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Abstract

In this paper, we consider approximation to the upper percentiles of the statistic

for pairwise comparisons among components of mean vector in elliptical distribu-

tions. The first order approximation based on Bonferroni’s inequality is given by

asymptotic expansion procedure. Also, we investigate the effects of nonnormality on

the upper percentiles of this statistic in elliptical distributions. Finally, numerical

results by Monte Carlo simulations are given.
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1. Introduction

Let us consider the simultaneous confidence intervals for pairwise comparisons

among components of mean vector. Such a situation arises, for example, in multiple

comparisons of the components of repeated measurements of the same quantity in

different conditions. Under the multivariate normal population, these simultaneous

confidence intervals are discussed by many authors. Lin, Seppänen and Uusipaikka
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(1990) and Nishiyama (2009) considered the approximate simultaneous confidence

intervals by Tukey-Kramer type procedure. Also, Seo (1995) considered the simul-

taneous confidence intervals by asymptotic expansion procedure. In this paper, we

discuss these simultaneous confidence intervals under the elliptical population.

This paper gives an extension of Seo (1995) to the case of elliptical distributions.

We consider approximation to the upper percentiles of F 2
max ·p statistics based on

Bonferroni’s inequality to construct approximate simultaneous confidence intervals

in elliptical distributions and investigate the effect of nonnormality. It should be

noted that, under the elliptical populations, the approximate simultaneous confi-

dence intervals for pairwise comparisons among mean vectors based on Bonferroni’s

inequality are discussed by Seo (2002), Okamoto (2005) and so on.

The organization of this paper is as follows. In Section 2, the approximations

to the upper percentiles of F 2
max ·p statistic based on Bonferroni’s inequality are

described. In Section 3, the first order approximate upper percentiles of F 2
max ·p

statistic by asymptotic expansion procedure are given. Finally, the accuracy of the

approximations is investigated by Monte Carlo simulations for selected parameters

in Section 4.

2. Approximate procedure based on Bonferroni’s inequality

Let Π be the population distributed as a p-dimensional elliptical distribution

with parameters µ and Λ, i.e., Ep(µ,Λ) (see, e.g., Muirhead (1982), Fang, Kotz and

Ng (1990)). A probability density function of a p×1 random vector x from Ep(µ,Λ)

is of the form

f(x;µ,Λ) = cp|Λ|−1/2g
{
(x− µ)′Λ−1(x− µ)

}
,

for some nonnegative function g, where cp is the normalizing constant and Λ is a

positive definite. The characteristic function of vector x is

ϕ(t) = exp(it′µ)ψ(t′Λt),
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for some function ψ, where i =
√
−1. It should be noted that E(x) = µ and

Cov(x) = Σ = −2ψ′(0)Λ. Throughout this paper, we set down the following as-

sumption:

(A1) X = (x′, {vech(xx′ − Σ)}′)′ satisfies Cramér condition

lim sup
||ξ||→∞

|E[exp(iξ′X)]| < 1, ξ ∈ Rp+
p(p+1)

2

(see, e.g., Bhattacharya and Rao (1976)).

Further, in addition to (A1), we set down the following assumptions if it is required:

(A2) a 8-th absolute moment is finite, that is, E[||x||8] <∞,

(A3) a 12-th absolute moment is finite, that is, E[||x||12] <∞.

We also define the kurtosis parameter by κ = {ψ′′(0)/ (ψ′(0))2} − 1. Elliptical

distributions include the multivariate normal, the multivariate t, the ε-contaminated

normal distributions and so on.

Let x1,x2, . . . ,xN be N independent sample vectors from Ep(µ,Λ). Then the

sample mean vector and the sample covariance matrix are

x =
1

N

N∑
j=1

xj,

S =
1

N − 1

N∑
j=1

(xj − x)(xj − x)′,

respectively. In general, the simultaneous confidence intervals for pairwise multiple

comparisons among components of mean vector are given by

b′ℓmµ ∈
[
b′ℓmx± w

√
b′ℓmSbℓm/N

]
, 1 ≤ ℓ < m ≤ p,

where bℓm = eℓ − em, eℓ is a unit vector of the p-dimensional space having 1 at ℓ-th

component and 0 at others, and the value w (> 0) satisfies as follows:

Pr{F 2
max ·p > w2} = α,
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where

F 2
max ·p = max

1≤ℓ<m≤p

{
Nb′ℓm(x− µ)(x− µ)′bℓm

b′ℓmSbℓm

}
.

