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Abstract

In this paper, we propose a new definition for multivariate kurtosis based on the two measures
of multivariate kurtosis defined by Mardia (1970) and Srivastava (1984), respectively. Under
normality, the exact values of the expectation and the variance for the new multivariate sample
measure of kurtosis are given. We also give the third moments for the sample measure of new
multivariate kurtosis. After that standardized statistics and normalizing transformation statistic
for the sample measure of a new multivariate kurtosis are derived by using these results. Finally,
in order to evaluate accuracy of these statistics, we present the numerical results by Monte Carlo
simulation for some selected values of parameters.
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1 Introduction

In multivariate statistical analysis, the test for multivariate normality is an important prob-
lem. This problem has been considered by many authors. Shapiro and Wilk (1965) derived test
statistic, which is well known as the univariate normality test. This Shapiro-Wilk test were
extend for the multivariate case by Malkovich and Afifi (1973), Royston (1983), Srivastava
and Hui (1987) and so on. Small (1980) gave multivariate extensions of univariate skewness
and kurtosis. For a comparison of these methods, see, Looney (1995). To assess multivariate
normality, the multivariate sample measures of skewness and kurtosis have been defined and
their null distributions have been given in Mardia (1970, 1974). Srivastava (1984) also has
proposed another definition for the sample measures of multivariate skewness and kurtosis and
their asymptotic distributions. Recently, Song (2001) has given a definition which is different
from Mardia’s and Srivastava’s measure of multivariate kurtosis. Srivastava’s sample measures
of multivariate skewness and kurtosis have been discussed by many authors. Seo and Ariga
(2009) derived the normalizing transformation statistic for Srivastava’s sample measure of mul-
tivariate kurtosis and its asymptotic distribution. Okamoto and Seo (2010) derived the exact



values of the expectation and the variance for a sample measure of Srivastava’s skewness and
improved approximate 2 test statistic for assessing multivariate normality.

On the other hand, Jarque and Bera (1987) proposed the bivariate test using skewness and
kurtosis for univariate case. The improved Jarque-Bera test statistics have been considered by
many authors. Mardia and Foster (1983) proposed test statistic using Mardia’s sample measures
of skewness and kurtosis. Koizumi, Okamoto and Seo (2009) proposed multivariate Jarque-
Bera test statistic using Mardia’s and Srivastava’s skewness and kurtosis. Recently, Enomoto,
Okamoto and Seo (2010) gave a new multivariate normality test statistic using Srivastava’s
skewness and kurtosis.

In this way, it is many studies which the problem for multivariate normality test has been
discussed by using skewness and kurtosis. We focus on multivariate kurtosis in this paper.
Our purposes are to propose a new definition of multivariate kurtosis from the definition in
Mardia (1970) and Srivastava (1984) and to give the asymptotic distribution. In order to
achieve our purposes, we derive the first, second and third moments for a sample measure
of multivariate kurtosis under multivariate normality where the population covariance matrix
> is known. Further we give the standardized statistics and the normalizing transformation
statistic. Finally, we investigate the accuracy of the expectations, the variances, the skewnesses,
the kurtosises and the upper percentile for these statistics by Monte Carlo simulation for some
selected parameters.

2 Some definitions of multivariate kurtosis
2.1 Mardia’s measure of multivariate kurtosis
First, we discuss a measure of multivariate kurtosis defined by Mardia (1970). Let  be a

random p-vector with the mean vector g and the covariance matrix 3. Then Mardia (1970)
has defined the population measure of multivariate kurtosis as

fu=E [{(z - w5 @ - )]

Then we can write

By =E [{trZQ}Q} : (1)

where z = (21,...,2,) = S"VY3(z—p) and Z = diag(21, 2 . . ., 2,). We note that By = p(p+2)
under multivariate normality.

Let xq, ..., 2y be sample observation vectors of size N from a multivariate population. Let
Z=N'Y" z,and S = N'V (x, — F)(®, — F)' be the sample mean vector and the
sample covariance matrix based on sample size N, respectively. Then the sample measure of
multivariate kurtosis in Mardia (1970) is defined as

1 Al —=\/ q¢—1 ==\ 12
bM:N;{(fBa—CE)S (To — )}

Further Mardia (1970) has obtained asymptotic distributions of by used them to test the
multivariate normality. For the moments and approximation to the null distribution of Mardia’s
measure of multivariate kurtosis, see, Mardia and Kanazawa (1983), Siotani, Hayakawa and



Fujikoshi (1985).

