have been discussed by Seo (2002), Okamoto and Seo (2004), Okamoto (2005) and

Kakizawa (2006).

In this paper, we discuss the comparisons with a control among mean vectors.

Here, we assume that k-th treatment is a control treatment. In the case of compar-

isons with a control, a subset B is given by

B = C ≡ {c ∈ Rk : c = ei − ek, i = 1, . . . , k − 1}, (2)
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where ei = (0, . . . , 0, 1, 0, . . . , 0)′ is a k-dimensional unit vector which having 1 at

i-th component.

Therefore we have the simultaneous confidence intervals for comparisons with a

control among mean vectors given by

a′Mc ∈
[

a′M̂c ± tc·V (c′V c)1/2(a′Sa)1/2
]
, ∀a ∈ Rp − {0}, c ∈ C, (3)

where t2c·V is the upper 100α percentiles of T 2
max ·c statistic defined by

T 2
max ·c = max

c∈C

{
(Xc)′S−1Xc

c′V c

}
= max

i=1,...,k−1
{(xi − xk)

′(dikS)−1(xi − xk)},

and dik = vii − 2vik + vkk. We note that the simultaneous confidence intervals (3)

can be expressed as

a′(µi − µk) ∈ [ a′(µ̂i − µ̂k) ± tc·V (dika
′Sa)1/2

]
,

∀a ∈ Rp − {0}, i = 1, . . . , k − 1. (4)

In the case of comparisons with a control, some approximations for the up-

per 100α percentiles of T 2
max ·c statistic have been discussed by Seo and Siotani

(1993), Seo (1995) and so on. In particular, Seo (1995) proposed a conservative

approximate simultaneous confidence procedure which concerning to the multivari-

ate Tukey-Kramer procedure (see, Seo, Mano and Fujikoshi (1994)). In the case of

three and four correlated mean vectors (that is, k = 3 and 4), its conservativeness

has been affirmatively proved by Seo (1995) and Nishiyama (2007), respectively.

Also, Seo and Nishiyama (2008) and Nishiyama (2007) gave the upper bound for

the conservativeness of this procedure for the case k = 3 and 4, respectively.

In this paper, we discuss the conservativeness of the approximate simultaneous

confidence procedure for comparisons with a control proposed by Seo (1995) in the

case of five correlated mean vectors. Further, we give the upper bound for the
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conservativeness of the procedure. In the case of pairwise comparisons, conserva-

tiveness of multivariate Tukey-Kramer procedure has been affirmatively proved by

Seo, Mano and Fujikoshi (1994) and Nishiyama and Seo (2008) when k = 3 and 4,

respectively. However, it is left as a future problem for the case k ≥ 5.

The organization of this paper is as follows. In Section 2, we describe the ap-

proximate simultaneous confidence procedure for comparisons with a control. In

Section 3, we give the affirmatively proof of the conservativeness and upper bound

for the conservativeness. Finally, in Section 4, some numerical results by Monte

Carlo simulation are given.

2. A conservative procedure for comparisons with a control

In this section, we describe the approximate simultaneous confidence procedure

for comparisons with a control. For k ≥ 3, Seo (1995) proposed the conservative

approximate simultaneous confidence intervals given by

a′(µi − µk) ∈ [ a′(µ̂i − µ̂k) ± tc·V1 (dika
′Sa)1/2

]
,

∀a ∈ Rp − {0}, i = 1, . . . , k − 1, (5)

where t2c·V1
is the upper 100α percentiles of T 2

max ·c statistic with V = V 1, and

V 1 satisfies with dij = dik + djk, 1 ≤ i < j ≤ k − 1. Further, Seo (1995) gave

the conjecture that these simultaneous confidence intervals are always conservative.

For this conjecture, its proof for the case k = 3 and 4 is given by Seo (1995) and

Nishiyama (2007), respectively. Also, Seo and Nishiyama (2008) and Nishiyama

(2007) gave the upper bound for the conservativeness for the case k = 3 and 4,

respectively.

