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Abstract

It is common knowledge that the Akaike’s information criterion (AIC) is not a con-

sistent model selection criterion. This inconsistency property has been confirmed from

an asymptotic selection probability evaluated from a large-sample asymptotic framework.

However, when a high-dimensional asymptotic framework, such that the dimension of the

response variables and the sample size are approaching ∞, is used for evaluating the selec-

tion probability, we can prove a consistency property of the AIC for selecting variables in

multivariate linear models. This means that the probability of selecting the true model by

the AIC goes to 1 as the sample size and the dimension simultaneously approach ∞. The

consistency property is also checked numerically by conducting a Monte Carlo simulation.
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1. Introduction

Let Y be an n× p observation matrix of p response variables, and let X be an n× k

observation matrix of full rank k, where k is the number of nonstochastic explanatory
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variables, n is the sample size, and it is assumed that n − p − k − 1 > 0. In order to

ensure the possibility of estimating the model, we also assume that rank(X) = k for all

n ≥ k. Suppose that j denotes a subset of ω = {1, . . . , k} containing kj elements, and Xj

denotes the n×kj matrix consisting of the columns of X indexed by the elements of j. For

example, if j = {1, 2, 4}, then Xj consists of the first, second, and fourth columns of X.

Also, in general, we will let kA denote the number of elements of a set A, i.e., kA = #(A).

Of course, it holds that Xω = X and kω = k. We then consider the following candidate

model with kj explanatory variables:

Y ∼ Nn×p(XjΘj,Σj ⊗ In), (1.1)

where Θj is a kj ×p unknown matrix of regression coefficients, and Σj is a p×p unknown

covariance matrix. We call the model with Xω (namely X) the full model. We will

assume that the data are generated from the following true model:

Y ∼ Nn×p(Xj∗Θ∗,Σ∗ ⊗ In), (1.2)

where j∗ is a set of integers indicating the subset of explanatory variables in the true

model. Henceforth, for simplicity, we represent Xj∗ and kj∗ as X∗ and k∗, respectively.

The multivariate linear regression model in (1.1) is one of basic models of multivariate

analysis. This model is introduced in many multivariate statistical textbooks (see, e.g.,

Srivastava 2002, chap. 9; Timm 2002, chap. 4), and even now is widely used in chemomet-

rics, engineering, econometrics, psychometrics, and many other fields, for the predication

of multiple responses to a set of explanatory variables (see, e.g., Yoshimoto, Yanagihara,

and Ninomiya 2005; Dien et al. 2006; Saxén and Sundell 2006; Sárbu et al. 2008). Since

it is important to specify the factors affecting response variables in regression analysis,

searching for the optimal subset j is essential.

The Akaike’s information criterion (AIC), proposed by Akaike (1973, 1974), is widely

used for selecting the best model. In the case of regression analysis, the best model for

a subset of explanatory variables is chosen. The AIC was proposed as an asymptotic

unbiased estimator of the risk function assessed by the expected Kullback-Leibler (KL)

loss (Kullback and Leibler 1951) under the assumption that the candidate model includes

the true model. One purpose of model selection using the AIC is to choose a model

that makes the risk function small. For that purpose, using the AIC for model selection

will be asymptotically efficient when the true model is infinite (Shibata 1980; Shao 1997;
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Yang 2005). The Bayesian information criterion (BIC) proposed by Schwarz (1978) and

a consistent AIC proposed by Bozdogan (1987) are also widely used for model selection.

It is a well-known fact that, when the true model is included in a set of the candidate

models, these two criteria are consistent in model selection, although the AIC is not.

When using the AIC in model selection, this inconsistency property sometimes becomes

a target for criticism, although the purpose of the AIC is not to choose the true model.

The inconsistency property of the AIC is confirmed from the asymptotic probability of

selecting the model, which is evaluated from a large-sample asymptotic framework that

represents an ordinary asymptotic procedure (Shibata 1976; Nishii 1984; Fujikoshi 1983,

1985). In the case of multivariate linear models, although there are many bias-corrected

AICs for the risk function (see, e.g., Bedrick and Tsai 1994; Fujikoshi and Satoh 1997;

Fujikoshi, Yanagihara, and Wakaki 2005; Yanagihara 2006; and Yanagihara, Kamo, and

Tonda 2011), the bias-corrected AIC is still not consistent for model selection.

