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Abstract

In this paper, we consider the bias correction of Akaike’s information criterion (AIC) for selecting
variables in multinomial logistic regression models. For simplifying a formula of the bias-corrected
AIC, we calculate the bias of the AIC to a risk function through the expectations of partial derivatives
of the minus log-likelihood function. As a result, we can express the bias correction term of the bias-
corrected AIC with only three matrices consisting of the second, third, and fourth derivatives of
the minus log-likelihood function. By conducting numerical studies, we verify that the proposed

bias-corrected AIC performs better than the crude AIC.
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1. INTRODUCTION

A multinomial logistic regression model is a regression model that generalizes a logistic regression
by allowing more than two discrete outcomes. When categories are unordered, the multinomial logis-
tic model is one strategy often used. The multinomial logistic regression model has been introduced
in many textbooks for applied statistical analysis (see e.g., Hosmer & Lemeshow, 2000, Chapter 8.1),
and even now it is widely used in biometrics, econometrics, psychometrics, sociometrics, and many
other fields of applications for the prediction of probabilities of different possible outcomes of categor-

ically distributed response variables by a set of explanatory variables (e.g., Briz & Ward, 2009; Choi

ICorresponding author, E-mail address: yanagi@math.sci.hiroshima-u.ac.jp



& Alig, 2011; dell’Olio, Ibeas & Cecin, 2011). In addition, the multinomial logistic regression model
can be easily fitted to real data by using the “vglm” function in “R” (R Development Core Team,
2011). Since we would like to specify the factors affecting the probabilities of response variables in
the regression analysis, searching for the optimal subset of explanatory variables is important.
Akaike’s information criterion (AIC) proposed by Akaike (1973, 1974) is widely used for selecting
the best model among the candidate models (for details of statistical model selection, see e.g., Konishi,
1999; Burnham & Anderson, 2002; Konishi & Kitagawa, 2008). The model having the smallest AIC
among the candidate models is regarded as the best model. In the multinomial logistic regression
model, the subset of explanatory variables in the best model is the best subset. However, the AIC
may perform poorly; that is, a model having too many parameters tends to be chosen as the best
model when the sample size is small or the number of unknown parameters is large. Such a problem
is often resolved by using a bias-corrected AIC (see e.g., Burnham & Anderson, 2002, Chapter
2.4). The AIC is an estimator of the risk function consisting of predictive Kullback-Leibler (K-L)
information (Kullback & Leibler, 1951), which measures the discrepancy between the true model and
the candidate model. The order of the bias of the AIC is O(n™!) when the candidate model includes
the true model, where n is the sample size. Although the AIC is an asymptotic unbiased estimator of
the risk function, it has a nonnegligible bias to the risk function when the sample size is small or the
number of unknown parameters is large. A bias-corrected AIC called CAIC in this paper improves
the bias of AIC to O(n~2) under the assumption that the candidate model includes the true model.
The CAIC in the logistic regression models was obtained by Yanagihara, Sekiguchi and Fujikoshi
(2003). But the CAIC in multinomial regression models has not been derived yet, although the
multinomial logistic regression model is widely used in many application fields. The CAIC can be
obtained by removing the bias of the AIC to the risk function from the AIC with the use of a consistent
estimator of the bias. The bias of the AIC to the risk function is then evaluated by moments of the
maximum likelihood estimator (MLE) of unknown parameters. Since such moments are represented
by the moments of response variables, calculating the moments of response variables is essential for
evaluating the bias of the AIC in the ordinary bias correction method, which is used in Yanagihara,
Sekiguchi and Fujikoshi (2003) and Kamo, Yanagihara and Satoh (2012), etc. However, in the case
of multiple response variables, calculations and expressions of the moments of the MLE mediated
by the moments of response variables become complicated. Hence, without directly calculating the
moments of response variables, we derive the moments of the MLE by using expectations of the
partial derivatives of the minus log-likelihood function. This different approach from the ordinary
bias correction method leads to a simple expression of the bias correction term of the CAIC. In fact,
the bias correction term of our CAIC is represented by only three matrices consisting of the second,

third, and fourth derivatives of the minus log-likelihood function.



The present paper is organized as follows. In Section 2, we give a stochastic expansion of the MLE.
In Section 3, the CAIC in multinomial logistic regression models is proposed. In Section 4, we verify
that the proposed CAIC has better performance than the AIC by conducting numerical experiments.

