On the distribution of test statistic using Song’s kurtosis
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In this paper, we consider the multivariate normality test based on the sample measure of
multivariate kurtosis defined by Song (2001). We derive expectation and variance of the multi-
variate sample kurtosis under normality, and propose test statistics using these expectation and
variance. Moreover, we obtain an improved test statistic using the normalizing transformation.
In order to evaluate accuracy of proposed test statistics, the numerical results by Monte Carlo
simulation for some selected values of parameters are presented.
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1 Introduction

In statistical analysis, the test for normality is an important problem. This problem has been
considered by many authors. Shapiro and Wilk (1965) derived test statistic using order statistic.
This is called Shapiro-Wilk test as the univariate normality test. Multivariate extensions of the
Shapiro-Wilk test were proposed by Malkovich and Afifi (1973), Royston (1983), Srivastava and
Hui (1987) and so on. Mardia (1970), Srivastava (1984) and Song (2001) gave different defini-
tions of the multivariate sample kurtosis. Mardia (1974) derived expectations and variances of

multivariate sample skewness and kurtosis, and discussed their asymptotic distributions using
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expectation and variance of sample skewness or kurtosis. Okamoto and Seo (2010) derived the
improved approximate y? test statistic using the multivariate sample skewness of Srivastava
(1984). Approximate accuracy of this test statistic is better than that of Srivastava (1984) espe-
cially for small sample size. Test statistics using the multivariate sample kurtosis of Srivastava
(1984) were discussed by Seo and Ariga (2011). Sample measure of multivariate kurtosis by Song
(2001) has not been much studied. Zografos (2008) derived an empirical estimator of Song’s
measure and its asymptotic distribution is investigated under the elliptic family of multivariate
distributions.

In this paper, we derive test statistics using expectation and variance for multivariate sample
kurtosis defined by Song (2001). In addition, we propose a test statistic which approximate
accuracy for multivariate normal distribution is improved rather than them by normalizing
transformation. Finally, we investigate accuracy of expectations, variances, upper percentiles,
lower percentiles, skewness, kurtosis, type I error and power for these test statistics via a Monte

Carlo simulation for selected values of parameters.

2 Test statistic using multivariate sample kurtosis

2.1 Song’s measure of multivariate kurtosis

Let « be a p-dimensional random vector with mean vector p and covariance matrix 3. Then

Song (2001) defined the population measure of multivariate kurtosis as follows:
To,p = Var[log(f(zx, n,X))],
where f(x, p,X) is a probability density function. We note that
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and 7, equals p/2 under a multivariate normal population.

Let @1, xo,..., 2N be samples of size N from a multivariate population. Let T and S be



sample mean vector and sample covariance matrix as follows:
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respectively. Then we defined the sample measure of multivariate kurtosis as follows:
1N
2
tap = 3 Z(yj -7)%
7j=1
where y; = log(f(x;,Z,S)) and y= N~! Z;Vﬂ y;j. We note that
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under a multivariate normal population.

Without loss of generality, we assume that ¥ = I and g = 0 for calculating moments of the
measure of multivariate kurtosis. Also, it is difficult to derive moments of t5 , when covariance
matrix ¥ is unknown. For this reason, we consider the case of known Y. Expectation for the

Song’s sample measure of multivariate kurtosis E[ts ;| is written by

Eltz,] =~ (Bly3] — Elysu)
= Ml LB - ),

where X? = (x; — %) (x; —T) and j # k.

Since & and T are not independent, we put
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Note that

and

Therefore we obtain

Similarly, we put

2
j=1j#aAB#]

= N_2y7

where y ~ N(0,I). Then

It is shown that

E[X2x3] = ~5E

_p{pPN(N -2)+p+2}
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and we can obtain




Similarly, we can obtain expectation of ¢3 , and variance of t3, as

p(N —1)(N — 2){p(N — 2)(N +1) + 4(3N —7)}
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pP(N =N =2{(p+ 6N - 2(p+7)}
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E[t3,] =

Var [t27p] =

Also, expectation and variance of t5, are expressed as E[ts,] = p/2 + O(N~1) and Var[ts,] =

p(p +6)/(2N) + O(N—2). Therefore, we propose the following theorem.