However, there is a possibility that the AIC can acquire a consistency property when

another asymptotic framework is used for evaluating the asymptotic probability of se-

lecting the true model. In fact, in this paper we will prove that a selection method

using the AIC is consistent for selecting variables in multivariate linear models under

a high-dimensional asymptotic framework. More precisely, we show that the probabil-

ity of selecting the true model by the AIC goes to 1 as the sample size and the di-

mension of the response variables simultaneously approach ∞ under the condition that

cn,p = p/n → c0 ∈ [0, 1). Furthermore, we will also prove that a selection using the

bias-corrected AIC, as proposed by Bedrick and Tsai (1994), satisfies the consistency in

a wider range than that using the AIC. We find that variable selections using the BIC

and the consistent AIC do not become consistent when cn,p → c0 ∈ (0, 1). In this paper,

limcn,p→c0 means a limit as (n, p) → ∞ simultaneously under the condition that cn,p → c0.

We assume that p is not constant in the high-dimensional asymptotic framework.

In this paper, o(x), O(x), op(x), and Op(x) used in a vector or matrix mean that

the orders of all the elements in that vector or matrix are o(x), O(x), op(x), and Op(x),

respectively. Furthermore, the notations o, O, op, and Op indicate the orders as n → ∞
when the large-sample asymptotic framework is considered. Meanwhile, those are the

orders as cn,p → c0 when the high-dimensional asymptotic framework is used.

The present paper is organized as follows: In Section 2, we present the necessary

notation for evaluating a selection probability. In Section 3, the asymptotic probability
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of selecting the true model is calculated under a high-dimensional asymptotic framework.

In Section 4, we verify the adequacy of our claim by conducting numerical experiments.

In Section 5, we discuss our conclusions. Technical details are provided in Appendix.

2. Preliminaries

In this section, we present and discuss the notation that we used for evaluating the

selection probability. First, we describe several classes of j that express subsets of X in

the candidate model. Let J be a set of candidate models denoted by J = {j1, . . . , jm}.
We then separate J into two sets, one of which is a set of overspecified models, candidate

models that include the true model, i.e., J+ = {j ∈ J |j∗ ⊆ j}, and the other is a

set of underspecified models that are not the overspecified models, i.e., J− = J c
+ ∩ J .

Thus, the true model j∗ can be regarded as the smallest overspecified model. We use the

same terminologies, “overspecified model” and “underspecified model,” as were used by

Fujikoshi and Satoh (1997).

Estimations for the unknown parameters Θj and Σj in the model (1.1) are carried

out by the maximum likelihood estimation, i.e., Θj and Σj are estimated by

Θ̂j = (X ′
jXj)

−1X ′
jY , Σ̂j =

1

n
Y ′(In − Pj)Y ,

where Pj is the projection matrix to the subspace spanned by the columns of Xj, i.e.,

Pj = Xj(X
′
jXj)

−1X ′
j. Then, the AIC and the bias-corrected AIC (AICc, Bedrick and

Tsai 1994) in the model (1.1) are defined by

AIC(j) = n log |Σ̂j|+ np(log 2π + 1) + 2

{
kjp+

1

2
p(p+ 1)

}
, (2.1)

AICc(j) = n log |Σ̂j|+ np(log 2π + 1) +
2n

n− kj − p− 1

{
kjp+

1

2
p(p+ 1)

}
. (2.2)

When p = 1, the AICc in (2.2) coincides with the bias-corrected AIC proposed by Sug-

iura (1978). Davies, Neath, and Cavanaugh (2006) showed that Sugiura’s bias-corrected

AIC is a uniformly minimum-variance unbiased estimator (UMVUE) of the risk function

consisting of the expected KL loss when the candidate model includes the true model.