Theorem 1 (Mardia (1970)). Let by be the sample measure of multivariate kurtosis on
the basis of random samples of size N drawn from N,(p, ¥) where ¥ is unknown. Then

L v —plp+2)
{8p(p+2)/N}/?

is asymptotically distributed as N(0,1).

2.2 Srivastava’s measure of multivariate kurtosis

Next, we consider Srivastava’s measure of multivariate kurtosis which is different from the
definition by Mardia (1970). Srivastava (1984) gave a definition for a measure of kurtosis
for multivariate populations using the principle component method. Let x be a random p-
vector with the mean vector g and the covariance matrix X. Let I' = (vy,7,,...,7,) be an
orthogonal matrix such that ¥ = I'D,\I, where D) = diag(A1, Aa,...,A,) and Ay, ..., A, are
the characteristic roots of .

Then Srivastava (1984) defined the population measure of multivariate kurtosis as
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r= N
where y; = vix and 6; = vy,u, i =1,2,...,p. Therefore we can write
1
Bs = =E [trZ"] . (2)
p

We note that G5 = 3 under multivariate normality. For the moments and approximation to the
null distribution of Srivastava’s measure of multivariate kurtosis, see, Seo and Ariga (2006).

Let xq,...,xy be samples of size N from a multivariate population. Let & and S = HD_ H’'
be the sample mean vector and the sample covariance matrix based on sample size N, where
H = (hy, hs, ..., h,) is an orthogonal matrix and D, = diag(wy,ws,...,w,). We note that
wi,ws, . . . ,w, are the characteristic roots of S. Then the sample measure of multivariate kurtosis
in Srivastava (1984) is defined as

1 &1 &
bs = Ny 121 2 Z(ym —7,)"

ta=1

Further Srivastava (1984) has obtained asymptotic distributions of bs used them to test the
multivariate normality.

Theorem 2 (Srivastava (1984)). Let bs be the sample measure of multivariate kurtosis
on the basis of random samples of size N drawn from N,(p, 3) where ¥ is unknown. Then

pN
— /(b —
=\ =3

is asymptotically distributed as N(0,1).



3 A new measure of multivariate kurtosis

From Mardia (1970), Srivastava (1984), two measures of multivariate kurtosis are based on
forth moments. So we propose a new measure of multivariate kurtosis from Mardia’s definition
and Srivastava’s that.

3.1 A new measure of multivariate kurtosis for multivariate populations

Let & be a random p-vecter with the mean vector p and the covariance matrix ¥. From (1)
and (2), we propose that

Bus = ]%E [{trZ}"].

Let I' = (7,79, - - - ,7,) be an orthogonal matrix such that 3 = I'D\I", where Dy = diag(A1, Ag,
..»Ap) and A, ..., A, are the characteristic roots of 3.
Therefore we can defined as

Bus = —E [{trZ}] ( v ) ,

where, y; = vix and §; = ~vipu, i =1,2,...,p. We note that fys under multivariate normality.

3.2 A sample measure of the new multivariate kurtosis

Let @1, xo, ..., x N be p-dimensional sample vectors of size N from a multivariate population.
In addition, let & and S = H D, H' be the sample mean vector and the sample covariance matrix,
where H = (hq, ho, ..., h,) is an orthogonal matrix and D, = diag(w;,ws,...,w,). We note
that wy,ws, ..., w, are the characteristic roots of S. Then a new sample measure of multivariate

kurtosis is defined as
1 & (&7
bys = —— A

Without loss of generality, we may assume that > = I and u = 0 when we consider this sample
measure of multivariate kurtosis. In this paper, we consider the moments for the case when X
is known under normality. Since we can write \; = 1(i = 1,2,...,p) in this case, we can reduce

bus to as follows;
1 (L !
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4 First moment of byg

We consider the expectation of byg under multivariate normality. First we can expand
E[byms] given by

Elbus] = E NLPQZ{Z(?JM—%)}

a=1 =1

_ lE[A;*a] (A) +§; (p—1E[A? A;.] (B) +§ (p—1)E[A;, A2 ©
£ (= D(o=2ElAL Ao ] ) + (= D=2 (=D El A At Ase] ) 3)

where A;, = (Yia —7,)- In order to avoid the dependence of y;, and F;, let @Z(-a) be a mean
defined on the subset of vy;1, ¥io, ..., y;n by deleting y;., that is,

1 N
@) _ S
i TN 1 Yig:

j=lj#a

Putting ygo‘) = z/v/N — 1, we have

1 v ) 1 v P v
Aj, = 'ia__'v: 1—-—= (ia__(a)> =|1-== i T .