We consider the probability

Q(q, V , B) = Pr{(Xb)′(νS)−1(Xb) ≤ q(b′V b), ∀b ∈ B}, (6)

where q(> 0) is any fixed constant. Without loss of generality, we assume Σ = Ip.
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We note that when B = C and q = t∗c(≡ t2c·V1
), the coverage probability (6) is the

same as one of (5). Then, concerning to the coverage probability, Nishiyama (2007)

gave the following conjecture for the case k ≥ 3.

Conjecture 1. (Nishiyama (2007)) Let Q(q, V , C) be the coverage probability (6)

with a known matrix V . Then

1 − α = Q(t∗c ,V 1, C) ≤ Q(t∗c, V , C) < Q(t∗c ,V 2, C),

holds for any positive definite matrix V , where t∗c = t2c·V1
/ν, C = {c ∈ Rk : c =

ei−ek, i = 1, . . . , k−1} and V 1 satisfies with dij = dik+djk for all i, j (1 ≤ i < j ≤

k − 1) and V 2 satisfies with
√

dij = |
√

dik −
√

djk| for all i, j (1 ≤ i < j ≤ k − 1).

In Conjecture 1, we note that there does not exist a positive definite matrix such

that
√

dij = |
√

dik −
√

djk|. However, we can find V 2 as a positive semi-definite

matrix. For example, in the case k = 5, the one of such matrix V 1 and V 2 are given

by

V 1 =


2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 1

 , V 2 =


4 2 2 2 0
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
0 2 2 2 4

 .

3. Proof of conjecture for the case k = 5

In this section, we give the affirmative proof of Conjecture 1 for the case k = 5

by using same idea of Seo (1995) and Nishiyama (2007).

Let A be k × k nonsingular matrix such that V = A′A. Then, by the transfor-

mation Y = XA−1, vec(Y ) ∼ Nkp(0, Ik ⊗ Ip). Further, let

Γ = {γ ; γ = (b′V b)−1/2Ab, ∀b ∈ B}, (7)

which is a subset of unit vectors in Rk. Then we can write the coverage probability
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Q(q, V , B) as

Q(q, V , B) = Pr{(Y Ab)′(νS)−1(Y Ab) ≤ q(b′V b), ∀b ∈ B}

= Pr{(Y γ)′(νS)−1(Y γ) ≤ q, γ ∈ Γ}.

Further, we consider the transformation S to L = diag(`1, . . . , `p), `1 ≥ . . . ≥ `p

and p × p orthogonal matrix H1 such that νS = H1LH ′
1. Then H1 is a p × p

orthogonal matrix and L and H1 are independent. Then we note that L and H1

are independent and the p.d.f. of L is given by

πp2/2

2pν/2Γp(
1
2
ν)Γp(

1
2
p)

exp

(
−1

2

p∑
i=1

`i

)
p∏

i=1

`
(ν−p−1)/2
i

p∏
i<j

(`i − `j), (8)

where Γp(n) = πp(p−1)/4
∏p

i=1 Γ(n − (i − 1)/2) (see, e.g., Siotani, Hayakawa and

Fujikoshi (1985)). Summarizing these results, we have the following theorem given

by Seo, Mano and Fujikoshi (1994).

Theorem 2. (Seo, Mano and Fujikoshi (1994)) Let Γ be a subset of unit vector

in Rk defined by (7). Then the coverage probability (6) can be expressed as

Q(q, V , B) = EL[Pr{(Y γ)′L−1(Y γ) ≤ q, γ ∈ Γ}],

where the probability density function of L = diag(`1, . . . , `p) is given by (8), L is in-

dependent of Y = [y1, . . . , yk] and y1, . . . , yk are independent identically distributed

as Np(0, Ip).

Next we consider a special case when B = {b1, . . . , bm} and the dimension of

the space spanned by B equals 4. Let γi = (b′
iV bi)

−1/2Abi, i = 1, . . . ,m and

Γ = {γ1, . . . , γm}. Since the dimension of the space spanned by B equals 4, there

exists a k × k orthogonal matrix H2 such that

γ ′
iH2 = [δ′

i, 0, . . . , 0], i = 1, . . . ,m,
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where δi(= (δi1, . . . , δi4)
′) is a 4-dimensional vector and satisfy δ′

iδi = 1. Therefore

we can write

δi =


sin βi1 sin βi2 sin βi3

sin βi1 sin βi2 cos βi3

sin βi1 cos βi2

cos βi1

 , i = 1, . . . ,m,

where 0 ≤ βi1 < π, 0 ≤ βi2 < π and 0 ≤ βi3 < 2π.