By extending the result to the multivariate case, this property can be proved even when

p > 1. The detailed proof is omitted because it can be obtained from the Lehman-Scheffé

theorem and the fact that Θ̂j and Σ̂j are complete sufficient statistics. Complete efficien-

cies of Θ̂j and Σ̂j can be derived by slightly modifying the results of Siotani, Hayakawa,
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and Fujikoshi (1985, pp. 18-20). This property indicates that, for all the overspecified

models, the AICc is better than the AIC at esimating the risk function. On the other

hand, the BIC proposed by Schwarz (1978) and the consistent AIC (CAIC, Bozdogan

1987), are also well-known information criteria for model selection. The BIC and the

CAIC in the model (1.1) are defined by

BIC(j) = n log |Σ̂j|+ np(log 2π + 1) +

{
kjp+

1

2
p(p+ 1)

}
log n, (2.3)

CAIC(j) = n log |Σ̂j|+ np(log 2π + 1) +

{
kjp+

1

2
p(p+ 1)

}
(1 + log n). (2.4)

Four information criteria are defined, each one by adding a penalty term based on the

complexity of the model to −2 times the maximum log-likelihood of the model. Thus,

each criterion is specified by an individual penalty term. The best subsets of ω, chosen

by minimizing the AIC, the AICc, the BIC, and the CAIC, are written as

ĵa = argmin
j∈J

AIC(j), ĵc = argmin
j∈J

AICc(j),

ĵb = argmin
j∈J

BIC(j), ĵo = argmin
j∈J

CAIC(j).

Next, we deal with a noncentrality matrix defined by

Σ−1/2
∗ Θ′

∗X
′
∗(In − Pj)X∗Θ∗Σ

−1/2
∗ .

In order to decompose the noncentrality matrix, the minimum overspecified model includ-

ing j is prepared as

j+ = j ∪ j∗, (j ∈ J ). (2.5)

If j∗ is arranged as j∗ = {{j∗ ∩ j}, {j∗ ∩ jc}}, (In−Pj)X∗ = (On,kj∗∩j
,Xj∗∩jc) is satisfied,

where Ok,p is a k × p matrix of zeros. It is easy to see that Xj∗∩jc is a full column rank

matrix because it is assumed that X is a full column rank matrix. Hence, the rank of

X ′
∗(In − Pj)X∗ is calculated as

rank(X ′
∗(In − Pj)X∗) = kj∗∩jc = kj+ − kj < k∗, (∀j ∈ J−).

Let the rank of the noncentrality matrix be denoted by γj, and let us assume that it

is independent of n and p. From the inequality rank(Θ∗Σ
−1
∗ Θ′

∗) ≤ min{p, k∗} and a

knowledge of an elementary linear algebra, we can see that

γj ≤ min{rank(X ′
∗(In − Pj)X∗), rank(Θ∗Σ

−1
∗ Θ′

∗)} ≤ min{p, kj+ − kj}.
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It should be kept in mind that γj = kj+ − kj if Θ∗Σ
−1
∗ Θ′

∗ is a full-rank matrix. Since the

noncentrality matrix is a positive semidefinite matrix, and its rank is γj, it is decomposed

as

Σ−1/2
∗ Θ′

∗X
′
∗(In − Pj)X∗Θ∗Σ

−1/2
∗ = ΓjΓ

′
j, (2.6)

where Γj is a p × γj matrix. Γj is a full column rank matrix in the case of large p, at

least p ≥ k∗. We will assume X ′X = O(n) and that the order of elements of ΓjΓ
′
j is

O(n), which is a common assumption in papers dealing with an asymptotic theory on the

regression model (Fujikoshi and Satoh 1997; Fujikoshi, Yanagihara and Wakaki 2005).

Notice that
p∑

a=1

(ΓjΓ
′
j)aa = tr(ΓjΓ

′
j) = tr(Γ′

jΓj) =

γj∑
a=1

(Γ′
jΓj)aa,

where (A)ab denotes the (a, b)th element of a matrix A. Hence, if we assume that all the

orders of the elements of ΓjΓ
′
j are O(n) and all the orders of the elements of Γ′

jΓj are

uniformally equal, (Γ′
jΓj)aa = O(np) holds because γj does not depend on n or p. From

this fact and the inequality {(Γ′
jΓj)ab}2 ≤ (Γ′

jΓj)aa(Γ
′
jΓj)bb, (Γ

′
jΓj)ab = O(np) is also

obtained. Consequently, it is natural to assume that Γ′
jΓj = O(np) when X ′X = O(n)

is assumed.