In Section 5, we conclude our discussion. Technical details are provided in the Appendix.

2. STOCHASTIC EXPANSION OF MLE

Suppose that the data consists of a sequence {y;, x;}, where yi, ..., y, are r-dimensional inde-
pendent unordered discrete random vectors, and @1, ..., x,, are k-dimensional vectors of known con-
stants. Let B = (04, ..., Bkr)" be a kr-dimensional unknown regression coefficient vector that is parti-
tioned as 3 = (81, ...,0,), where 3; is a k-dimensional vector denoted by B; = (B(j—1)k+1,- - -, Bjr)"-
In the multinomial logistic regression model, we assume that (vio,y.) = (Yo, Yi1,- -, Yir) is dis-

r

tributed according to the multinomial distribution with the number of events n; (n; = . =0 Yij»

n =" n;) and the cell probability vector (po(3),p:(3)’)’, given by

1
L3 exp(®B;)°

pi(B) = (Pa(B),...pun(B)) = (

piO(/B) =

/ 1
exp(z;5h) exp(x;3:) W
L3 exp(aB;)’ 143 exp(@B;) )

The MLE of 3 is obtained by maximizing the log-likelihood function. By omitting the constant term,

the log-likelihood function of the multinomial logistic regression model in (1) is expressed as

Z { Yy @ x;) 3 — n;log <1 + Z exp(wé,@)) } ) (2)

i=1 j=1
Hence, the MLE of 3 is given by

A

B = arg max 0B).

To evaluate a bias of the AIC to the risk function, a stochastic expansion of ,é is needed. The purpose
of this section is to obtain the stochastic expansion ,é up to the order n=%2. Two cases serve as a

framework for asymptotic approximations:
Case (7): n;’s are fixed, and m — oo,
Case (ii): m is fixed, nj — oo and p; ' =n/n; = O(1) for each j.

Although we only consider Case () in this paper, our formula can also be applied to Case (7).
Suppose that @1, ..., x,, are members of an admissible set F, i.e., ®1,...,x,, € F. To expand

the MLE, we consider the following regularity assumptions (see e.g., Fahrmeir & Kaufmann, 1985):



C.1 : B € B, where B is a convex and open set in R¥,

C2: (I,®x;)'Be B i=1,2 ..., foral B € B, where ©° is the interior of the convex natural

parameter space © C R”,
C.3 : myg s.t. X’ X has the full rank for m > mg, where X = (zy,...,x,,)".

Condition C.1 guarantees the uniqueness of the MLE if it exists. Condition C.2 is necessary to obtain
the multinomial logistic regression model for all 8. Condition C.3 ensures that > ", n;3;(8) ® x;;

is positive definite for all 3 € B, m > myg, where

2i(8) = diag (pi(8)) — pi(B)pi(B)". (3)

Moreover, we prepare the following additional conditions to assure weak consistency and asymptotic
normality of ,é, which can be derived by slightly modifying the results in Fahrmeir and Kaufmann

(1985):
C.4 : sequence {z;} lies in F with (I, @ z)'3 € ©° B € B,

C.5 @ liminf, oo AO-, 1:3(8) @ @i} /n) > 0, where A(A) indicates the smallest eigenvalue of

symmetric matrix A.

According to Corollary 1 in Fahrmeir and Kaufmann (1985), ,é has weak consistency and asymptotic
normality under these conditions. Furthermore, from C.5, >~ n;%;(8) ® x;x; = O(n) is satisfied.

Under the assumption that all conditions are satisfied, ,é can be formally expanded as follows:

1 1 1
—b1 + Eb2 + —b3 + Op(n_z), (4)

Vi ny/n

where by, by, and bz are kr-dimensional random vectors. The purpose of this section is achieved by

B=pB+

specifying by, b, and bs.
Since the log-likelihood function ¢(3) is a maximum at 3 = 3, the first derivative of ((B3) becomes
0. at B =, ie.,

m

=Y {wew) -up@ o)} =0, (5)

B=8 i=1

oUB)
0B

where O, is a kr-dimensional vector of zeros. To expand equation (5), we prepare the following three

matrices consisting of the second, third, and fourth derivatives of —¢(3)/n:

19% 1/ 0 0
Gu(p) = 2520, Gi8) = 1 (1@ 5z ) 16
G.(8) — L 9” 0° p
)=~ (5558 © 730m) 1