In order to construct these simultaneous confidence intervals with the confidence

level 1−α, it is required to find the value w. However, it is difficult to find the exact

value w even under the multivariate normality. Therefore, we construct approximate

simultaneous confidence intervals. Here, we describe the first order approximation

based on Bonferroni’s inequality (see, e.g., Siotani (1959), Seo (2002)). By Bonfer-

roni’s inequality for Pr(F 2
max ·p > w2),

Pr(F 2
max ·p > w2) <

p−1∑
ℓ=1

p∑
m=ℓ+1

Pr(F 2
ℓm > w2),

where

F 2
ℓm =

Nb′ℓm(x− µ)(x− µ)′bℓm
b′ℓmSbℓm

,

and the first order approximation w2
1 is given as a critical value that satisfies the

equality

p−1∑
ℓ=1

p∑
m=ℓ+1

Pr(F 2
ℓm > w2

1) = α.

It should be noted that w2
1 is overestimated, and the statistic F 2

ℓm is essentially

distributed as F -distribution under the multivariate normality. However, under the

class of the elliptical distributions, F 2
ℓm is not distributed as F -distribution. Hence,

the first order approximation cannot be exactly expressed as the upper percentiles

of F -distribution. Therefore, we discuss an asymptotic expansion for the first order

approximation in Section 3.
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3. The first order Bonferroni approximation for the upper percentile of

the statistic

3.1. Asymptotic expansion using Iwashita (1997)

In this subsection, we discuss under the assumption (A2). Takahashi, Nishiyama

and Seo (2010) derived the first order Bonferroni approximation for the upper per-

centiles of F 2
max ·p statistic. Unfortunately, this result included some miscalculations.

So, we correct the asymptotic expansion for F 2
ℓm. Here, we assume Σ = Ip. Let

(N − 1)S = NW −N(x− µ)(x− µ)′,

where

W =
1

N

N∑
j=1

(xj − µ)(xj − µ)′,

and

x = µ+
1√
N
z, W = Ip +

1√
N
Z.

Then we can write

b′ℓmSbℓm =
N

N − 1

(
1 +

1

2
√
N
b′ℓmZbℓm − 1

2N
b′ℓmzz

′bℓm

)
.

Therefore,

(b′ℓmSbℓm)
−1

=
1

2

{
1− 1√

N
Yℓm +

1

N

(
Y 2
ℓm + y2ℓm − 1

)
+ op(N

−1)
}
,

where

Yℓm =
1

2
b′ℓmZbℓm, yℓm =

1√
2
b′ℓmz.

Hence, calculating the characteristic function of F 2
ℓm with z and Z by using the joint

density function of z and Z given in Iwashita (1997), we obtain

E[exp(itF 2
ℓm)] = u−

1
2

{
1 +

1

4N
(c0 + c1u

−1 + c2u
−2) + o(N−1)

}
,
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where u = 1− 2it, and

c0 = −1− 3κ, c1 = −2 + 6κ, c2 = 3− 3κ.

Therefore, inverting this characteristic function, we have the following theorem.

Theorem 1. The distribution of F 2
ℓm can be expanded as

Pr
{
F 2
ℓm > w2

}
= Pr

{
χ2
1 > w2

}
+

1

4N

2∑
j=0

cjPr
{
χ2
1+2j > w2

}
+ o(N−1),

and also its upper 100α percentile can be expanded as

w2
ℓm(α) = χ2

1(α)−
1

2N
χ2
1(α)

{
c0 −

1

3
c2χ

2
1(α)

}
+ o(N−1),

where χ2
1(α) is the upper 100α percentiles of χ2 distribution with 1 degree of freedom.

Since F 2
ℓm is essentially distributed as F -distribution under the multivariate nor-

mality, we also have the following theorem.