Finally, in order to evaluate the probability of selecting the model j by the AIC, the

AICc, the BIC, and the CAIC, we prepare the following assumptions:

Assumption A1 : The true model is included in the set of candidate models, i.e., j∗ ∈ J .

Assumption A2 : None of the elements of Θ∗ and Σ∗ depend on the sample size n, and

Σ∗ is positive definite for all p.

Assumption A3 : limn→∞ n−1X ′X = M exists and is positive definite.

Assumption A4 : limcn,p→c0(np)
−1ΓjΓ

′
j = ∆j,0 exists and is positive definite.

For M in A3, we write a limiting value of n−1X ′
jXℓ as Mj,ℓ for j, ℓ ∈ J . It is clear that

Mj,ℓ is a submatrix of M , and Mj,ℓ also exists if M exists.

3. Main Results

In this section, we evaluate the asymptotic probability of selecting a model by the

AIC, the AICc, the BIC, and the CAIC. First, we describe the asymptotic selection
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probabilities under the ordinary asymptotic framework, i.e., the large-sample asymptotic

framework. Using the ideas of Shibata (1976), Nishii (1984), and Fujikoshi (1983; 1985),

we obtain the following Theorem 1 (the proof is given in Appendix A.1):

Theorem 1: Suppose that the assumptions A1, A2, and A3 hold. Then, as n → ∞, the

asymptotic probability of selecting the model j by the AIC or the AICc is

lim
n→∞

P (ĵa = j) = lim
n→∞

P (ĵc = j)

=

{
0 (j ∈ J−)
P (∩ℓ∈J+\{j}(z

′
ℓzℓ − z′

jzj) < 2p(kℓ − kj)) (j ∈ J+)
,

(3.1)

where zj ∼ Nkjp(0kjp, Ikjp), Cov[zj,zℓ] = Ip ⊗ M
−1/2
j,j Mj,ℓM

−1/2
ℓ,ℓ , and 0p is the p-

dimensional vector of zeros.

These results include the results of Nishii (1984) as a special case. When the candidate

models are nested, the probability of selecting the true model j∗ by the AIC or the AICc

becomes simple, as is shown in Corollary 1, as follows (a short proof is given in Appendix

A.2).

Corollary 1: Suppose that the assumptions A1, A.2, and A3 hold. When the candidate

models are nested, i.e., J = {{1}, {1, 2}, . . . , {1, . . . , k}}, as n → ∞, the asymptotic

probability of selecting the true model j∗ = {1, . . . , k∗} by the AIC or the AICc is

lim
n→∞

P (ĵa = j∗) = lim
n→∞

P (ĵc = j∗) =
∑
[k−k∗]

k−k∗∏
i=1

Fhip(2hip)
hi

ihi

, (3.2)

where Fp(x) is the distribution function of the chi-square distribution with p degrees of

freedom, the summation
∑

[α] extends over all the α-tuples (h1, . . . , hα) of non-negative

integers with the property
∑α

i=1 ihi = α. Specific forms of (3.2) are, e.g.,

Fp(2p), (k − k∗ = 1),
1

2
{Fp(2p)

2 + F2p(4p)}, (k − k∗ = 2),

1

6
{Fp(2p)

3 + 3Fp(2p)F2p(4p) + 2F3p(6p)}, (k − k∗ = 3),

1

24
{Fp(2p)

4 + 6Fp(2p)
2F2p(4p) + 3F2p(4p)

2 + 8Fp(2p)F3p(6p) + 6F4p(8p)}, (k − k∗ = 4).