The result of the first derivative of —¢(3) in (5) implies the following explicit forms of G2(3), G5(8),
and G4(B) (details of the derivations are given in Appendix A.1):

G2<ﬁ>=§;pi{a’;b, boa Zm (B & wial) 0
Zﬂz { (8ﬁ’ aaﬁ/) i } ®x; = Zﬂz {A54(8) @ i}, (7)
G4(ﬁ)=§;m{(a§;ﬁ, o) P8} @i = mez 8) @ wal} ©

where As;(8) and Ay;(B) are kr x (kr)? and (kr)? x (kr)? matrices, respectively, which are defined

Asi(B) =D pia(B)e, ® T, @ (ea — pi(B))(ea — pi(B)) — pi(B) ® x; © Ti(B),

A4i(B) = pia(B)(ea—pi(B)(ea — pPi(B)) ® wia] @ (es€), — e,pi(B) — pi(B)e),) o)

— %(8) @ zx, © (Z:(8) — pi(B)pi(B)")

— > piapin(B)(ea — pi(B)) (s — pi(B)) © Ti| @ (€€} + esel,).

Here, e; is an r-dimensional jth coordinate unit vector whose jth element is 1 and others are 0, and

21 ..... a;j means Zal 177 22'21'

J

the notation
Applying a Taylor expansion around 3 = 8 to equation (5) yields

Z{(yz —nipi(B)) ® x;}

= G(B)(B-P) +5G:(8) {(B-B) = (BB} (10)

r{moB-p}a@{B-meB-8))+0m)

Notice that the order of the left-hand side of equation (10) is O,(n~*/?). By comparing the O,(n~'/2),
O,(n71), and O,(n=%?) terms after substituting (4) into (10), by, by, and bz in (4) are specified as

by — %szrl ;m — nipi(B)) @ .},
by = —5Ga(8) ' Gs(B) (b, b)), (11)

by = _%GQ(g)—l {Gg(ﬁ)(bl @by + by @ by) + %(Ikr ® b1)G4(B) (b1 ® bl)} :

We use the stochastic expansion of ,é with by, by, and b3 to evaluate the bias of the AIC to the risk

function.



3. MAIN RESULT

Let £(8) be a loss function defined by

L(B) = E[—2¢ = -2 Zn, { (p; ® x;)'B — log <1 + Z exp(wé@)) } ; (12)

where p} is the cell probability vector of the true model. Then, the risk function consisting of the

predictive K-L information is given by

R = E[L(B)]. (13)
In this section, we propose a CAIC that improves the bias of the AIC to O(n~2) under the assumption
that the candidate model includes the true model. Notice that the crude AIC is defined by

AIC = —20(B) + 2kr. (14)

Thus, it is sufficient to derive the bias of —26(,3) to R for evaluating the bias of the AIC. Also notice
that p! = p(x;) holds when the candidate model includes the true model. Then, the bias of —2¢(3)

to R under the assumption that the candidate model includes the true model is expanded as
B = R — E[-2((8)]
=2 iE [{(yz —npi(B) @z} B
i=1
— 2/nE [b/G2(B)8)]

=2 {\/fr_zE[b’ng(B)B] + E[b,G2(B)by] + iE[b’le(B)bQ] + %E[b’le(B)bs]} +0(n™?), (15)

vn
where matrices Go(8), G3(3), and G4(8) are given by (6), (7), and (8), respectively, and kr-
dimensional random vectors by, by, and by are given by (11). In many cases of practical interest, a
moment of statistic can be expanded as a power series in n~! (see e.g., Hall, 1992, p. 46). Hence, the
order of the remainder term of (15) is shown by O(n=2), not O(n=3/2). Indeed, an n=3/2 term of the
stochastic expansion of 1" {(y; — nipi(B)) @ x;}’ B in the bias can be expressed as a fifth-order
polynomial of elements of b;. Since b; has an asymptotic normality, the expectation of an odd-order
polynomial of elements of b; becomes O(n~'/2). Given this fact, the order of the remainder term of
the expansion in (15) is O(n™?).