Then we note that the odd order moments of z and y;, equal zero and

E[z**] =By = (2k—1)---5-3-1, k=1,2,....
For the case of v =1,3,5,..., we have
E[A;] = 0.

For the case of v =2,4,6,...,12, we have

N-1 3(N — 1)2 15(N — 1)3
27 _ 47 _ 67 _
E [Aia] - Tﬂ E [Aia] - Ta E [Aia} - Ta
105(N — 1) 945(N — 1)5 10395(N — 1)8
E[A%] = — B [Aj] = — B [Aia] = NG :
Calculating the cases of (A) ~ (E) in (3) with respect to y;, and z;
3(N —1)? (N —1)?
() Blag) = 202 @) Bl A =0, (0 Bz az) = B2
(D) E[Af Ajodra] =0,  (B) B[4}, 4jaAraArw] =0,
we obtain
6 3
S P 4
E[bys] 3 N + e (4)



5 Variance of byg

In this section, we consider the variance of bys. To obtain Var [bys], we expand E [03] as
follows.

2

1 Al )
E [bi/[s} = NTp‘lE Z {Z(yza — @)}
a=1 i=1
1 ) 56 50 (S pe
<t (2 80) e () () ()
a=1 a=1 a=1 a=1
N N N N N N
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a=1 a=1 a=1 a=1 a=1 a=1
where
p p p
B(l) - Z A;lcw Bc(u2) = Z 4A?QAJCY7 Bag) - Z 6Az2aA32cw
=1 1] 1<J

P p
BWY =3 "1242 AjoAre, BY = AinAjaAraAra,

1,5,k 1,5,0,¢

and A;, = Yio — ;- In order to avoid the dependence of yn, yig, and 7, in E[A;,A5], let yg"‘ﬁ )

be a mean defined on the subset y;1, vi2, ..., yin by deleting v;, and y;3, that is,

_(ap) _ 1 B
R S D DR
j=Lj#a, B

Putting 7" = 2/\/N — 2, where z ~ N(0,1), we have

A Aty = Wia — U:)" (Wip — 72)"

_ (1 N=2 s 1 \"f(,_]1 N=2 g 1 )"
- N Yia N Y; Nyzﬂ N Yip N Y; Nym

_ (2 N-2 1 \"[( _1 N-2 1\’
- N Yia N z Nyzﬁ N Yip N z Nyza




If the value of u is odd and that of v is even, then E [A;‘OKA;’E} = 0. Otherwise, for example,
after a great deal of calculation for the expectations, we get

Bldudu) =~ BALAL) = T2, Blagay) = -2,

(a4 = 2OV INED) gy ) SN DEEZINED)

B [A%AL] 3(3N* — 12N +]33N2 — 60N + 35)’ B A%, Ayy] — _WNTQW’

B [45 42 — 15(N - 1)(3;[\22 — 6N + 7)7 B[4S 2] 15(N — 1)2(N]\T — 2N + 7)7
B[4S 1] — 45(N — 1) (N4 — 4N;;|— 28N2 — 28N + 21)’

B [AT 43, — ~ 3I5(N — 1)2](V]\5f2 — 2N + 3)7 B [A5 42 - 105(N — 1)3%2 — 2N + 9)7
B [A?aAfﬁ} _ 315(N — 1)}(N* — 4N3 + 4N?% — 18N + 33)

N6 '

By using the above results, the expectation for the each term of E[b%] is given by as follows.

E (Z B&”) =E |p (Z A%) +p(p— 1) (Z AZZ) (Z A}Z)

3(3N* + 20N3 — 86N2 4 108N — 45) 9N —1)*

= p ( e B
3p(N — 1){3N3 — N%(9p — 32) + 9N (p — 8) — 3p + 48}
N? !