Theorem 2. The upper 100α percentile of F 2
ℓm can be also expanded as

w2
ℓm(α) = F1,N−1(α)−

1

2N
χ2
1(α)

{
(c0 + 1)−

(
1

3
c2 − 1

)
χ2
1(α)

}
+ o(N−1),

where F1,N−1(α) is the upper 100α percentile of F -distribution with 1 and N − 1

degrees of freedom.

Therefore, for largeN , the first order Bonferroni approximate upper 100α percentiles

of F 2
max ·p, that is, w

2
1·χ2 ≡ w2

1·χ2(α) and w2
1·F ≡ w2

1·F (α) are obtained as follows:

w2
1·χ2 = χ2

1(α
∗)− 1

2N
χ2
1(α

∗)

{
c0 −

1

3
c2χ

2
1(α

∗)

}
+ o(N−1),

w2
1·F = F1,N−1(α

∗)− 1

2N
χ2
1(α

∗)

{
(c0 + 1)−

(
1

3
c2 − 1

)
χ2
1(α

∗)

}
+ o(N−1),

where α∗ = α/M and M = p(p− 1)/2.
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3.2. Asymptotic expansion using Iwashita and Seo (2002)

In this subsection, we discuss under the assumption (A3). Here, we give the

first order Bonferroni approximation up to the terms of order N−2 for the upper

percentiles of F 2
max ·p statistic. Since

(b′ℓmSbℓm)
−1 =

1

2

{
1− 1√

N
Yℓm +

1

N
(Y 2

ℓm + y2ℓm − 1)

− 1

N
√
N
(Y 3

ℓm + 2Yℓmy
2
ℓm − Yℓm)

+
1

N2
(Y 4

ℓm + 3Y 2
ℓmy

2
ℓm + y4ℓm − Y 2

ℓm − y2ℓm) + op(N
−2)

}
,

F 2
ℓm can be expanded as

F 2
ℓm = y2ℓm − 1√

N
A1 +

1

N
A2 −

1

N
√
N
A3 +

1

N2
A4 + op(N

−2),

where

A1 = Yℓmy
2
ℓm,

A2 = Y 2
ℓmy

2
ℓm + y4ℓm − y2ℓm,

A3 = Y 3
ℓmy

2
ℓm + 2Yℓmy

4
ℓm − Yℓmy

2
ℓm,

A4 = Y 4
ℓmy

2
ℓm + 3Y 2

ℓmy
4
ℓm − Y 2

ℓmy
2
ℓm + y6ℓm − y4ℓm.

Therefore,

exp(itF 2
ℓm) = exp(ity2ℓm)

×
[
1− 1√

N
itA1 +

1

N

{
itA2 +

(it)2

2
A2

1

}
− 1

N
√
N

{
itA3 + (it)2A1A2 +

(it)3

6
A3

1

}
+

1

N2

{
itA4 + (it)2

(
A1A3 +

1

2
A2

2 +
(it)3

2
A1A2 +

(it)4

24
A4

1

)}
+op(N

−2)

]
.

In order to calculate the characteristic function of F 2
ℓm, we use the joint characteristic

function of z and Z, and the marginal characteristic function of z given in Iwashita
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and Seo (2002). Then we obtain

E[exp(itF 2
ℓm)] = u−

1
2 +

1

4N

2∑
j=0

d1ju
− 1

2
−j +

1

32N2

4∑
j=0

d2ju
− 1

2
−j + o(N−2).

where

d10 = −1− 3κ, d11 = 2(−1 + 3κ), d12 = 3(1− κ),

d20 = −7 + 80β − 210κ− 111κ2, d21 = 12(−1 + 8κ+ κ2),

d22 = 6(9− 40β + 54κ+ 69κ2), d23 = 20(−7 + 8β − 21κ2),

d24 = 105(1− κ)2,

and β = ψ′′′(0)/{ψ′(0)}3 − 1. Therefore, inverting the characteristic function, we

have the following theorem.