From elementary linear algebra and the definition of by in (11), b)G3(3)bs in (15) is expressed
by the function of by as

b Ga(B)b: = — b Gs(8) by @ b1) = —1r{G(B) (b © b))} (16)



Since the derivative is invariant to changes in the order of differentiation, we have
b1G3(8) (b1 ® by) = b1 G3(8) (b2 ® by) = byG3(8) (b1 ® by) = (b1 ® b1)'G3(8) b
It follows from the above equations that

b\G3(B)(b1 @ by + by @ by) = 2(b1 ® b1)'G3(B)'by
= —(b1® b1)'G3(B)G2(B) "' G3(B) (by ® by)
= —tr {G3(8)'G2(B) ' G3(B)(bib} @ bib))} .

Thus, from the above result and the definition of bz in (11), biG4(8)bs in (15) is expressed by the

function of b; as
b G2bs = —%bllGL%(ﬁ)(bl ®@ by + by @ by) — ébll(-[kr ® b})G4(8) (b1 ® by)
~ S {GUBYGA(B) " Gu(B)(bib, © i)} — ir{Gu(B)(bib, © b)) (1)

Hence, equations (16) and (17) indicate that the expansion of B in (15) can be calculated until the
fourth moment of by .

Since b; consists of a centralized y;, we can directly calculate the expectations in (15) by cen-
tralized moments of yi, ..., Y,. Then, all combinations of multivariate moments of y; — n;p;(3) are
needed until the fourth-order. However, it is troublesome to calculate the third- and fourth-order
multivariate moments of y; — n;p;(3), because we have to consider all combinations of the multivari-
ate moments. For simplicity, the relations between the moments of b; and the expectations of the
derivatives of —¢(3) with respect to B are used instead of calculating the multivariate moments of
y; — n;p;(B). It is easy to obtain E[b;] = 0, because E[y;] = n;p;(3). From the result of the first
derivative of £(8) in (5) and the definition of by in (11), we can see that

-~ 5U8) = —VAG(P)b
Notice that G2(3), G3(3), and G4(3) are constant matrices and —E[0¢(3)/0B] = Ox,.. By apply-
ing general formulas of expectations (A.7) in Appendix A.2 to the case of the multinomial logistic

regression model, the following equations are obtained:

nG»(8) = nG>(B)E[bi1b)]G»(B),
nG;(B) = nynG:(B)E[by ® bi1b}](G2(8) ® Ga(B)),
nG4(B) = n*(G2(B) © G(B))E[bib @ bib)(G2(8) © Ga(B))
—n* {(Iiz2 + K, ) (Ga(B) @ Go(B)) + vec(Ga(B))vec(Ga(B))'}

where vec(A) is an operator to transform a matrix to a vector by stacking the first to the last column

of A, ie., vec(A) = (a),...,al) when A = (ay,...,a,) (see e.g., Harville, 1997, Chapter 16.2),

m

7



and K, is the m? x m? vec-permutation matrix such that vec(B) = K,,vec(B’) when B is an
m X m matrix (see e.g., Harville, 1997, Chapter 16.3). These results lead us to the simple expression

of moments of b; as

Elbib,] = Ga(B)". (18)
E[b, © bib,] = ——Gs(8)'G5(8)(G2(8) ' ® Ga(8) ™), (19)

n
E[by1b, @ byb,] = (Iiz2,2 + Ky ) (G2(8) " @ Go(8) ™)

(20)
+ vec(Go(B) vec(Ga(B) Y + O(nt).
The result in (18) implies that
E[b)Ga(B)b1] = E{G2(B)biby}] = tr{G2(B)G2(B) '} = kr. (21)
Similarly, from (19) and (16), we have
EIbG(B)b:] = — 5 Eltr{Gs(8) (0, © bib)))]
- {Gs(B)Ga(B)'G3(B)(G2(B) ' ® Go(B) 1)} (22)

2\/n
Notice that G5(8) K}y, = G3(8) holds because the derivative is invariant to changes in the order of
differentiation. By using this fact and equation (20), the expectation of the first part in (17) is given
by

E [tr {G5(8) G2(B) ' G5(B) (b:b} © bib))}]
= tr {G5(8)G2(8) ' Gs(B)(Iiz,> + Kir) (Ga(B) ' @ Go(B) )}

+ VeC((Gz(ﬁ)_ ))'G3(B) G2(B) ' Gs(B)vec((G2(B8) ™)) + O(n ™)
= 2tr {G5(8)'G2(B)"'G3(B)(G;'(B) @ Gy (B)) }

(8
+ VeC((Gz(ﬁ) 1)) G3(B8) Ga2(B) ™ Gs(B)vec((G2(8) 1) + O(n™").
Moreover, since the derivative is invariant to changes in the order of differentiation, we can see that

G4(,3)K]W = G4(,3) and

(23)

tr {G4(B)(G2(B) " ® Ga(B) )} = vec(G2(B) 1) Ga(B)vec(G2(B) ).