Table 1 shows the values of the probability expression (3.2) for several choices of p

and k − k∗. From (3.2), we can see that as the number of candidate models increases,
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Table 1. Values of the equation (3.2) (%)

p\k − k∗ 1 2 3 4 5 6 7 8
1 84.27 78.74 76.02 74.46 73.49 72.85 72.41 72.10
2 86.47 82.80 81.32 80.60 80.22 80.01 79.89 79.81
3 88.84 86.36 85.51 85.17 85.01 84.93 84.89 84.88
4 90.84 89.14 88.65 88.47 88.40 88.38 88.36 88.36
5 92.48 91.30 91.00 90.91 90.88 90.87 90.87 90.87
6 93.80 92.98 92.80 92.76 92.74 92.74 92.74 92.74
7 94.88 94.30 94.20 94.17 94.17 94.16 94.16 94.16
8 95.76 95.35 95.29 95.28 95.27 95.27 95.27 95.27
9 96.48 96.19 96.15 96.15 96.15 96.15 96.14 96.14
10 97.07 96.87 96.84 96.84 96.84 96.84 96.84 96.84
11 97.56 97.42 97.40 97.40 97.40 97.40 97.40 97.40
12 97.97 97.86 97.85 97.85 97.85 97.85 97.85 97.85
13 98.30 98.22 98.22 98.22 98.22 98.22 98.22 98.22
14 98.58 98.52 98.52 98.52 98.52 98.52 98.52 98.52
15 98.81 98.77 98.77 98.77 98.77 98.77 98.77 98.77
16 99.00 98.97 98.97 98.97 98.97 98.97 98.97 98.97
17 99.16 99.14 99.14 99.14 99.14 99.14 99.14 99.14
18 99.29 99.28 99.28 99.28 99.28 99.28 99.28 99.28
19 99.41 99.40 99.40 99.40 99.40 99.40 99.40 99.40
20 99.50 99.49 99.49 99.49 99.49 99.49 99.49 99.49

and as n → ∞, the asymptotic probability of selecting the true model by the AIC or

the AICc decreases. Moreover, since Fβ(2β) is a monotonically increasing function with

respect to β ≥ 1, the asymptotic selection probability always increases with increasing p.

These theoretical results can be confirmed with the data in Table 1. Theorem 1 points

out that, when n → ∞, the AIC and the AICc are not consistent in the selection of

variables. However, when the behaviors of the AIC and the AICc are evaluated under a

high-dimensional framework, we obtain new information, as in Theorem 2 (the proof is

given in Appendix A.3).

Theorem 2: Suppose that the assumptions A1, A2, and A4 are satisfied.

(1) If cn,p → c0 ∈ [0, ca) holds, where ca (≈ 0.797) is a constant satisfying log(1 − ca) +

2ca = 0, then the asymptotic probability of selecting the true model j∗ by the AIC is

lim
cn,p→c0

P (ĵa = j∗) = 1.

(2) If cn,p → c0 ∈ [0, 1) holds, then the asymptotic probability of selecting the true model
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j∗ by the AICc is

lim
cn,p→c0

P (ĵc = j∗) = 1.

Theorem 2 shows that, when cn,p → c0, the AIC and the AICc are consistent in model

selection if c0 ∈ [0, ca) for the AIC, and if c0 ∈ [0, 1) for the AICc. Therefore, the range of

values for (n, p) that satisfy consistency is wider for the AICc than it is for the AIC. This

indicates that it is possible that the bias correction to the risk function has a positive

effect on model selection.

In Theorem 2, it seems that the existence of a limiting value of (np)−1Γ′
jΓj as cn,p → c0

is a strong assumption. Next, we consider weakening assumption A4 in Theorem 3. For

a matrix A, let λmin(A) and λmax(A) indicate the minimum and maximum eigenvalues,

respectively. Then, we will replace assumption A4 with the following assumption:

Assumption A4′ : limcn,p→c0 ηn,p = ∞, and limcn,p→c0 λmax(Γ
′
jΓj)/(n

2η2n,p) = 0, where

ηn,p = λmin(Γ
′
jΓj)/n.

Even if we use assumption A4′ instead of A4, the consistencies of the AIC and the AICc

hold, as is shown in the following theorem (the proof is given in Appendix A.4):

Theorem 3: Even when assumption A4 is replaced with assumption A4′, Theorem 2 still

holds, i.e., the AIC is consistent when cn,p → c0 ∈ [0, ca), and the AICc is consistent when

cn,p → c0 ∈ [0, 1).

Notice that the upper bound of λmax(Γ
′
jΓj) is given by

λmax(Γ
′
jΓj) ≤ λmax(Θ

′
∗Σ

−1
∗ Θ′

∗)λmax(X
′
∗(In − Pj)X∗).