Theorem 3. The distribution of F 2
ℓm can be expanded as

Pr{F 2
ℓm > w2} = Pr{χ2

1 > w2}+ 1

4N

2∑
j=0

d1jPr{χ2
1+2j > w2}

+
1

32N2

4∑
j=0

d2jPr{χ2
1+2j > w2}+ o(N−2),

and also its 100α percentile can be expanded as

w̃2
ℓm(α) = χ2

1(α)−
1

2N
χ2
1(α)q1(α)

− 1

16N2
χ2
1(α)

[
{1 + χ2

1(α)}{q1(α)}2 − 4q1(α)q2(α) + q3(α)
]
+ o(N−2),

w̃2
ℓm(α) = F1,ν(α)−

1

2N
χ2
1(α)r1(α)

− 1

16N2
χ2
1(α)

[
{1 + χ2

1(α)}r2(α)− 4r3(α) + r4(α)
]
+ o(N−2),

where

q1(α) = d10 −
1

3
d12χ

2
1(α),

q2(α) = d10 −
2

3
d12χ

2
1(α),

q3(α) = d20 −
1

3
(d22 + d23 + d24)χ

2
1(α)
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− 1

15
(d23 + d24){χ2

1(α)}2 −
1

105
d24{χ2

1(α)}3,

r1(α) = q1(α) + 1 + χ2
1(α),

r2(α) = {q1(α)}2 − {1 + χ2
1(α)}2,

r3(α) = q1(α)q2(α)− {1 + χ2
1(α)}{1 + 2χ2

1(α)},

r4(α) = q3(α) + 7 +
19

3
χ2
1(α)−

7

3
{χ2

1(α)}2 + {χ2
1(α)}3,

and χ2
1(α) and F1,N−1(α) are the upper 100α percentile of χ2 distribution with 1

degree of freedom and that of F -distribution with 1 and N − 1 degrees of freedom,

respectively.

Therefore, for largeN , the first order Bonferroni approximate upper 100α percentiles

of F 2
max up to the terms of order N−2, that is, w̃2

1·χ2 ≡ w̃2
1·χ2(α) and w̃2

1·F ≡ w̃2
1·F (α)

are obtained as follows:

w̃2
1·χ2 = χ2

1(α
∗)− 1

2N
χ2
1(α

∗)q1(α
∗)

− 1

16N2
χ2
1(α

∗)
[
{1 + χ2

1(α
∗)}{q1(α∗)}2 − 4q1(α

∗)q2(α
∗) + q3(α

∗)
]

+o(N−2),

w̃2
1·F = F1,ν(α

∗)− 1

2N
χ2
1(α

∗)r1(α
∗)

− 1

16N2
χ2
1(α

∗)
[
{1 + χ2

1(α
∗)}r2(α∗)− 4r3(α

∗) + r4(α
∗)
]
+ o(N−2).

It should be noted that w2
1·F = w̃2

1·F = F1,N−1(α
∗) under the multivariate normality.

4. Numerical examinations

We evaluate the accuracy of the obtained approximations by Monte Carlo simu-

lation. Monte Carlo simulation of the upper percentiles of Fmax ·p statistic is imple-

mented from 106 trials for selected values of parameters p, N , α and κ

Tables 1-6 list the simulated and approximate values of the upper percentiles

of Fmax ·p (=
√
F 2
max ·p) statistic for the combinations of following parameter values:

p = 3, 5, 10, N = 10, 20, 40, 80, 200 (p < N) and α = 0.05. For the distributions of
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population, we adopt the following three distributions; the multivariate normal (κ =

0), the ε-contaminated normal (ε = 0.1, σ = 3 : κ = 1.78) and the ε-contaminated

normal (ε = 0.1, σ = 4 : κ = 3.24).

In Tables 1-6, w1·χ2 , w1·F , w̃1·χ2 and w̃1·F stand for
√
w2

1·χ2 ,
√
w2

1·F ,
√
w̃2

1·χ2

and
√
w̃1·F respectively. Also, P (w2

1·χ2), P (w2
1·F ), P (w̃

2
1·χ2) and P (w̃2

1·F ) denote

Pr{F 2
max ·p < w2

1·χ2}, Pr{F 2
max ·p < w2

1·F}, Pr{F 2
max ·p < w̃2

1·χ2} and Pr{F 2
max ·p < w̃2

1·F},

respectively. It should be noted that w∗ is a simulated value of the upper percentiles

of F 2
max ·p statistic, that is, Pr{F 2

max ·p < w∗2} = 1− α.