By using the above relations and equation (20), the expectation of the second part in (17) is given

by
E[tr{G4(B)(b:b} ® b1b))}]
= tr{G4(8) (Lizr2 + K1) (G2(8) ™' @ Go(B) ™)}
+vec(Ga(B) ) Ga(B)vec(Go(B) ! + O(n )
= 3tr{G4(B)(G2(B) ' © G2(B) )} + O(n"). (24)



Hence, from equations (17), (23), and (24), we can see that
E [b)Gabs] = tr {G5(8)'G2(8)'Gs(8)(G2(8) ' © G2(8) ")}
+ gvecl(Go(B) ) Ga(8) Ga(B) ™ Go(B)vec((G(8) ) (25)
~ 5 {Gu(B)(G2(8) " ® Gal(B) )} + O,
Consequently, by substituting E[b]G2(3)3] = 0, and equations (21), (22), and (25) into (15),
the bias of —20(8) to R is expanded as

B = 2kr + % {a1(B) + a2(B) — a3(B)} + O(n™?),

where coefficients oy (8), as(3), and ag(ﬁ) are given by
ai(B) = tr {G5(8)'G2(B) ' Gs(8)(G2(8) ' @ G2(8) 1)},
as(B) = vee((G < > 1>>'G< B)G:(B) ' Gs(B)vec((G2(B) 7)), (26)
a3(B) = tr {G4(B)(G:(8) ' ® G2(B) ™)}

The CAIC can then be defined by adding an estimated B to —2¢(8), i.e

CAIC = —20(3) + 2kr + % [on(B) + aa(B) — s(8) ). (27)

For an actual data analysis, an R-script for calculating the CAIC in (27) is provided in Appendix
A.3. The CAIC improves the bias of the AIC to O(n™?), although the order of the bias of the AIC

is O(n™1), i.e., the following equations are satisfied:
R— E[AIC] =O(n™"), R— E[CAIC] = O(n?),
where R is the risk function given by (13).

4. NUMERICAL STUDIES

In this section, we conduct numerical studies to show that the CAIC in (27) works better than
the crude AIC in (14). To compare the performances of the AIC and the CAIC, the following two

properties are considered:

(I) the selection probability: the frequency of the model chosen by minimizing the information

criterion.

(I) the prediction error of the best model (PEg): the risk function of the best model chosen by

the information criterion, which is defined by
PEg = E[L(5)].
where £() is the loss function given by (12) and Bg is the MLE of 8 under the best model.

9



Table 1: Selection probability of the model and the prediction error of the best model

Selection Probability
Case | m | Criterion M1 M2 M3 M4 M5 Mﬁ M7 Mg PEB

1 20 AIC 1.81 029 74.84 1141 4.95 288 220 1.62 | 210.06
CAIC 3.19  0.66 79.92 10.01 3.58 1.38 0.88 0.38 | 207.84
50 AIC 0.01 0.00 79.15 11.16 4.77 221 1.56 1.14|511.32
CAIC 0.01 0.00 81.25 10.71 4.27 1.88 1.17 0.71 | 511.04
2 120 AIC 77.22 1092 486 2.69 1.56 1.11 0.77 0.87 | 202.42
CAIC |82.63 10.06 3.81 2.07 0.76 0.38 0.19 0.10]| 200.41
50 AIC 79.21 10.89 448 220 1.24 1.04 0.55 0.39 | 494.89
CAIC |[80.99 1058 4.10 1.91 1.01 0.70 0.44 0.27 | 494.63
Note: The selection probability of the true model is marked in bold.

These two properties were evaluated by a Monte Carlo simulation with 10,000 iterations. The
information criterion with the higher selection probability of the true model and the smaller prediction
error of the best model is regarded as a high-performance model selector. In the basic concept of
the AIC, a good model selection method is one that chooses the best model so that the prediction is
improved. Hence, PEg is a more important property than is the selection probability.