THEOREM 2.1 Let x1,x2,...,xN be random samples of size N drawn from Ny(p, %), where

> is known. Then for large N,

p
t2,p - 5
T=———=—N(0,1)
p(p +6)
2N
and

to, — Elt
T* — tap — Eltzy] — N(0,1).
Var[tap)]

2.2 The improved test statistic using normalizing transformation

In order to improve accuracy of test statistics ' and T, we calculate E[t%p] and derive the nor-
malizing transformation for the distribution of vV N (2, — 72 ,). The normalizing transformation
of some statistic in multivariate analysis has been discussed by Konishi (1981, 1987) and so on.

By using the same way as mentioned above, we obtain expectation E[t%p] as follows:

3 2 2

p° 3p*(p—12) p(7p° + 124p — 480) L
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Let Y = /N(ta) — Tap), where 72, = p/2. Then the first cumulants of Y are expressed as the

following form:

k1 (Y) = \/lﬁal —|—O(N_%),

Ko (Y) =0+ O(NY),

k3 (V) = \/%aﬁo(zvi),



where

~_3p _ [p(p+6) _ p(22p +61)
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Further the cumulative distribution function of Y /o can be expanded for large N as
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where ® (y) is the cumulative distribution function of N(0,1) and ®\) (y) is the jth derivation

(2

of @ (y). Thus, in order to find an asymptotic expansion of Y, we evaluate only the first few
cumulants of Y in expanded forms.

Next, we consider the normalizing transformation of Y/o. Suppose that g(t2,) is a function
of t ), satisfying all the derivatives of g of orders 2 and less are continuous in a neighborhood of
the population kurtosis 75,,. Then the cumulative distribution function of Y* = v/N{g(t2,) —

9(m2p)}/{og (T25)} can be expanded for large N as
N{g(ta,p) —
py| YV 9(t2) —9(r2p)} _ |
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and ¢'(t2,) # 0. This result follows from Siotani, Hayakawa and Fujikoshi (1985). When we put
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we can obtain
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Therefore we have
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Then we propose an improved test statistic Ty as the following theorem.



THEOREM 2.2 Let x1,%2,..., N be random samples of size N drawn from Ny(u,X), where

Y is known. Then for large N, the normalizing transformation of ta )y is given by

1 2N 1 D
TN = =4 | ————— | = d(2te , — —-1) - = 6)d — 3
V= 51 o0 16y | (P P =)~ o+ 6)d =3},
where
__2(22p+61)
~ 3plp+6)2°

3 Simulation studies

Accuracy of asymptotic approximation for multivariate normality test statistics using the mea-
sure of multivariate sample kurtosis is evaluated via a Monte Carlo simulation study. Simulation
parameters are as follows: p = 3, 10, 20, 30, N = 20, 50, 100, 200, 400, 800 and significance
level « = 0.05. As a numerical experiment, we carry out 1,000,000 replications for multivariate
normal populations.

Table 1 gives simulated values for expectation and variance of test statistics 7', T* and Tnr.
Simulated values of T™ have good accuracy regardless of N. Simulated values of expectation
and variance for T' and Tyt are good as N increases. Further, simulated values of T rapidly
converge in those of standard normal distribution rather than 7. Table 2 presents the upper
and lower 100« percentiles of T', T* and Tnp. Although T has good accuracy for expectation
and variance, the upper and lower percentiles are not good. The upper and lower percentiles of
T'nt converge in those of standard normal distribution and are more stable rather than other
test statistics. Table 3 presents the simulated values of skewness and kurtosis for 7', T and
Tnt. Particularly, values of T are closer to those of standard normal distribution for all
dimensions and sample sizes. Table 4 gives the simulated values for type I error of T', T* and
Tn7. This result shows that the values of Ty are stable and closer to 0.05 for many parameters.
Table 5 presents the simulated values of power for T', T* and T under contaminated normal
distribution. We performed simulation with kurtosis parameter k = 1.78 (¢ = 0.1, 0 = 3) and
3.24 (¢ =0.1, 0 = 4). It is note that power of 7', T and T is almost the same. We confirmed

almost same results under multivariate ¢ distribution.