In Tables 1 and 2, numerical results for the multivariate normal case (κ = 0)

are given. It can be observed from these Tables that the values of w1·F = w̃1·F are

always larger than the values of w∗. So, it should be noted that always P (w2
1·F ) =

P (w̃2
1·F ) ≥ 1 − α. Also, when N becomes large, the values of w2

1·χ2 and w̃2
1·χ2 are

larger than that of w∗. Besides, it should be noted that the values of w̃2
1·χ2 are always

larger than the values of w2
1·χ2 , that is, P (w̃2

1·χ2) ≥ P (w2
1·χ2).

Tables 3 and 4 and Tables 5 and 6 give numerical results for the case that

κ = 1.78 and κ = 3.24, respectively. From these Tables, when p = 3, it should be

noted that the values of w1·F are greater than or equal to that of w̃1·F . However,

when p = 5 and 10, w̃1·F are always greater than w1·F . Besides, it should be noted

that P (w̃1·F ) ≥ 1−α for almost all case. Also, it can be observed from these Tables,

when κ = 1.78, w̃1·χ2 are always greater than or equal to w1·χ2 . However, when

κ = 3.24 and p = 3, w̃1·χ2 are always smaller than or equal to w1·χ2 .

From Tables 1-6, it should be noted that when κ becomes large, w1·χ2 , w1·F , w̃1·χ2

and w̃1·F , that is, P (w
2
1·χ2), P (w2

1·F ), P (w̃
2
1·χ2) and P (w̃2

1·F ) become small. Also, it

can be observed that always P (w2
1·χ2) ≤ P (w2

1·F ) and P (w̃
2
1·χ2) ≤ P (w̃2

1·F ).
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Table 1. The simulated and approximate values up to the terms of order N−1 for

the multivariate normal distribution (κ = 0).

κ = 0, α = 0.05
p N w1·χ2 w1·F w∗ P (w2

1·χ2) P (w2
1·F )

3 10 2.768 2.933 2.871 0.941 0.955
20 2.588 2.625 2.572 0.952 0.955
40 2.493 2.502 2.453 0.954 0.955
80 2.444 2.446 2.395 0.955 0.956
200 2.414 2.414 2.362 0.956 0.956

5 10 3.373 3.690 3.600 0.931 0.956
20 3.103 3.174 3.092 0.951 0.958
40 2.959 2.976 2.893 0.957 0.959
80 2.884 2.888 2.809 0.959 0.959
200 2.838 2.839 2.758 0.960 0.960

10 10 – – – – –
20 3.705 3.837 3.736 0.947 0.959
40 3.490 3.521 3.425 0.957 0.961
80 3.377 3.385 3.289 0.961 0.962
200 3.308 3.309 3.210 0.963 0.963

Table 2. The simulated and approximate values up to the terms of order N−2 for

the multivariate normal distribution (κ = 0).

κ = 0, α = 0.05
p N w̃1·χ2 w̃1·F w∗ P (w̃2

1·χ2) P (w̃2
1·F )

3 10 2.885 2.933 2.871 0.951 0.955
20 2.619 2.625 2.572 0.955 0.955
40 2.501 2.502 2.453 0.955 0.955
80 2.446 2.446 2.395 0.956 0.956
200 2.414 2.414 2.362 0.956 0.956

5 10 3.583 3.690 3.600 0.949 0.956
20 3.161 3.174 3.092 0.957 0.958
40 2.974 2.976 2.893 0.959 0.959
80 2.888 2.888 2.809 0.959 0.959
200 2.839 2.839 2.758 0.960 0.960

10 10 – – – – –
20 3.810 3.837 3.736 0.957 0.959
40 3.518 3.521 3.425 0.960 0.961
80 3.385 3.385 3.289 0.962 0.962
200 3.309 3.309 3.210 0.963 0.963
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Table 3. The simulated and approximate values up to the terms of order N−1 for

the ε-contaminated normal distribution (κ = 1.78).