Further, we consider the transformation from Y to Y H2 = [U , Ũ ], where U is

p× 4. Letting U = [u1, . . . , up]
′, u1, . . . , up are independent identically distributed

as N4(0, I4). Then we can write

us = rs


sin θs1 sin θs2 sin θs3

sin θs1 sin θs2 cos θs3

sin θs1 cos θs2

cos θs1

 , s = 1, . . . , p,

where r2
s = u′

sus, θs1, θs2 and θs3 are independently distributed as χ2 distribution

with four degrees of freedom, uniform distribution on U[0, π), on U[0, π) and on

U[0, 2π), respectively. Summarizing these results, from Theorem 2, we have the

following theorem.

Theorem 3. Suppose that dimension of the space spanned by B equals 4. Then

the coverage probability (6) can be expressed as

Q(q, V , B) = EL,R

[
Pr

{ p∑
s=1

r2
s

`s

(sin θs1 sin θs2 sin θs3 sin βi1 sin βi2 sin βi3

+ sin θs1 sin θs2 cos θs3 sin βi1 sin βi2 cos βi3 + sin θs1 cos θs2 sin βi1 cos βi2

+ cos θs1 cos βi1)
2≤q for i = 1, . . . ,m

}]
,

where R = diag(r1, . . . , rp) and r2
s (s = 1, . . . , p) are independently identically dis-

tributed as χ2
4. Also, θs1, θs2 and θs3 are independent of R and L and independently

identically distributed as uniform distribution on U[0, π), on U[0, π) and on U[0, 2π),

respectively. Further, R is independent of L whose probability density function is

given by (8).
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Next we consider a case when B = C defined by (2) and k = 5, that is, m =

k − 1 = 4. In this case, without loss of generality we can assume

C = {c1, c2, c3, c4}

=




1
0
0
0
−1

 ,


0
1
0
0
−1

 ,


0
0
1
0
−1

 ,


0
0
0
1
−1


 , (9)

and let γi = (c′
iV ci)

−1/2Aci, i = 1, . . . , 4.

Relating the coverage probability Q(q, V , C) in Theorem 3, we consider the fol-

lowing probability:

G(β) = Pr
{ p∑

s=1

r2
s

`s

(sin θs1 sin θs2 sin θs3 sin βi1 sin βi2 sin βi3

+ sin θs1 sin θs2 cos θs3 sin βi1 sin βi2 cos βi3 + sin θs1 cos θs2 sin βi1 cos βi2

+ cos θs1 cos βi1)
2≤q for i = 1, . . . , 4

}
, (10)

where β = (β11, . . . , β41, β12, . . . , β42, β13, . . . , β43)
′. We consider the case that prob-

ability (10) achieves maximum and minimum, respectively. So we define the volume

Ω and Di as follows:

Ω = {(θs1, θs2, θs3)
p : 0 < θs1 < π, 0 < θs2 < π, 0 < θs3 < 2π},

Di =
{

(θs1, θs2, θs3)
p ∈ Ω :

p∑
s=1

r2
s

`s

(sin θs1 sin θs2 sin θs3 sin βi1 sin βi2 sin βi3

+ sin θs1 sin θs2 cos θs3 sin βi1 sin βi2 cos βi3 + sin θs1 cos θs2 sin βi1 cos βi2

+ cos θs1 cos βi1)
2 >q

}
for i = 1, . . . , 4.

Then we note that the probability (10) is equivalent to 1− volume [∪4
i=1Di] /(2π

3)p.

Therefore to minimize G(β) is equivalent to maximizing the value for volume [∪4
i=1Di].

Similarly to maximize G(β) is equivalent to minimizing the value for volume [∪4
i=1Di].