E (ENJ B&”)Z =E (iizlA?aAja)Q

a=1 a=1 i#j
P N 2 p N N
— E{Z (Z 4A§aAja> +) (Z 4A§aAja> (Z 4AfaAka)
i#j \a=1 1,5,k \a=1 a=1
P N N p N N
+> <Z 4A§aAja> (Z 4A§?aAm> +) (Z 4Af’aAka> (Z 4A§aAm>
i#j \a=l1 a=1 4,7,k \a=1 a=1
P N N p N N
+> <Z 4A§’aAka> (Z 4A§aAka> + > (Z 4A§’aAka> (Z 4A§QAMN
1,7,k \a=1 a=1 1.5,k \a=1 a=1

96p(p — 1)(4N3 — 13N2 + 15N — 6)
N? ’
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Therefore

60 258 324 135
2
Bl =0+ 5 -+~

Hence we get

96 312 360 144
Var[sz]:N—ﬁ—f‘m—m. (5)

6 Third moment of byg

In this section, we consider E [b3] in order to obtain normalizing transformation statistic.
As for the normalizing transformation statistic, we discuss in Section 7. Now we can expand
E[b3;s] given by

E [bi/ls} = E Nipg Z (Z(ym - yz))

1 P ] 3(N —1) b S !
= N2 E (Z Am) + N2 E (Z Am) <Z Aiﬁ)
7 =1

=1

+(N — ]1[)2(]0127 — 2)E Z Aia) (; Aw> (; Am> ,

i=1

where Xo = > 7 (Yia — U;) = >4, Aia. In order to avoid the dependence of yia, Yig, Yir and

y;, let ngW 7 he a mean defined on the subset of Yil, Yi2s - - - Yin by deleting yio, i and v,

that is,
N

1
—(,87) _
S e B DI U
Jj=1, j#a,By
Putting yga’ﬁ’” = z/v/'N — 3, we have
1 N-—3 1 1 "
E{(Yia —9:)" Wi — U:)"(Wiy —¥;)*] = E 1= = | Yia — — Yis —
[(Yio = U3)"(Wis — U3)" (Yiy — U2)"] H( N>y N2 T s Ny»y}

Aoy, YN-3 11
N Yip N Nyz'y Nya

A 1 N —3 1 1 v
N )Y N - NYeT NY |

If the values of u,v and w are odd, even and even, respectively, or if all of them are odd, then
we have E [A;LQA;JBAM = 0. Otherwise, for example, after a great deal of calculation for the
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expectations, we obtain

B[AwAudl] = 5 + g+ ON), B [AdpAb] = — 4 15 + O(N=),
BALALAY] =1— 2 4 L ON?), B[4,4541) =322+ 0 +O(N?),
B[A%ALAL] =~ 2+ ON), BALALAL] =0 2+ 20 o)

B AL ALAL] = 10 + 200 p ov), BlaabAl] =27~ 12 L 104 oy

Therefore the expectation for the each term of E[b3;q] is given by as follows.
1 ¢ “l 10395
szﬁE (; Aia) =Nz O(N),
-1 | (&, (& N\ 945 6615 B
| () () | s ee
P ) V) 4
| (S (S0 (20)

243 27(12p* — 72p% + 251p? — 240p + 108)
N N2p2

— 27—

+O(N7?).

Summarizing these results, we get

702 N 27(12p* — 72p® + 391p? — 240p + 108)

Ebs] = 27+ — N2,

+O(N?). (6)

7 Standardized Statistics and normalizing transformation statistic for E[by]

By using the results of the expectation and the variance for the sample measures of multi-
variate kurtosis, we obtain as following theorem.

Theorem 3 Let @1, &, ..., xN be random samples of size N drawn from N,(p, X), where
> is known. Then

pN

s = ﬁ(sz —3),

. \/ 24 N4 ) , 6 . 3
Z — — - —_
MS AN3 —13N2+ 15N —6 | /8 N N2

are asymptotically distributed as N(0,1).

Next an asymptotic expansion of the distribution function for a new sample measure of
multivariate kurtosis byg is given under the multivariate normal population. Further, as an

14



improved approximation to a standard normal distribution, we derive the normalizing trans-
formation for the distribution of v N (bys — Ous)-
Let Yus = VN (bys — Ous). Then we have the following distribution function for bys.

