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Abstract

In this paper, we consider testing independence among components of ran-
dom vector in multivariate normal population. For testing independence, we
use the modified likelihood ratio test statistic which is improved an approxima-
tion to χ2 distribution of the likelihood ratio test statistic. In order to perform
simultaneous tests for independence among components of random vector, we
use a step-down multiple comparison procedure based on closed testing proce-
dure proposed by Marcus, Peritz and Gabriel (1976). Moreover, we construct
a step-up multiple comparison procedure for testing independence simultane-
ously. Finally, we perform Monte Carlo simulations and present numerical
results.
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1. Introduction

Let x be a random vector from p-dimensional multivariate normal distribution

with mean vector µ and covariance matrix Σ. We consider the following partitions:

x = (x1,x
′
(2))

′,

Σ =

[
σ11 σ′

12

σ12 Σ22

]
,
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where x(2) = (x2, x3, . . . , xp)
′. Then we consider testing independence between x1

and x(2), i.e., testing

H0 : σ12 = 0 vs. H1 : σ12 ̸= 0.

When H0 is rejected, it may be required to test independence between x1 and xi (i =

2, 3, . . . , p). Here, we use the step-wise multiple comparison procedure.

Multiple comparison procedure is known as a procedure for testing multiple

hypotheses simultaneously. Many authors have been studied single-step and step-

wise multiple comparison procedures. For example, single-step procedures among

several mean components have been considered by Scheffé (1953), Tukey (1953),

Dunnett (1955) and so on. On the other hand, step-down procedure which is one of

the step-wise procedures has been discussed by Peritz (1970) and so on. Moreover,

on the basis of closed testing procedure, a step-down procedure has proposed by

Marcus, Peritz and Gabriel (1976). Also, step-up procedure is known as another

step-wise procedure (see, e.g., Dunnett and Tamhane (1992)). In this paper, we

propose the simultaneous test procedures for independence among components of

random vector under the multivariate normal population by step-down and step-up

multiple comparison procedures.

This paper is organized as follows. Section 2 describes the likelihood ratio test

statistic for testing independence and χ2 distribution which is the asymptotic dis-

tribution. Moreover, we give the modified likelihood ratio test statistic which is

improved by an approximation to χ2 distribution. Section 3 proposes a step-down

multiple comparison procedure based on closed testing procedure for the simultane-

ous tests of independence. Section 4 also proposes a step-up procedure for testing

independence. Section 5 investigates the power of the proposed procedures by Monte

Carlo simulations for selected parameters. Section 5 also shows numerical example

to illustrate our procedures. Finally, we conclude this paper and address the direc-

tion for the future studies.
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2. Testing independence

Let x1,x2, . . . , xN be N independent observations from a multivariate normal

distribution with mean vector µ and covariance matrix Σ. Let

x =
1

N

N∑
i=1

xi, A =
N∑

i=1

(xi − x)(xi − x)′.

We partition A as

A =

[
a11 a′

12

a12 A22

]
,

which is similar to Σ. Then we obtain the likelihood ratio for the hypotheses

H0 vs. H1

Λ =
|A|N

2

a
N
2
11|A22|

N
2

.

We can also express the distribution function of the statistic −2 log Λ as

Pr{−2 log Λ ≤ c} = Pr{χ2
p−1 ≤ c} + O(N−1).

Moreover, the modified likelihood ratio test statistic has the following distribution.

Pr{−2η log Λ ≤ c} = Pr{χ2
p−1 ≤ c} + O(N−2),

where

η = 1 − p + 3

2N
.

Therefore, both −2 log Λ and −2η log Λ are asymptotically distributed as χ2 distri-

bution with p − 1 degrees of freedom.

In order to evaluate the accuracy of the obtained statistics, the Monte Carlo

simulation of the upper percentiles of the statistics is implemented for selected pa-

rameters. As the numerical examination, we carry out 106 replications.

Each value is calculated for the following combinations of parameter values:

p = 3, 5, 10, N = 10, 20, 40, 80, 200 (p < N) and α = 0.01, 0.05, 0.1.

Tables 1-3 list numerical results of the simulation. It can be observed from some

numerical results that −2η log Λ is closer to the upper percentiles of χ2 distribution.
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3. Step-down multiple comparison procedure based on closed

testing procedure

In this section, we construct the step-down multiple comparison procedure based

on the closed testing procedure for the simultaneous tests for independence.