We prepared eight candidate models My, ..., Mg, with m = 20 and 50, n;, =5 (i = 1,... ,m)
and r = 2. An m x 8 matrix of explanatory variables X = (x1,... ,a,,)" was constructed as follows.
The first column of X is 1,,, where 1,, is an m-dimensional vector of ones, and the remaining
seven columns of X were generated randomly from the binomial distribution B(1,0.5). Simulation
data were generated from the multinomial distribution with the true cell probability consisting of

*/

B* = (87, 33). In this simulation study, we prepared two 3*, as follows:

Case 1: (@7 =(0,0.2,—-1.0,0,0,0,0,0)", B3 =(—-0.1,-0.4,1.2,0,0,0,0,0),
Case 2: (3} =(-0.5,0,0,0,0,0,0,0), B35=1(0.7,0,0,0,0,0,0,0).
The matrix of explanatory variables in M; consists of the first j columns of X (j =1,...,8). Thus,
the true model in Case 1 is Ms, and the true model in Case 2 is M.
Table 1 shows the two properties (I) and (II). In the table, the selection probability of the
true model is marked in bold. From this table, we can see that the selection probabilities and the
prediction errors of the CAIC were improved in comparison with those of the AIC in all situations.

We simulated several other models and obtained similar results.
5. CONCLUSION AND DISCUSSION

In this paper, we proposed the CAIC for selecting variables in the multinomial logistic regression
model. The proposed CAIC improves the bias of the AIC to O(n~2), although the order of the

bias of the AIC is O(n~!). By using relations between the moments of b; and expectations of the

10



derivatives of —¢(3) instead of directly calculating the moments of y; to evaluate the moments of
b1, a simple expression of the CAIC is developed. Indeed, the bias correction term of the proposed
CAIC is represented by only three matrices GQ(B), Gg(,é), and G4(B), which consist of the second,

A A A

third, and fourth derivatives of —¢(83). Even though expressions of G»(3), G3(3), and G4(3) are

not simple, we can derive the bias correction term of the CAIC from linear functions of Gg(,é)_l,

~ ~

G5(0), and G4(8). This is a desirable character of the CAIC.

In all situations of the simulation study, the CAIC improved the crude AIC in the sense of making
a high selection probability of the true model and a small prediction error of the best model chosen
by the information criterion. However, the improvements were smaller when the sample size was
large. This is natural because the CAIC is proposed so that the bias of the AIC is corrected when
the sample size is small. Needless to say, the AIC and the CAIC are asymptotical equivalents. Hence,
the difference between two criteria becomes small when the sample size is increased. The sample
sizes of our simulation were 100 and 250. Nevertheless, a clear difference exists in the performances
of the CAIC and the AIC. This difference indicates that the CAIC is valuable even when the sample
size is not so small. Consequently, we recommend using the CAIC instead of the AIC for selecting
multinomial logistic regression models.

The simple expression of the proposed CAIC is based on the property that the second derivatives
of —¢(3) do not depend on response variables. A generalized linear model (GLM) with a natural link
and a known dispersion parameter, e.g., a logistic regression model or a Poisson regression model,
will have this property. Then, we can simply express the bias-corrected AIC just like the proposed
CAIC in (27) in the same way presented in Section 3. Namely, the bias-corrected AIC with constant

second derivatives of the minus log-likelihood function may be stated by
CAIC = AIC +71(6) +72(8) — 75(6).
where 6 is the MLE of unknown parameter 8, and coefficients ~1(0), 72(0), and ~3(0) are given by
71(0) = tr {C(6)H(0) 'C(6)(H () ® H(6) ")},
72(0) = vec((H (0)™"))'C(0) H(0) ™ C(8)vec((H(0) ™)),
713(0) = tr {Q(0)(H(6) ' @ H(6) ")}

Here, H(0), C(0), and Q(0) are matrices consisting of the second, third, and fourth derivatives,
respectively, of the minus log-likelihood function and are defined by (A.5) in Appendix A.2.

APPENDIX
A.1. EXPLICIT FORMS OF G»(8), G5(3), AND G4(8)

In this subsection, for simplicity, we write 3;(3), p:(8), and p;;(8) as X;, p;, and p;;, respectively.