=(y) - % {Z00) + ZeW )} +0 (V7).

where ®(y) is the cumulative distribution function of N(0, 1) and ®U)(y) is the jth derivation
of ®(y). Also a;, o* and a3 are coefficients for the first three cumulants of Yjss taken the
following form;

<Y

Py [\/N(sz — Bus)

(o}

K1 (YMS) = \/—— + O ( ) )
ko (Yus) = o>+ O0 (N7,
6 _3
ks (Yars) = \/—_ 1O ( )
where 1584

a1 =6, 0>=96, a3=——.
p

Further we put the function g(bys) satisfying the following equation.

as g (bus)
29" (bis)
where ¢'(f3s) # 0. Solving this equation, we have g(bys) = —(32/11)exp [—(11/32)bys]. There-

fore the above distribution function is transformed as

VN {g(bus) — 9(Bus — ¢/N)}

g

=0

<yl =% +O(N"),

where ¢ = —(45/2)exp [—(11/32)bys]
Hence we have a following theorem.

Theorem 4  Let &1, o, ..., xN be random samples of size N drawn from N,(p, ), where
Y is known. Then

o — \/_{ exp [—bus] + Zexp [-32] —¢/N}
NT = \/_6€Xp [_5}

is normalizing transformation for bys, where ¢ = —(45/2)exp [—(33/32)bys] -

For the normalizing transformation of some statistics in multivariate analysis, see, Konishi
(1981), Seo, Kanda and Fujikoshi (1994) and so on.
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8 Simulation studies

We investigate the accuracy of standardized statistics zys, 2yg and normalizing transfor-
mation statistic zy7 by Monte Carlo simulation. Parameters of the dimension and the sample
size in simulation are as follows: p = 3,5,7,10, N = 20, 50, 100, 200, 400, 800. As a numerical
experiment, we carry out 1,000, 000 replications for the case where (= I) is known.

Table 1 gives the values of the expectation and the variance for zyg, 2y and zyp. LT's
in Table 1 denote the limiting term for the expectation and the variance of a new multivariate
kurtosis. Table 2 gives the values of the skewness and the kurtosis for zyg, 235 and zyp. LT’s
in Table 2 denote the limiting term for the skewness and the kurtosis of a new multivariate
kurtosis. From Tables 1 and 2, it may be noted that the values for each statistic give good
normal approximations as N is large.

It may be seen from Table 1 that the expectation and the variance of all statistics converge
to zero and one, as N is large. The results show that the theorems 3 and 4 hold. Particularly,
the expectations and the variances of the statistic zy;q are almost same for any /N. That is, zyg
is almost close to the limiting term even for small NV, respectively, since zy;g is an standardized
statistic using the exact values of the expectation and the variance derived in this paper. As
for the expectation, the accuracy of approximation for zy7 is better than that for zyg for any
N. Hence, it may be noticed that both 23,y and zy7 are improvement statistics of zyg. It may
be seen from Table 1 that there is not the effect of dimension at all.

We note that the value of skewness is zero and the value of kurtosis is three under standard
normal distribution. It may be seen from Table 2 that all statistics converge to zero and
three as N is large. 2zys and zyq are the same values since they are improved statistics for
the expectation and the variance. On the other hand, from Theorem 4, we note that zy7 is
improved for the distribution function. Therefore it may be noted from Table 2 that the values
of skewness and kurtosis for zyy rapidly converge to zero and three. Further it may be seen
that the normalizing transformation statistic zyr is pretty good normal approximation even
for small N.

Tables 3, 4 and 5 give the upper 10, 5 and 1% points of zys, 25 and zyr, respectively.
Note that the notation of z(0.90), 2(0.95) and z(0.99) mean the upper percent points of normal
distribution. In Table 3, 2§ and zyr are closer to the upper 10% point of normal distribution
even when N is small. In Table 4, the accuracy of approximation for zyg is good when N is
small. However the upper approximate percent points of zyt are better as N is large. Finally
it may be seen from Table 5 that the values for zy7 is closer to the upper 1% point of normal
distribution for any N.

Some histograms of the sample distributions for zys, 23 and zy7 by simulation are given
in Figure 1 (p = 10). Also, we compute the cases p = 3, 5,7, and obtain results similar to these
for the case p = 10.