Let Mq be the family of subsets {2, . . . , p} with cardinal number q. For m =

{ℓ1, ℓ2, . . . , ℓq} ∈ Mq (ℓ1 < ℓ2 < · · · < ℓq), let Σ(q,m) be the covariance matrix of q+1-

dimensional random vector (x1,x
(q,m)′

(2) )′, where x
(q,m)
(2) = (xℓ1 , xℓ2 , . . . , xℓq)

′. Σ(q,m) is

partitioned as

Σ(q,m) =

[
σ11 σ

(q,m)′

12

σ
(q,m)
12 Σ

(q,m)
22

]
.

Then the hypothesis for independence between x1 and x
(q,m)
(2) is set as

H
(q,m)
0 : σ

(q,m)
12 = 0 vs. H

(q,m)
1 : σ

(q,m)
12 ̸= 0.

Here, let A(q,m) be submatrix of A and

A(q,m) =

[
a11 a

(q,m)′

12

a
(q,m)
12 A

(q,m)
22

]
,

which is similar to Σ(q,m). Then we obtain the likelihood ratio for the hypotheses

H
(q,m)
0 vs. H

(q,m)
1 is

Λ(q,m) =
|A(q,m)|N

2

a
N
2
11|A

(q,m)
22 |N

2

.

When q = p − 1, we write H
(q,m)
0 = H0 and Λ(q,m) = Λ. The statistic −2 log Λ(q,m)

is asymptotically distributed as χ2 distribution with q degrees of freedom under

the null hypothesis H
(q,m)
0 . In this case, we give the modified likelihood ratio test

statistic −2τ log Λ(q,m), where τ = 1 − (q + 4)/2N .

Let Fq be the set consisting of all hypotheses H
(q,m)
0 . Moreover, let F = ∪p−1

q=1Fq.

Then the family F is closed. Using the likelihood ratio test statistic, Imada (2010)

proposed the step-down multiple comparison procedure based on closed testing pro-

cedure for F . In this paper, we carry out the step-down test for all hypotheses in F

by using the modified likelihood ratio test statistic as follows:
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Step 1. We test hypothesis H0.

Case 1. If −2τ log Λ > χ2
p−1(α), we reject H0 and go to Step 2.

Case 2. If −2τ log Λ ≤ χ2
p−1(α), we retain all hypotheses in F and stop the

test.

Step 2. We test all hypotheses H
(p−2,m)
0 in Fp−2.

Case 1. If −2τ log Λ(p−2,m) > χ2
p−2(α), we reject H

(p−2,m)
0 .

Case 2. If −2τ log Λ(p−2,m) ≤ χ2
p−2(α), we retain H

(p−2,m)
0 and all hypotheses

implied by H
(p−2,m)
0 .

If all hypotheses in ∪p−3
q=1Fq are retained, we finish the test. Otherwise, we go

to Step 3.

Step 3. We test all hypotheses in Fp−3 which are not retained in Step 2.

We repeat similar judgments till Step p − 1 at the maximum.

From a principle of closed testing procedure, it should be noted that the maximum

type I FWE (familywise error rate) of this step-down multiple comparison procedure

is not greater than α.

4. Step-up multiple comparison procedure

In this section, we construct the step-up procedure for testing independence. We

consider testing the following hypotheses:

H1i : σ1i = 0 vs. HA
1i : σ1i ̸= 0, i = 2, 3, . . . , p.

The likelihood ratio for H1i is given by

Λ1i =
|A1i|

N
2

a
N
2
11a

N
2
ii

,

where A1i is submatrix of A in the following form:

A1i =

[
a11 a1i

a1i aii

]
.
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Therefore, the modified likelihood ratio test statistic −2η log Λ1i is asymptotically

distributed as χ2 distribution with 1 degree of freedom under the hypothesis H1i.

Here, we define L1i ≡ −2η log Λ1i and let

L
(2)
12 ≤ L

(3)
13 ≤ · · · ≤ L

(p)
1p ,

be ordered statistics obtained by calculating L12, L13, . . . , L1p based on observations.

H
(2)
12 , H

(3)
13 , . . . , H

(p)
1p denote the corresponding hypotheses. When all hypotheses are

true, we determine the critical values of the step-up procedure c2, c3, . . . , cp satisfying

Pr{(L12, L13, . . . , L1m) ≤ (c2, c3, . . . , cm)} = 1 − α, (1)

and

c2 ≤ c3 ≤ · · · ≤ cp, (2)

for each m = 2, 3, . . . , p, where

(L12, L13, . . . , L1m) ≤ (c2, c3, . . . , cm)

implies L
(2)
12 ≤ c2, L

(3)
13 ≤ c3, . . . , L

(m)
1m ≤ cm. Then we test H12, H13, . . . , H1p as

follows:

Step 1. We test hypothesis H
(2)
12 .