Additionally, if we assume that Θ∗Σ
−1
∗ Θ′

∗ is a full-rank matrix, the lower bound of

λmin(Γ
′
jΓj) is given by

λmin(Γ
′
jΓj) ≥ λmin(Θ

′
∗Σ

−1
∗ Θ′

∗)λ
†
min(X

′
∗(In − Pj)X∗),

where λ†
min(A) denotes the minimum nonzero eigenvalue of A. Therefore, if Θ∗Σ

−1
∗ Θ′

∗ is

a full-rank matrix, the assumption A4′ holds when the following equations are satisfied:

lim
p→∞

λmin(Θ∗Σ
−1
∗ Θ′

∗) = ∞, lim
cn,p→c0

λmax(Θ∗Σ
−1
∗ Θ′

∗)

nλmin(Θ∗Σ
−1
∗ Θ′

∗)
2
= 0,

lim inf
n→∞

1

n
λ†
min(X

′
∗(In − Pj)X∗) > 0, lim sup

n→∞

1

n
λmax(X

′
∗(In − Pj)X∗) < ∞.
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Using the above equations, it is easy to check if assumption A4 holds.

Before concluding this section, we describe the consistencies of the BIC and the CAIC.

Let S− = {j ∈ J−|k∗ − kj > 0}. Then, the probabilities of selecting the true model j∗

by the BIC or the CAIC are given in the following theorems (the proofs are given in

Appendices A.5 and A.6, respectively):

Theorem 4: Suppose that assumptions A1, A2, and A3 hold. Then, as n → ∞, the

asymptotic probability of selecting the true model j∗ by the BIC or the CAIC is

lim
n→∞

P (ĵb = j∗) = lim
n→∞

P (ĵo = j∗) = 1.

Theorem 5: Suppose that assumptions A1, A2, A4, and A5 hold, and γj > c0(k∗ − kj)

is satisfied for all j ∈ S−. If cn,p → c0 ∈ [0, cb) holds, where cb = min{1,minj∈S− γj/(k∗−
kj)}, then the asymptotic probability of selecting the true model j∗ by the BIC or the CAIC

is

lim
cn,p→c0

P (ĵb = j∗) = lim
cn,p→c0

P (ĵo = j∗) = 1.

Theorem 4 confirms the well-known fact, that the BIC and the CAIC are consistent in

variable selection when n → ∞, is also satisfied in the multivariate linear regression model.

However, Theorem 5 indicates that the BIC and the CAIC are not always consistent in

variable selection when cn,p → c0. If Θ∗Σ
−1
∗ Θ′

∗ is a full-rank matrix, γj becomes kj+ − kj.

Since c0 < 1 and kj+ −kj > k∗−kj for all j ∈ S−, γj > c0(k∗−kj) is satisfied if Θ∗Σ
−1
∗ Θ′

∗

is a full-rank matrix. In contrast, if c0 = 0 then γj > c0(k∗−kj) is satisfied. Therefore, we

can see that variable selections using the BIC and the CAIC are consistent as cn,p → c0

if Θ∗Σ
−1
∗ Θ′

∗ is a full-rank matrix, or cn,p converges to 0. However, if Θ∗Σ
−1
∗ Θ′

∗ is not a

full-rank matrix and c0 ∈ (0, 1), we cannot determine if variable selection using the BIC

and the CAIC are consistent as cn,p → c0.

4. Numerical Study

In this section, we numerically examine the validity of our claim. The probability of

selecting the true model by the AIC in (2.1), the AICc in (2.2), the BIC in (2.3), and the

CAIC in (2.4), was evaluated by Monte Carlo simulations with 10,000 iterations. The ten

candidate models jα = {1, . . . , α} (α = 1, . . . , 10), with several different values of n and
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Table 2. Selection probabilities of the true model (%)