In conclusion, it is noted from various points of view that the normalizing transformation
statistic improved for tha distribution function zxy7 proposed in this paper is extremely good
normal approximation and is useful for the multivariate normal test.

9 Conclusion and problems

In this paper, we proposed a new definition for multivariate kurtosis. It is noticed that a
new definition for multivariate kurtosis is based on fourth moment from definitions proposed by
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Mardia (1970) and Srivastava (1984). Under normality, we derived the expectation, the variance
and the third moment for a sample measure of new multivariate kurtosis. Further, standardized
statistics and normalizing transformation statistic were given by using these results. Finally,
we evaluated the accuracy of statistics derived in this paper by Monte Carlo simulation, and
we recommend to use zyp for the multivariate normality test. It is left as a future problem for
the case when ¥ is unknown.
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Table 1: Expectation and variance for zys, 23 and 2y

Expectation (LT:0) Variance (LT:1)
N ZMs 28 ZNT 2MS 208 ZNT
p=3 20 —0.135 —0.001 0.109 0.840 0.991 0.631
50 —0.086 —0.001 0.036 0.936 1.000 0.794
100 —0.0061 —0.000 0.014 0.970 1.002 0.878
200 —0.043 —0.001 0.006 0.987 1.003 0.931
400 —0.029 0.001 0.003 0.992 1.000 0.962
800 —0.022 0.000 0.000 0.998 1.002 0.983
p=> 20 —0.133 0.000 0.109 0.848 1.002 0.632
50 —0.085 0.000 0.036 0.938 1.002 0.792
100 —0.062 —0.001 0.013 0.967 0.999 0.878
200 —0.044 —0.001 0.005 0.984 1.000 0.931
400 —0.031 —0.001 0.001 0.990 0.998 0.962
800 —0.022 0.000 0.000 0.995 0.999 0.979
p=T7 20 —0.132 0.002 0.111 0.851 1.005 0.632
50 —0.085 0.001 0.036 0.939 1.002 0.795
100 —0.062 —0.001 0.013 0.965 0.997 0.876
200 —0.044 —0.001 0.004 0.981 0.997 0.929
400 —0.029 0.001 0.003 0.994 1.002 0.964
800 —0.022 —0.001 0.000 0.995 0.999 0.980
p=10 20 —1.133 0.000 0.109 0.849 1.003 0.632
50 —1.085 0.001 0.036 0.940 1.003 0.795
100 —0.060 0.001 0.014 0.970 1.002 0.877
200 —0.044 —0.001 0.005 0.983 0.999 0.930
400 —0.032 0.000 0.001 0.988 0.996 0.960
800 —0.021 0.000 0.001 0.996 1.000 0.980
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Table 2: Skewness and kurtosis for zys, 23 and 2y

Skewness (LT:0) Kurtosis (LT:3)
N 2MS 2M8 ZNT ZMS 2\ ZNT
p=3 20 2.233 2.233 0.068 12.531 12.531 2.193
50 1.431 1.431 —0.036 7.075 7.075 2.514
100 1.022 1.022 —0.036 5.113 5.113 2.713
200 0.724 0.724 —0.014 4.016 4.016 2.845
400 0.508 0.508 —0.010 3.522 3.522 2.931
800 0.360 0.360 —0.002 3.254 3.254 2.962
p=> 20 2.276 2.276 0.070 13.262 13.262 2.191
o0 1.456 1.456 —0.030 7.414 7.414 2.518
100 1.002 1.002 —0.037 4.952 4.952 2.708
200 0.716 0.716 —0.023 4.025 4.025 2.853
400 0.502 0.502 —0.014 3.500 3.500 2.927
800 0.399 0.359 —0.003 3.253 3.253 2.965
p=T 20 2.299 2.299 0.067 13.651 13.651 2.191
o0 1.433 1.433 —0.033 7.024 7.024 2.511
100 1.006 1.006 —0.037 4.971 4.971 2.713
200 0.714 0.714 —0.025 4.035 4.035 2.850
400 0.509 0.509 —0.009 3.514 3.514 2.925
800 0.353 0.353 —0.010 3.295 3.295 2.970
p=10 20 —1.133 0.000 0.070 13.246 13.246 2.190
50 —1.085 0.001 —0.032 7.148 7.148 2.512
100 —0.060 0.001 —0.035 5.043 5.043 2.714
200 —0.044 —0.001 —0.025 3.999 3.999 2.850
400 —0.032 0.000 —0.016 3.500 3.500 2.932
800 —0.021 0.000 —0.007 3.258 3.258 2.968
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Table 3: The upper 10% point of zus, 25g and 2yt