Case 1. If L
(2)
12 > c2, we reject H

(2)
12 , H

(3)
13 , . . . , H

(p)
1p and stop the test.

Case 2. If L
(2)
12 ≤ c2, we retain H

(2)
12 and go to Step 2.

Step 2. We test hypothesis H
(3)
13 .

Case 1. If L
(3)
13 > c3, we reject H

(3)
13 , H

(4)
14 , . . . , H

(p)
1p and stop the test.

Case 2. If L
(3)
13 ≤ c3, we retain H

(3)
13 and go to Step 2.

Step 3. We test hypothesis H
(4)
14 .

We repeat similar judgments till Step p − 1 at the maximum.
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Then we have the following Theorem.

Theorem 1. The maximum type I FWE of this step-up multiple comparison pro-

cedure is not greater than α.

Proof. Suppose that H12, H13, . . . , H1k are true and H1,k+1, H1,k+2, . . . , H1p are false

(k ≤ p). Then we show that the probability that all H12, H13, . . . , H1k are retained

is not less than 1 − α.

Let

L
(i2)
1i2

≤ L
(i3)
1i3

≤ · · · ≤ L
(ik)
1ik

be ordered statistics of L12, L13, . . . , L1k and we define the event E as

E : L
(i2)
1i2

≤ c2, L
(i3)
1i3

≤ c3, . . . , L
(ik)
1ik

≤ ck.

By (1),

Pr{E} = 1 − α.

We show L
(m)
1m ≤ cm for 2 ≤ m ≤ ik under E. If m ≤ i2,

L
(m)
1m ≤ L

(i2)
1i2

≤ c2 ≤ cm.

Next, we assume ih < m ≤ ih+1 (2 ≤ h ≤ k − 1). Then we obtain

L
(m)
1m ≤ L

(ih+1)
1ih+1

≤ ch+1.

h + 1 ≤ m because h ≤ ih < m. L
(m)
1m ≤ cm since ch+1 ≤ cm. Therefore,

H12, H13, . . . , H1k are retained until Step ik, that is, H12, H13, . . . , H1k are retained

under E and its probability is not less than 1 − α. �

To use this procedure, it is required to find the values c2, c3, . . . , cp. However, it is

difficult to find the exact values c2, c3, . . . , cp. So, in this paper, we use Bonferroni’s

equality in order to determine the values c2, c3, . . . , cp.

We define the events Ei as

Ei : L
(i)
1i ≤ ci, i = 2, 3, . . . ,m
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for each m = 2, 3, . . . , p. Then we can rewrite the probability of (1) as follows:

Pr

{ m∩
i=2

Ei

}
= 1 − α.

By Bonferroni’s inequality for Pr{∩m
i=2Ei}, it holds

Pr

{ m∩
i=2

Ei

}
= 1 − Pr

{ m∪
i=2

Ec
i

}
≥ 1 −

m∑
i=2

Pr{Ec
i },

that is,
m∑

i=2

Pr{Ec
i } ≤ α.

Therefore, we determine the critical values of the step-up procedure c2, c3, . . . , cp

satisfying
m∑

i=2

Pr{L(i)
1i > ci} ≤ α

and the inequality of (2).

5. Numerical examinations

In this section, we compare the efficiency of the proposed procedures in terms of

power. We give some numerical results of the power of procedures by Monte Carlo

simulation. The Monte Carlo simulations are made from 106 trials for selected values

of parameters.

Tables 4-6 list the simulation results for the case where α = 0.05; p = 4; N =

10, 20, 30; and Σ = Σ1, Σ2, Σ3, that is,

( i ) Σ1 =


1 ρ ρ ρ
ρ 1 ρ ρ
ρ ρ 1 ρ
ρ ρ ρ 1

 , −1

3
< ρ < 1,

( ii ) Σ2 =


1 ρ ρ 0
ρ 1 ρ ρ
ρ ρ 1 ρ
0 ρ ρ 1

 ,
1

8
(1 −

√
17) < ρ <

1

8
(1 +

√
17),

(iii) Σ3 =


1 ρ 0 0
ρ 1 ρ 0
0 ρ 1 ρ
0 0 ρ 1

 ,
1

2
(1 −

√
5) < ρ <

1

2
(−1 +

√
5).
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Tables 4-6 give the following four procedures as follows:

SD : the step-down multiple comparison procedure based on closed testing pro-

cedure,

SU1 : the step-up multiple comparison procedure by using the critical value ci =

χ2
1(α/2i−1),

SU2 : the step-up multiple comparison procedure by using the critical value ci =

χ2
1(3α/4i−1),

BI : the procedure based on Bonferroni’s inequality by using the critical value

c ≡ ci = χ2
1(α/(p − 1)),

for i = 2, 3, . . . , p, where χ2
p(α) is the upper 100α percentile of χ2 distribution with

p degree of freedom.