At first we consider the case that volume [∪4
i=1Di] achieves maximum. Assuming
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that δ1, δ2, δ3 and δ4 are orthogonal each other, we can put

δ1 =


0
0
0
1

 , δ2 =


0
0
1
0

 , δ3 =


0
1
0
0

 , δ4 =


1
0
0
0

 .

Then we can get 
β11 = 0, β12 = 0, β13 = 0,
β21 = π/2, β22 = 0, β23 = 0,
β31 = π/2, β32 = π/2, β23 = 0,
β41 = π/2, β42 = π/2, β43 = π/2.

For example, putting p = 1, r2
1/`1 = 1 and q = 0.5, we have

G(β) = Pr
{

(sin θ11 sin θ12 sin θ13 sin βi1 sin βi2 sin βi3

+ sin θ11 sin θ12 cos θ13 sin βi1 sin βi2 cos βi3 + sin θ11 cos θ12 sin βi1 cos βi2

+ cos θ11 cos βi1)
2≤0.5 for i = 1, . . . , 4

}
,

and

Di =
{

(θ11, θ12, θ13)
p ∈ Ω : (sin θ11 sin θ12 sin θ13 sin βi1 sin βi2 sin βi3

+ sin θ11 sin θ12 cos θ13 sin βi1 sin βi2 cos βi3 + sin θ11 cos θ12 sin βi1 cos βi2

+ cos θ11 cos βi1)
2 >0.5

}
for i = 1, . . . , 4.

Then we evaluate volume [∪4
i=1Di]. Figure 1 ∼ Figure 6 shows the area of union of

Di’s when θ13 = 0, π/6, π/5, π/4, π/3, π/2, respectively. From Figure 1 ∼ Figure

6, we note that Di’s don’t overlap when δ1, δ2, δ3 and δ4 are orthogonal each other.

On the other hands, we choose

δ1 =


0
0
0
1

 , δ2 =


0
0
1
0

 , δ3 =


0
1
0
0

 , δ′
4 =


0

1/2√
3/2
0

 .

In this case we can get β41 = π/2, β42 = π/6, β43 = 0. Then we compare

volume [D1 ∪ D2 ∪ D3 ∪ D4] with volume [D1 ∪ D2 ∪ D3 ∪ D′
4] where D′

4 is concerned

with δ′
4. Figure 7 ∼ Figure 12 shows area [D1 ∪ D2 ∪ D3 ∪ D4 ∪ D′

4] when θ13 = 0,
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π/6, π/5, π/4, π/3, π/2, respectively. From Figure 7 ∼ Figure 12, we note that D′
4

becomes small. Also, D2 and D′
4 always overlap each other and finally D2 contain

D′
4. On the other hands, D4 doesn’t overlap other areas and becomes large. So,

we note that the volume of complement of D1 ∪ D2 ∪ D3 ∪ D4 ≤ the volume of

complement of D1 ∪ D2 ∪ D3 ∪ D′
4. Therefore volume [∪4

i=1Di] achieves maximum,

that is, Q(q, V , C) achieves minimum when δ1, δ2, δ3 and δ4 are orthogonal each

other.

When δ1, δ2, δ3 and δ4 are orthogonal each other, δ′
`δm = 0 (` 6= m), that is,

γ ′
`γm = 0 (` 6= m). We can show that γ ′

iγj = 0 if and only if vij−vi5−vj5+v55 = 0 for

1 ≤ i < j ≤ 4. Therefore we can get the condition dij = di5 + dj5 for 1 ≤ i < j ≤ 4.

Summarizing these results, we have following Lemma.

Lemma 4. Let c1, c2, c3 and c4 be the vectors defined by (9) and let γi =

(c′
iV ci)

−1/2Aci, i = 1, . . . , 4, where V = [vij] is a 5 × 5 positive definite matrix

and A is a nonsingular matrix such that V = A′A. Then γ1, γ2, γ3 and γ4 are

orthogonal each other if and only if dij = vii−2vij +vjj = di5 +dj5 (1 ≤ i < j ≤ 4).