11



Notice that
opi .
o =il —p el (=10,
J
where e; is the jth coordinate unit vector, which is used in equation (9). This result and equation
(3) imply that
opi
op’
Substituting the above result into the definition of G(3) yields equation (6). Furthermore, from the
definitions of G3(3) and G4(B), we can sce that As;(3) and A,;(8) in (7) and (8), respectively,
satisfy

= (pn (e1 —pi) @,y ..., pir (€ — Pi) X)) = X; @ ;.

0 5% Au(B) - o
8,3/ I3 4,7 - 8,38,3/ i

Notice that the (a, b)th element of 3; is piadap — PiaPiv, Where d4p, is the Kronecker delta, i.e., d4q = 1

AS,@'(B) =

and dq, = 0 for a # b. This equation leads us to other expressions of As;(8) and Ay ;(3), as follows:

0 , .
A3,i(/6> = Z a—la,(piaéab - piapib) & €46y, A4z Z 8,38,3/ pm ab — pmpzb) & eaeb (Al)
a,b

Derivatives of p;, are calculated as

%pg = pia(€qa — Pi) ® T,
322% / ,
28083 = pia(€a — Pi)(€a — Pi) @ TiT; — PiaBi @ TiT;
= Dia {(€a — Pi)(€a — i) — i} ® x5,
O’ Diapiv Opia | Opiv Opia | Opia Opiy O piy

opop  Popag T o og T o op Popog

= piapiv {(€a + € — 2p;)(es + €, — 2p;)' — 2%, } ® x; ).

By substituting the above derivatives into (A.1), we have
A3,i(/6> = Z {5abpia<ea - pz)/ - piapib(ea - pz)/ - piapib(eb - pz)l} ® .’,C; ® eaeg
= me dab — Piv) (€0 — Pi)' — piv(€r — pi)'} ® T} ® eqe,

= me(ea Rx;) @ {(e. —pi)(ea — i)'} — (Pi®x;) ® 3,

12



and
Ayi(B) = me <5ab {(ea — pi)(ea —pi) — Ei}
a,b
— piv {(€a + ey — 2pi)(eq + €, — 2p;)’ — 221}) ® x,T; © €€y,
= pialea — pi)(€a — pi) ® T, @ (eq€), — eup; — pi€))

a=1

-3 @ zix; @ (3 — pip;) Z Piapiv(€a — Pi)(€r — Pi) @ Tiw; @ (eq€), + evey,).
The above two equations indicate that explicit forms of G3(8) and G4(3) are given in (7) and (8),
respectively.
A.2. EXPECTATIONS OF DERIVATIVES OF THE MINUS LOG-LIKELIHOOD FUNCTION

In this subsection, we derive general formulas of the expectations of derivatives of the minus log-
likelihood function. Let f(wu|@) be a joint probability density function of u specified by ¢-dimensional
parameter vector @, and L(6) be a minus log-likelihood function defined by L(0) = —log f(u|8).
Suppose that

: o ), L L
fa1~~~aj = mf(’lﬂ ), ar-a; — m (0).
By carrying out tedious calculations, we have
La:_%v Lab:LaLb_%7 Labc: L LbL +ZL Lbc_ f‘;fc7

(3]

Lapea = LaLoLeLa - Z LaLyLea+ Z LapLea + Z LoLea — fa;6d7
(6] (3] [4]

(A.2)

where we simplify f(u|6) as f, and }_; is the summation of a total of j terms of different combina-

tions, eg., 2[3} Lachd = Lachd -+ LQCLbd -+ LadLbc- It follows from f fdu = 1 that

fareay | [ farea, B o B D B
7 ]_/ 7 fdu—/mfdu—m/fdu—o. (A.3)

The above equation can be satisfied when w is continuous. Even when w is discrete, we can obtain

the same result by replacing the integration with a summation. Equations (A.2) and (A.3) imply
that
E[L) =0, E[La)=E[LLy), E[Lac =—E[LaLsLc]+>  E[LaLy],
(3]

ELabed) = E[LoLyLeLa) =Y " E[LalyLed) + Y E[LapLed) + Y E[LoLed).
[6] (3] [4]