It can be observed from Table 4 that the power of SU2 procedure is greater

than the others when N is small. When N is large, SD procedure becomes better.

Also, it can be observed from Tables 4-6 that the power of SU1 and SU2 results

in worse when the number of independent variables increases. From Tables 4-6, it

should be noted that the power of SD procedure tends to greater than the other

three procedures without the effect of covariance structure.

Next, we apply our procedures to raw data to illustrate our procedures. We

consider the observations from the boys group of Dental data studied at times 8,

10, 12 and 14 ages (Potthoff and Roy (1964)). Its dimensionality and sample size

are p = 4, N = 14. First, we apply the step-down procedure based on closed testing

procedure.

Step 1. We test hypothesis H0.

Since −2η log Λ = 21.477 > 7.815 = χ2
3(0.05), H0 is rejected.

Step 2. We test all hypotheses H
(2,m)
0 in F2.

Since −2η log Λ(2,{2,3}) = 19.559 > 5.991 = χ2
2(0.05), H

(2,{2,3})
0 is rejected.
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Since −2η log Λ(2,{2,4}) = 8.726 > 5.991 = χ2
2(0.05), H

(2,{2,4})
0 is rejected.

Since −2η log Λ(2,{3,4}) = 22.221 > 5.991 = χ2
2(0.05), H

(2,{3,4})
0 is rejected.

Step 3. We test all hypotheses in F1 which are not retained in Step 2.

Since −2η log Λ(1,{2}) = 6.909 > 5.991 = χ2
1(0.05), H

(1,{2})
0 is rejected.

Since −2η log Λ(1,{3}) = 20.311 > 5.991 = χ2
1(0.05), H

(1,{3})
0 is rejected.

Since −2η log Λ(1,{4}) = 6.355 > 5.991 = χ2
1(0.05), H

(1,{4})
0 is rejected.

Therefore, there exists the correlation between x1 and each of x2, x3, x4.

As the second procedure, we apply the step-up procedure by using the critical

value ci = χ2
1(α/2i−1). We obtain the values of L12, L13 and L14 are 7.223 (≡ L

(3)
13 ),

20.311 (≡ L
(4)
14 ) and 6.355 (≡ L

(2)
12 ), respectively.

Step 1. We test hypothesis H
(2)
12 .

Since L
(2)
12 = 6.355 > 4.328 = χ2

1(0.025), H
(2)
12 , H

(3)
13 , H

(4)
14 are rejected.

Therefore, there exists the correlation between x1 and each of x2, x3, x4.

In conclusion, the step-down procedure based on closed testing procedure which

is proposed by this paper is useful for testing independence in terms of the power.

Also, it should be noted that the power of step-up procedure depends on the critical

values ci’s. However, it is defficult to find the exact values ci’s, and it is left as a

future problem.
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Table 1: The upper percentiles of −2 log Λ and −2η log Λ for p = 3

p N α −2 log Λ −2η log Λ χ2
p−1

3 10 0.01 13.136 9.195 9.210
0.05 8.539 5.977 5.991
0.1 6.563 4.594 4.605

20 0.01 10.818 9.195 9.210
0.05 7.065 6.005 5.991
0.1 5.426 4.612 4.605

40 0.01 9.973 9.225 9.210
0.05 6.469 5.984 5.991
0.1 4.979 4.606 4.605

80 0.01 9.597 9.237 9.210
0.05 6.229 5.996 5.991
0.1 4.786 4.606 4.605

200 0.01 9.379 9.238 9.210
0.05 6.084 5.993 5.991
0.1 4.674 4.604 4.605

Table 2: The upper percentiles of −2 log Λ and −2η log Λ for p = 5

p N α −2 log Λ −2η log Λ χ2
p−1

5 10 0.01 23.066 13.839 13.277
0.05 16.379 9.827 9.488
0.1 13.366 8.019 7.779

20 0.01 16.679 13.343 13.277
0.05 11.907 9.525 9.488
0.1 9.767 7.813 7.779

40 0.01 14.733 13.259 13.277
0.05 10.551 9.496 9.488
0.1 8.640 7.776 7.779

80 0.01 13.999 13.299 13.277
0.05 9.989 9.490 9.488
0.1 8.184 7.775 7.779

200 0.01 13.545 13.274 13.277
0.05 9.696 9.502 9.488
0.1 7.945 7.786 7.779
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Table 3: The upper percentiles of −2 log Λ and −2η log Λ for p = 10

p N α −2 log Λ −2η log Λ χ2
p−1

10 20 0.01 33.802 22.816 21.666
0.05 26.237 17.710 16.919
0.1 22.700 15.322 14.684