κ = 1.78, α = 0.05
p N w1·χ2 w1·F w∗ P (w2

1·χ2) P (w2
1·F )

3 10 2.504 2.686 2.740 0.926 0.945
20 2.449 2.489 2.480 0.947 0.951
40 2.422 2.431 2.396 0.953 0.954
80 2.408 2.410 2.368 0.955 0.955
200 2.400 2.400 2.351 0.956 0.956

5 10 2.821 3.193 3.408 0.876 0.930
20 2.814 2.892 2.954 0.932 0.943
40 2.811 2.828 2.804 0.951 0.953
80 2.809 2.813 2.754 0.957 0.958
200 2.808 2.808 2.734 0.959 0.959

10 10 – – – – –
20 3.181 3.334 3.551 0.889 0.920
40 3.221 3.255 3.288 0.940 0.945
80 3.241 3.249 3.203 0.955 0.956
200 3.253 3.254 3.175 0.961 0.961

Table 4. The simulated and approximate values up to the terms of order N−2 for

the ε-contaminated normal distribution (κ = 1.78).

κ = 1.78, α = 0.05
p N w̃1·χ2 w̃1·F w∗ P (w̃2

1·χ2) P (w̃2
1·F )

3 10 2.587 2.641 2.740 0.935 0.941
20 2.471 2.477 2.480 0.949 0.950
40 2.427 2.428 2.396 0.954 0.954
80 2.409 2.409 2.368 0.955 0.955
200 2.400 2.400 2.351 0.956 0.956

5 10 3.556 3.664 3.408 0.960 0.966
20 3.015 3.028 2.954 0.956 0.958
40 2.862 2.864 2.804 0.957 0.957
80 2.822 2.822 2.754 0.959 0.959
200 2.810 2.810 2.734 0.960 0.960

10 10 – – – – –
20 3.805 3.833 3.551 0.972 0.974
40 3.386 3.390 3.288 0.962 0.962
80 3.283 3.283 3.203 0.961 0.961
200 3.260 3.260 3.175 0.962 0.962
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Table 5. The simulated and approximate values up to the terms of order N−1 for

the ε-contaminated normal distribution (κ = 3.24).

κ = 3.24, α = 0.05
p N w1·χ2 w1·F w∗ P (w2

1·χ2) P (w2
1·F )

3 10 2.264 2.463 2.670 0.899 0.929
20 2.330 2.371 2.417 0.939 0.944
40 2.362 2.372 2.350 0.952 0.953
80 2.378 2.380 2.341 0.955 0.955
200 2.388 2.388 2.340 0.956 0.956

5 10 2.269 2.718 3.323 0.743 0.870
20 2.552 2.638 2.871 0.897 0.915
40 2.683 2.701 2.735 0.942 0.945
80 2.746 2.750 2.710 0.955 0.956
200 2.783 2.783 2.714 0.959 0.959

10 10 – – – – –
20 2.674 2.855 3.448 0.743 0.819
40 2.982 3.019 3.191 0.909 0.918
80 3.124 3.133 3.132 0.949 0.950
200 3.207 3.208 3.141 0.960 0.960

Table 6. The simulated and approximate values up to the terms of order N−2 for

the ε-contaminated normal distribution (κ = 3.24).

κ = 3.24, α = 0.05
p N w̃1·χ2 w̃1·F w∗ P (w̃2

1·χ2) P (w̃2
1·F )

3 10 2.086 2.152 2.670 0.863 0.878
20 2.288 2.294 2.417 0.933 0.934
40 2.352 2.353 2.350 0.950 0.950
80 2.376 2.376 2.341 0.954 0.954
200 2.387 2.387 2.340 0.956 0.956

5 10 3.227 3.345 3.323 0.942 0.952
20 2.798 2.812 2.871 0.941 0.943
40 2.743 2.745 2.735 0.951 0.951
80 2.761 2.761 2.710 0.957 0.957
200 2.785 2.785 2.714 0.959 0.959

10 10 – – – – –
20 3.682 3.711 3.448 0.971 0.973
40 3.239 3.243 3.191 0.957 0.957
80 3.188 3.188 3.132 0.958 0.958
200 3.217 3.217 3.141 0.961 0.961
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