0.90
N 2MS s ZNT 2(0.90)
p=3 20 0.992 1.223 1.212 1.282
50 1.160 1.287 1.216 1.282
100 1.225 1.307 1.233 1.282
200 1.264 1.318 1.254 1.282
400 1.277 1.313 1.264 1.282
800 1.286 1.310 1.273 1.282
pP=5 20 0.993 1.225 1.213 1.282
o0 1.163 1.290 1.217 1.282
100 1.228 1.310 1.235 1.282
200 1.261 1.315 1.252 1.282
400 1.275 1.311 1.262 1.282
800 1.283 1.307 1.271 1.282
p=T 20 0.996 1.228 1.214 1.282
o0 1.161 1.289 1.217 1.282
100 1.221 1.303 1.231 1.282
200 1.257 1.310 1.248 1.282
400 1.282 1.318 1.268 1.282
800 1.280 1.305 1.269 1.282
p=10 20 0.993 1.224 1.213 1.282
o0 1.162 1.290 1.217 1.282
100 1.226 1.308 1.234 1.282
200 1.257 1.311 1.249 1.282
400 1.269 1.305 1.257 1.282
800 1.284 1.309 1.272 1.282
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Table 4: The upper 5% point of zus, 25g and zyr

0.95
N 2MS s ZNT 2(0.95)
p=3 20 1.605 1.890 1.445 1.645
50 1.729 1.875 1.503 1.645
100 1.746 1.837 1.550 1.645
200 1.751 1.809 1.594 1.645
400 1.728 1.766 1.614 1.645
800 1.712 1.737 1.630 1.645
p=> 20 1.608 1.893 1.446 1.645
o0 1.727 1.873 1.502 1.645
100 1.747 1.838 1.550 1.645
200 1.744 1.802 1.590 1.645
400 1.726 1.704 1.613 1.645
800 1.712 1.737 1.630 1.645
p=T 20 1.614 1.899 1.448 1.645
o0 1.727 1.874 1.502 1.645
100 1.745 1.835 1.549 1.645
200 1.738 1.796 1.586 1.645
400 1.730 1.768 1.616 1.645
800 1.705 1.730 1.625 1.645
p=10 20 1.612 1.897 1.447 1.645
o0 1.731 1.878 1.504 1.645
100 1.750 1.841 1.552 1.645
200 1.741 1.799 1.588 1.645
400 1.723 1.760 1.610 1.645
800 1.708 1.733 1.627 1.645
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Table 5: The upper 1% point of zus, 25g and zyr

0.99
N 2MS s ZNT 2(0.99)
p=3 20 3.161 3.581 1.719 2.326
50 3.066 3.257 1.937 2.326
100 2.925 3.035 2.090 2.326
200 2.797 2.864 2.204 2.326
400 2.664 2.706 2.262 2.326
800 2.574 2.601 2.298 2.326
p=> 20 3.202 3.625 1.722 2.326
o0 3.074 3.265 1.939 2.326
100 2.917 3.025 2.087 2.326
200 2.773 2.848 2.197 2.326
400 2.665 2.693 2.253 2.326
800 2.567 2.594 2.293 2.326
p=T 20 3.168 3.610 1.721 2.326
o0 3.079 3.270 1.940 2.326
100 2.917 3.027 2.087 2.326
200 2.773 2.839 2.192 2.326
400 2.665 2.706 2.262 2.326
800 2.599 2.596 2.287 2.326
p=10 20 3.203 3.626 1.722 2.326
o0 3.076 3.267 1.939 2.326
100 2.939 3.049 2.095 2.326
200 2.772 2.838 2.192 2.326
400 2.654 2.695 2.255 2.326
800 2.561 2.588 2.289 2.326
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Figure 1: The sample distributions for zys, 23;g and zyp by simulation, and the density plot
for standard normal distribution (p = 10).
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