40 0.01 26.098 21.857 21.666
0.05 20.357 17.049 16.919
0.1 17.662 14.792 14.684

80 0.01 23.616 21.697 21.666
0.05 18.450 16.951 16.919
0.1 16.021 14.719 14.684

200 0.01 22.378 21.651 21.666
0.05 17.484 16.916 16.919
0.1 15.177 14.683 14.684
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Table 4: Power comparison for Σ = Σ1

N ρ SD SU1 SU2 BI
10 0.1 0.000 0.000 0.000 0.000

0.2 0.001 0.000 0.001 0.000
0.3 0.005 0.002 0.005 0.001
0.4 0.020 0.010 0.019 0.005
0.5 0.062 0.038 0.063 0.022
0.6 0.161 0.117 0.170 0.078
0.7 0.358 0.298 0.381 0.226
0.8 0.660 0.610 0.689 0.528
0.9 0.939 0.927 0.950 0.898

20 0.1 0.001 0.000 0.000 0.000
0.2 0.006 0.002 0.004 0.001
0.3 0.036 0.016 0.027 0.009
0.4 0.135 0.077 0.113 0.050
0.5 0.346 0.242 0.312 0.184
0.6 0.640 0.530 0.608 0.454
0.7 0.887 0.828 0.872 0.777
0.8 0.988 0.978 0.985 0.967
0.9 1.000 1.000 1.000 1.000

30 0.1 0.001 0.000 0.001 0.000
0.2 0.015 0.005 0.010 0.003
0.3 0.090 0.045 0.070 0.029
0.4 0.305 0.198 0.261 0.147
0.5 0.626 0.504 0.581 0.429
0.6 0.887 0.820 0.865 0.769
0.7 0.986 0.973 0.982 0.961
0.8 1.000 0.999 1.000 0.999
0.9 1.000 1.000 1.000 1.000
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Table 5: Power comparison for Σ = Σ2

N ρ SD SU1 SU2 BI
10 0.1 0.001 0.000 0.000 0.000

0.2 0.002 0.001 0.001 0.002
0.3 0.006 0.004 0.002 0.006
0.4 0.017 0.011 0.007 0.017
0.5 0.055 0.034 0.023 0.049
0.6 0.185 0.096 0.069 0.128
0.7 – – – –
0.8 – – – –
0.9 – – – –

20 0.1 0.001 0.001 0.000 0.001
0.2 0.007 0.004 0.002 0.006
0.3 0.033 0.020 0.014 0.028
0.4 0.119 0.076 0.057 0.099
0.5 0.343 0.221 0.180 0.265
0.6 0.683 0.482 0.427 0.536
0.7 – – – –
0.8 – – – –
0.9 – – – –

30 0.1 0.002 0.001 0.001 0.001
0.2 0.016 0.009 0.006 0.013
0.3 0.082 0.051 0.038 0.067
0.4 0.278 0.190 0.155 0.230
0.5 0.629 0.467 0.413 0.520
0.6 0.882 0.777 0.735 0.814
0.7 – – – –
0.8 – – – –
0.9 – – – –
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Table 6: Power comparison for Σ = Σ3

N ρ SD SU1 SU2 BI
10 0.1 0.010 0.006 0.003 0.019

0.2 0.017 0.010 0.005 0.030
0.3 0.030 0.019 0.010 0.052
0.4 0.057 0.037 0.019 0.092
0.5 0.115 0.073 0.040 0.161
0.6 0.268 0.142 0.085 0.279
0.7 – – – –
0.8 – – – –
0.9 – – – –

20 0.1 0.017 0.009 0.004 0.025
0.2 0.039 0.023 0.012 0.056
0.3 0.093 0.058 0.033 0.125
0.4 0.206 0.136 0.085 0.250
0.5 0.422 0.283 0.199 0.443
0.6 0.686 0.515 0.407 0.676
0.7 – – – –
0.8 – – – –
0.9 – – – –

30 0.1 0.022 0.011 0.005 0.031
0.2 0.063 0.037 0.021 0.086
0.3 0.168 0.110 0.069 0.208
0.4 0.374 0.265 0.187 0.415
0.5 0.665 0.513 0.411 0.669
0.6 0.868 0.780 0.700 0.871
0.7 – – – –
0.8 – – – –
0.9 – – – –
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