In conclusion, the normalizing transformation statistic Ty proposed in this paper is con-
siderably good normal approximation even for small sample size and is useful for multivariate
normality test. When 3 is unknown for multivariate normal populations, it will be our future

problem.
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Table 1: Expectation and variance.

Expectation Variance
P N T T* TNT N(O, 1) T T* TNT N(O, 1)
3 | 20 |-0.265 0.000 0.065 0.763 1.004 0.719
50 | -0.171 0.000 0.019 0.902 1.003 0.855
100 | -0.121  0.001 0.009 0.950 1.002 0.917
200 | -0.085 0.001 0.004 0.975 1.001 0.955
400 | -0.061  0.000 0.001 0.986 0.999 0.975
800 | -0.043 0.000 0.001 0.993 0.999 0.987
10| 20 |-0.363 0.000 0.024 0.764 1.000 0.792
50 |-0.234 0.000 0.007 0.902 1.001 0.908
100 | -0.165 0.001 0.004 0.949 1.000 0.951
200 | -0.119 0.000 0.000 0.974 0.999 0.975
400 | -0.083 0.001 0.001 0.988 1.001 0.988
800 | -0.059 0.001 0.001 0.994 1.001 0.994
20 | 50 | -0.259 0.001 0.005 0.903 1.001 0.914
100 | -0.185 0.000 0.002 0.948 0.998 0.954
200 | -0.131  0.000 0.001 0.978 1.003 0.980
400 | -0.093 0.000 0.000 0.986 0.998 0.987
800 | -0.065 0.001 0.001 0.992 0.998 0.992
30 | 50 |-0.271 -0.001 0.004 0.900 0.998 0.910
100 | -0.193 -0.001 0.001 0.949 0.999 0.954
200 | -0.137  0.000 0.000 0.975 1.000 0.977
400 | -0.097  0.000  0.000 0.984 0.997 0.986
800 | -0.067 0.001 0.001 0.991 0.997 0.992
00 0 1




Table 2: Upper and lower 5 percentiles.

Upper 5 percentile

Lower 5 percentile

p N T T* TNT N(O, 1) T T* TNT N(O, 1)
31 20 | 1379 1.886 1.514 -1.259 -1.141 -1.285
50 | 1.588 1.855 1.562 -1.413 -1.310 -1.490
100 | 1.650 1.819 1.597 -1.489 -1.404 -1.562
200 | 1.673 1.783 1.621 -1.541 -1.474 -1.600
400 | 1.669 1.742 1.628 -1.573 -1.522 -1.618
800 | 1.668 1.717 1.637 -1.601 -1.562 -1.634
10 | 20 | 1.267 1.865 1.580 -1.493 -1.293 -1.351
50 | 1.485 1.811 1.628 -1.581 -1.419 -1.507
100 | 1.560 1.772 1.644 -1.613 -1.484 -1.562
200 | 1.602 1.743 1.654 -1.631 -1.532 -1.595
400 | 1.622 1.716 1.655 -1.641 -1.567 -1.616
800 | 1.634 1.698 1.656 -1.643 -1.589 -1.624
20| 50 | 1.440 1.790 1.649 -1.647 -1.461 -1.491
100 | 1.524 1.753 1.661 -1.661 -1.515 -1.551
200 | 1.575 1.728 1.666 -1.668 -1.556 -1.589
400 | 1.596 1.699 1.659 -1.663 -1.580 -1.606
800 | 1.616 1.687 1.660 -1.658 -1.598 -1.618
30 | 50 | 1.415 1.774 1.651 -1.674 -1.478 -1.479
100 | 1.506 1.742 1.665 -1.682 -1.528 -1.543
200 | 1.561 1.719 1.670 -1.680 -1.564 -1.582
400 | 1.583 1.690 1.659 -1.675 -1.588 -1.605
800 | 1.607 1.681 1.660 -1.665 -1.602 -1.615
00 1.645 -1.645
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Table 3: Skewness and kurtosis.