Case 1 Case 2 (c0 = 0.01)
n p AIC AICc BIC CAIC p AIC AICc BIC CAIC

100 2 75.7 81.5 76.7 66.0 2 75.7 81.5 76.7 66.0
200 2 79.6 83.2 98.6 98.0 4 87.1 91.0 95.1 88.3
500 2 79.7 81.3 99.8 99.9 10 96.1 97.4 100.0 100.0
1000 2 81.0 81.7 99.9 100.0 20 99.4 99.6 100.0 100.0
∞ 2 80.2 80.2 100.0 100.0 ∞ 100.0 100.0 100.0 100.0

Case 3 Case 4 (c0 = 0.1)
n p AIC AICc BIC CAIC p AIC AICc BIC CAIC

100 10 86.5 73.5 5.2 0.2 10 86.5 73.5 5.2 0.2
200 10 95.0 98.2 67.8 37.3 20 98.5 99.8 18.1 0.8
500 10 96.2 97.5 100.0 100.0 50 100.0 100.0 99.1 69.6
1000 10 96.7 97.0 100.0 100.0 100 100.0 100.0 100.0 100.0
∞ 10 96.8 96.8 100.0 100.0 ∞ 100.0 100.0 100.0 100.0

Case 5 Case 6 (c0 = 0.3)
n p AIC AICc BIC CAIC p AIC AICc BIC CAIC

100 30 89.9 0.0 0.0 0.0 30 89.9 0.0 0.0 0.0
200 30 99.4 99.6 1.1 0.0 60 99.8 21.3 0.0 0.0
500 30 99.8 100.0 99.9 97.4 150 100.0 100.0 0.0 0.0
1000 30 99.9 99.9 100.0 100.0 300 100.0 100.0 0.0 0.0
∞ 30 99.9 99.9 100.0 100.0 ∞ 100.0 100.0 0.0 0.0

Case 7 (c0 = 0.0) Case 8 (c0 = 0.0)
n p AIC AICc BIC CAIC p AIC AICc BIC CAIC

100 30 89.9 0.0 0.0 0.0 30 89.9 0.0 0.0 0.0
200 32 99.6 99.6 0.3 0.0 40 99.7 97.4 0.0 0.0
500 35 99.9 100.0 99.8 93.9 50 100.0 100.0 99.1 69.7
1000 40 99.9 100.0 100.0 100.0 60 100.0 100.0 100.0 100.0
∞ ∞ 100.0 100.0 100.0 100.0 ∞ 100.0 100.0 100.0 100.0

p, were prepared for Monte Carlo simulations. We generated z1, . . . , zn ∼ i.i.d. U(−1, 1).

Using z1, . . . , zn, we constructed a n × 10 matrix of explanatory variables X where the

(a, b)th element was defined by zb−1
a (a = 1, . . . , n; b = 1, . . . , 10). The true model was

determined by Θ∗ = (1,−2, 3,−4, 5)′1′
p, j∗ = {1, 2, 3, 4, 5}, and Σ∗, where the (i, j)th ele-

ment was defined by (0.8)|a−b| (a = 1, . . . , p; b = 1, . . . , p). Here 1p was the p-dimensional

vector of ones. Thus, j1, j2, j3, and j4 were underspecified models, and j5, j6, j7, j8, j9,

and j10 were overspecified models.

In our numerical study, γj = 1 and max(k∗ − kj) = 4 hold for all j ∈ S−. This

implies that when c0 > 1/4, the inequality γj > c0(k∗ − kj) was not always satisfied for
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all j ∈ S−. Thus, the probability of selecting j∗ by the BIC and the CAIC converged to

0 as cn,p → c0 ∈ (1/4, 1). This means that the BIC and the CAIC were not consistent in

variable selection when c0 > 1/4.

Table 2 shows the probability of selecting the true model by the AIC, the AICc, the

BIC, and the CAIC. For n = ∞ or p = ∞, we list the theoretical values obtained from

Corollary 1 and Theorems 2, 4, and 5. In the table, Cases 1, 3, and 5 are the results

when n → ∞ under a fixed p, and Cases 2, 4, 6, 7, and 8 are the results when (n, p) → ∞
and with c0 = 0.01, 0.1, 0.3, 0.0, and 0.0. From the table, we can see that in the cases of

the AIC and the AICc, the greater the dimension and sample size were, the greater the

probabilities became. Compared with the results obtained from the AIC and the AICc,

probabilities by the AICc tended to be higher than those by the AIC when n was not

small. In the cases of the BIC and the CAIC, the greater the dimension and sample size

were, the higher the selection probabilities became, with the exception of Case 6. This

was because variable selection using the BIC and the CAIC were not consistent in Case

6. Additionally, when n was small and p was large, the selection probabilities of the BIC

and the CAIC were both very low. However, if the BIC and the CAIC were consistent in

variable selection, these probabilities became high as n and p increased.