Secondly, we consider the case that volume [∪4
i=1Di] achieves minimum, that is,

Q(q, V , C) achieves maximum. By using same procedure, in this case, we note that

δ1, δ2, δ3 and δ4 are all same. So δ′
`δm = δ′

`δ` = 1 (` 6= m), that is, γ ′
`γm = γ ′

`γ` =

1 (` 6= m). We can show that γ ′
iγj = 1 if and only if vij −vi5−vj5 +v55 =

√
di5

√
dj5

for 1 ≤ i < j ≤ 4. Therefore we can get the condition
√

dij = |
√

di5 −
√

dj5| for

1 ≤ i < j ≤ 4. Summarizing these results, we have following Lemma.

Lemma 5. Let c1, c2, c3 and c4 be the vectors defined by (9) and let γi =

(c′
iV ci)

−1/2Aci, i = 1, . . . , 4, where V = [vij] is a 5 × 5 positive definite matrix

and A is a nonsingular matrix such that V = A′A. Then γ1, γ2, γ3 and γ4 are
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all same if and only if
√

dij =
√

vii − 2vij + vjj = |
√

di5 −
√

dj5| (1 ≤ i < j ≤ 4).

From Lemma 4 and Lemma 5, we we have following Theorem.

Theorem 6. Let Q(q, V , C) be the coverage probability (6) with a known matrix

V for the case k = 5. Then

1 − α = Q(t∗c ,V 1, C) ≤ Q(t∗c, V , C) < Q(t∗c ,V 2, C),

holds for any positive definite matrix V , where t∗c = t2c·V1
/ν, C = {c ∈ Rk : c = ei −

ek, i = 1, . . . , k− 1} and V 1 satisfies with dij = di5 +dj5 for all i, j (1 ≤ i < j ≤ 4)

and V 2 satisfies with
√

dij = |
√

di5 −
√

dj5| for all i, j (1 ≤ i < j ≤ 4).

4. Numerical examinations

This section gives some numerical results of the coverage probability Q(t∗c, V, C)

and the upper 100α percentiles of T 2
max ·c statistics by Monte Carlo simulation. The

Monte Carlo simulations are made from 106 trials for each of parameters based on

normal random vectors from Nkp(0,V ⊗ Ip). The sample covariance matrix S is

computed on the basis of random vectors from Np(0, Ip). Also we note that S is

formed independently in each time with ν degrees of freedom.

Table 1 gives the simulated upper 100α percentiles tc·V of Tmax ·c(=
√

T 2
max ·c) and

simulated coverage probability Q(t∗c, V, C)(≡ CP(V )) when the simulated values

of tc·V are substituted for tc·V1 for the following parameters: α = 0.1, 0.05, 0.01,

p = 1, 2, 5, k = 5, ν = 20, 40, 60, and V = I, V 1, V 2 and V 3, that is,

V 1 =


2 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 1

 ,V 2 =


4 2 2 2 0
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
0 2 2 2 4

 ,V 3 =


3 1 1 1 1
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
1 1 1 1 2

 .

Here we note that V 1 and V 3 are positive definite matrices and V 2, whose eigenval-

ues are (10, 4, 0, 0, 0), is a positive semi-definite matrix. Also we note that V 1 is a
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matrix such that dij = di5 + dj5 and V 2 is a matrix such that
√

dij = |
√

di5 −
√

dj5|

for all 1 ≤ i < j ≤ 4.

Since V is a positive semi-definite matrix, a distribution of vec(X) is said to be

singular or degenerate when the rank of V is less than k, say r(< k). In this case, the

total probability mass concentrates on a linear set of exactly r × p dimensions with

probability one (see, Cramér (1946)). Therefore, in this case, the k × p dimensional

random numbers are produced from the ones generated by r×p dimensional normal

distribution (see, e.g., Seo and Nishiyama (2008)).

From Table 1, it can be seen that always tc·V2 < tc·V3 ≤ tc·I ≤ tc·V1 . So we note

that tc·V2 < tc·V ≤ tc·V1 for any positive definite matrix V . Therefore, this result

shows that the upper bound for the conservativeness of multiple comparisons with

a control can be obtained. For example, from Theorem 6, when p = 2, ν = 20 and

α = 0.1 we note that 0.900 ≤ Q(t∗c,V , C) < 0.973 for any positive definite matrix

V . Further it may be noted that from simulation results, coverage probabilities

Q(t∗c ,V , C) do not depend on the value p and ν.