(A.4)
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Let us consider a vector of the first derivatives, and matrices of the second, third, and fourth

derivatives, which are defined as

9(0) = —-1(0), H(0) = — 5o 1(6). .
2 2 2 )
co)=- (% “ aeaaef) 40). Q) =~ (aeaaef “ aeaaef) “o).
From the expectations in (A.4), we obtain F[H (0)], E[C(0)], and E[Q(0)] as
E[H(0)] = Elg(0)g(0)'],
EIC(6)] = —El[g(0) © g(6)g(6)']
+E[g(0) @ H(0)| + E[H(0) ® g(0)'] + E[g(6)vec(H (8))'],
EIQ(6)] = Elg(0)g(0)' © g(6)g(0)
(A.6)

Recall that E[g(0)] = 0, holds. Furthermore, we note that C(6) and Q(0) are constant when H (0)
is constant. Hence, when H (0) is constant, H(0), C(0), and Q(0) become simpler, as follows:

H(0) = Elg(0)g(0)],

C(0) = —E[g(6) © g(0)g(0)], (A7)
Q(0) = Elg(0)9(0) © g(0)9(0)] — (I + K, ){H(6) © H(0)} — vec(H (0))vec(H (0))"

A.3. R-SCRIPT FOR CALCULATING THE CAIC

In this subsection, we provide the R-script for calculating the CAIC in (27). In the script, a vari-
able Y corresponds to the m x (r+ 1) matrix whose (a, b+ 1)th element is 4, and a variable X corre-
sponds to the m x k matrix X whose first column is 1,,. When we fit the multinomial logisitic regres-

sion model to the data, it is only necessary to carry out the command vglm(Y"X, ,family=multinomial).

library (VGAM)

# X: Explanatory variables

# Y: Response variables

CAIC.MLRM.f <- function(X,Y){
vec.func <- function(A){

x <- dim(A) [1]
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y <- dim(A) [2]
Res <- NULL
for (i in 1:y){
temp <- t(t(A[,1]))
Res <- rbind(Res,temp)}
Res}
ei.vec <- function(p,i){
e <- matrix(c(rep(0,p)),ncol=1)
el[i] <- 1
e}

n <- sum(Y)

k <- dim(X) [2]

rho <-

apply(Y,1,sum)/n

if (dim(X) [2]==1){est <- vglm(Y~1,family=multinomial)}
if (dim(X) [2]>1){est <- vglm(Y"X[,-1],family=multinomial)}

AIC <-

AIC(est)

P <- fitted(est)

G_2 <-
G_3 <-
G_4 <-

for (i

matrix (0, (kxr), (kxr))
matrix(0,kx*xr, (kxr) "2)
matrix (0, (kxr) "2, (k*xr)~2)
in 1:m){
x_i <- X[i,]
xx_i <= x_i%t(x_1)
p_i <= P[i,-1]
pp_i <= p_i%*%t(p_i)
S_i <- diag(p_i)-pp_i
G_2 <- G_2+rho[i]*(S_i%xhxx_1i)
D3 <- (-1)*(t(p_i%xhx_1i)%xhS_1i)
D4 <- (-1)*(S_iYx¥hxx_1%x%(S_i-pp_1i))
for (j in 1:1){

e_j <- ei.vec(r,j)

15



e_jj < e_jh*%t(e_j)
r_j <- e_j-p_-i
r_jj <= r_jh*%t(r_j)
pe_j <= p_ilk*lt(e_j)
ep_j <= t(pe_j)
D3 <- D3+p_il[jl*(t(e_jhxhx_i)%xhr_jj)
D4 <- Da+p_i[jl*(r_jjhxhxx_1i%x%(e_jj-ep_j-pe_j))
for (s in 1:r){
e_s <- ei.vec(r,s)
e_js <- e_jhx%t(e_s)
e_sj <- t(e_js)
r_s <- e_s-p_i
r_js <- r_jh*%t(r_s)
D4 <- D4-p_il[jl*p_ilsl*(r_jshxhxx_i%kx%h(e_js+te_sj))}}
G_3 <- G_3+rho[i]*D3%x%xx_1i
G_4 <- G_4+rho[i]*D4Yx%xx_i}

invG_2 <- solve(G_2)

vinvG_2 <- vec.func(invG_2)

al <- sum(diag(G_3%*%(invG_2%x%invG_2) %*%t (G_3) %*%invG_2))
a2 <- t(vinvG_2)%*%t (G_3) %*%invG_27*%G_3%*/%vinvG_2

a3 <- sum(diag(G_4%*%(invG_2%x%invG_2)))

CAIC <- AIC+(1/n)*(al+a2-a3)
CAIC}
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