Skewness Kurtosis

p | N T T* Tnr  N(0,1) T T* Tnr  N(0,1)
3 | 20 | 1.854 1.854 0.117 10.057 10.057 2.436
50 | 1.170 1.170 0.033 5.763  5.763 2.690
100 | 0.817 0.817 0.020 4.336  4.336  2.829
200 | 0.574 0.574 0.017 3.660 3.660 2.916
400 | 0.406 0.406 0.016 3.334  3.334 2.962
800 | 0.287 0.287 0.014 3.161 3.161 2.975
10| 20 | 1.191 1.191 0.298 5.717  5.717 2.844
50 | 0.759 0.759 0.183 4.131  4.131 2.942
100 | 0.529 0.529 0.130 3.534 3.534 2.964
200 | 0.373 0.373 0.092 3.265  3.265 2.987
400 | 0.266 0.266 0.068 3.140  3.140 2.997
800 | 0.192 0.192 0.052 3.073 3.073 2.999
20 | 50 | 0.610 0.610 0.266 3.690 3.690 3.053
100 | 0.431 0.431 0.189 3.347  3.347 3.032
200 | 0.304 0.304 0.134 3.165 3.165 3.010
400 | 0.215 0.215 0.095 3.086  3.086 3.009
800 | 0.152 0.152 0.068 3.036 3.036 2.998
30 | 50 | 0.551 0.551 0.303 3.563  3.563 3.113
100 | 0.389 0.389 0.215 3.277  3.277 3.056
200 | 0.272 0.272 0.150 3.139 3.139 3.032
400 | 0.186 0.186 0.100 3.065 3.065 3.015
800 | 0.136 0.136 0.075 3.034 3.034 3.008

00 0 3
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Table 4: Type I error.

T

T*

TNt

N(0,1)

WS

10

20

30

20
50
100
200
400
800
20
50
100
200
400
800
50
100
200
400
800
50
100
200
400
800

0.036
0.046
0.050
0.052
0.052
0.052
0.029
0.039
0.044
0.046
0.048
0.049
0.036
0.040
0.044
0.046
0.047
0.034
0.039
0.043
0.044
0.047

0.065
0.065
0.064
0.062
0.059
0.057
0.066
0.063
0.061
0.059
0.057
0.055
0.062
0.060
0.058
0.055
0.054
0.061
0.059
0.057
0.055
0.054

0.034
0.041
0.045
0.047
0.048
0.049
0.044
0.048
0.050
0.051
0.051
0.051
0.050
0.051
0.052
0.051
0.051
0.051
0.052
0.052
0.051
0.052

0.050
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Table 5: Power under contaminated normal distribution.

K

1.78

3.24

N

T

T*

TNt

T

T*

TNt

W

10

20

30

20
50
100
200
400
800
20
50
100
200
400
800
50
100
200
400
800
50
100
200
400
800

0.739
0.961
0.998
1.000
1.000
1.000
0.873
0.994
1.000
1.000
1.000
1.000
0.995
1.000
1.000
1.000
1.000
0.995
1.000
1.000
1.000
1.000

0.764
0.965
0.998
1.000
1.000
1.000
0.880
0.994
1.000
1.000
1.000
1.000
0.995
1.000
1.000
1.000
1.000
0.995
1.000
1.000
1.000
1.000

0.736
0.959
0.998
1.000
1.000
1.000
0.876
0.994
1.000
1.000
1.000
1.000
0.995
1.000
1.000
1.000
1.000
0.995
1.000
1.000
1.000
1.000

0.461
0.766
0.939
0.996
1.000
1.000
0.761
0.969
0.999
1.000
1.000
1.000
0.991
1.000
1.000
1.000
1.000
0.994
1.000
1.000
1.000
1.000

0.518
0.791
0.946
0.997
1.000
1.000
0.795
0.974
0.999
1.000
1.000
1.000
0.992
1.000
1.000
1.000
1.000
0.994
1.000
1.000
1.000
1.000

0.456
0.756
0.935
0.996
1.000
1.000
0.777
0.971
0.999
1.000
1.000
1.000
0.991
1.000
1.000
1.000
1.000
0.994
1.000
1.000
1.000
1.000
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