In conclusion, it may be noted that the approximate simultaneous procedure

which is discussed by this paper gives the conservative and good approximate simul-

taneous confidence intervals, and useful for the simultaneous confidence intervals

estimation in the case of comparisons with a control among mean vectors.
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Table 1: Upper 100α percentiles of Tmax ·c and coverage probabilities

p ν α tc·V1 tc·I tc·V3 tc·V2 CP(I) CP(V 3) CP(V 2)

1 20 0.01 3.445 3.396 3.304 2.846 0.991 0.993 0.997
0.05 2.722 2.652 2.567 2.086 0.957 0.964 0.987
0.1 2.387 2.304 2.226 1.724 0.915 0.928 0.973

40 0.01 3.223 3.188 3.104 2.702 0.991 0.993 0.997
0.05 2.602 2.543 2.464 2.020 0.956 0.964 0.987
0.1 2.304 2.230 2.155 1.683 0.915 0.928 0.974

60 0.01 3.154 3.120 3.039 2.663 0.991 0.993 0.997
0.05 2.565 2.509 2.431 2.001 0.956 0.964 0.987
0.1 2.278 2.207 2.132 1.671 0.914 0.928 0.974

2 20 0.01 4.184 4.131 4.023 3.532 0.991 0.993 0.997
0.05 3.399 3.329 3.231 2.722 0.956 0.964 0.987
0.1 3.041 2.959 2.866 2.342 0.914 0.928 0.973

40 0.01 3.790 3.756 3.667 3.265 0.991 0.993 0.997
0.05 3.163 3.108 3.020 2.578 0.956 0.964 0.987
0.1 2.863 2.794 2.708 2.240 0.914 0.929 0.974

60 0.01 3.675 3.646 3.563 3.180 0.991 0.993 0.998
0.05 3.090 3.040 2.956 2.532 0.956 0.964 0.987
0.1 2.807 2.743 2.660 2.207 0.913 0.929 0.974

5 20 0.01 6.135 6.063 5.919 5.268 0.991 0.993 0.997
0.05 5.091 5.001 4.868 4.223 0.956 0.964 0.987
0.1 4.627 4.524 4.397 3.745 0.914 0.929 0.973

40 0.01 5.036 5.004 4.900 4.449 0.991 0.993 0.997
0.05 4.345 4.291 4.187 3.708 0.955 0.964 0.987
0.1 4.020 3.951 3.848 3.343 0.913 0.929 0.974

60 0.01 4.756 4.731 4.636 4.242 0.991 0.993 0.998
0.05 4.149 4.101 4.006 3.570 0.955 0.964 0.987
0.1 3.855 3.795 3.698 3.233 0.912 0.929 0.974
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Figure 1. arealDI UD2 UD3 UD4]

when β13 - 0.

Figure 3l arealDI UD2 UD3 UD4]

when 013 - 7T/5.

Figure 2. arealDI UD2 UD3 UD4]

when O13 - 7T/6･

βu

Figure 4. arealDI UD2 UD3 UD4]

when 013 - 7r/4･

0



Figure 5. arealDI UD2 UD3 UD4]　　Figure 6. arealDI UD2 UD3 UD4]

when 013 - 7T/3.　　　　　　　　　　when 013 - 7T/2･

0　　　　　　　　　　　　　　　　　　βu 0 ∂11

Figure 7. area[DIUD2UD3UD4UD左] Figure 8･ area[DIUD2UD3UD4UD左]

when 013 - 0.　　　　　　　　　　　when O13 - 7T/6･
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0　　　　　　　　　　　　　　　　　011 0　　　　　　　　　　　　　　　　　011

Figure 9. area[DI UD2UD3UD4UD左】 Figure 10. arealDIUD2UD3UD4UD左】

when 013 - 7T/5.　　　　　　　　　　when 013 - 7T/4･

0　　　　　　　　　　　　　　　　　　011 0 all

Figure ll. area[DI UD2UD3UD4UD左] Figure 12･ arealDIUD2UD3UD4UD左]

when O13 - 7T/3.　　　　　　　　　when 013 - 7T/21
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