We simulated several other models and obtained similar results. Since the theoretical

difference between using the AIC and the AICc occurs when cn,p > 0.8, we should list

the numerical results for such a case. However, when cn,p is close to 1, the convergence of

selection probabilities was extremely slow . Thus, we do not show simulation results for

dimensions close to the sample size.

5. Conclusion and Discussion

In this paper, we demonstrated that the AIC for the multivariate linear regression

model is consistent in variable selection when we approximate the probability of selecting

the true model using a high-dimensional asymptotic framework. The AIC and the bias-

corrected AICs are sometimes pilloried for inconsistency, although the value of the AIC is

not in choosing the true model. The results presented in this paper will help to dispel the

undeserved negative reputation of the AIC. Moreover, a range of the parameters necessary

for the AICc to satisfy consistency is wider than that for the AIC. This indicates that it

is possible that correcting the bias to the risk function may have a positive effect on the

12



model selection. It is a well-known fact that variable selections using the BIC and the

CAIC are consistent if we approximate the probability of selecting the true model using

a large-sample asymptotic framework. However, we found that there is a possibility that

the BIC and the CAIC become inconsistent if we approximate the probability of selecting

the true model using a high-dimensional asymptotic framework.

It is known that the large-sample asymptotic theory gives a poor approximation when

the dimension is large. The high-dimensional asymptotic theory gives a better approxima-

tion than the large-sample asymptotic theory when the sample size is large, and sometimes

even when the dimension is not so large (Fujikoshi and Seo 1998; Fujikoshi and Sakurai

2009; Fujikoshi, Shimizu, and Ulyanov 2010). Hence, the consistency property of the AIC

that we demonstrated will be useful for high-dimensional data analysis, which recently

has been attracting the attention of many researchers. Usually, the high-dimensional

asymptotic theory is used to improve the approximations of the distributions of statistics.

However, the results in this paper suggest a possibility that new insight can be provided

by applying the high-dimensional asymptotic theory to high-dimensional data.

From the simulation study, we found that, the larger the dimension and sample size,

the higher the selection probabilities. This numerical result naturally implies that using

multiple response variables at the same time as the model selection can increase the

probability of selecting the true model. In other words, we should not select variables

using only each response variable. That is a strong reason to apply the model selection

procedure based on the multivariate linear regression model to high-dimensional data.

In this paper, we considered the case of n > p because Σ̂j becomes singular when

p > n. However, using a ridge-type estimator of the covariance matrix, the singularity

can be avoided, as demonstrated by Yamamura, Yanagihara, and Srivastava (2010). We

can expect that an AIC consisting of such a ridge-type estimator will be consistent in

model selection.

Appendix

A.1. The Proof of Theorem 1

Since AICc = AIC+O(n−1) when p is fixed, it is enough to show only the case of the

AIC for proving Theorem 1. The selection probability of a model j selected by the AIC
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is

P (ĵa = j) = P (∩ℓ∈J\{j}{AIC(ℓ) > AIC(j)})

= P ({∩ℓ∈J−\{j}{AIC(ℓ) > AIC(j)}} ∩ {∩ℓ∈J+\{j}{AIC(ℓ) > AIC(j)}}). (A.1)

Notice that n−1ΓjΓ
′
j is convergent when assumption A3 holds, where Γj is given by (2.6).

Let Ψℓ,0 = limn→∞ n−1ΓℓΓ
′
ℓ. When ℓ1 ∈ J+ and ℓ2 ∈ J−, Σ̂ℓ1

p→ Σ∗ and Σ̂ℓ2

p→
Σ

1/2
∗ Ψℓ2,0Σ

1/2
∗ +Σ∗ as n → ∞. Since Ψℓ,0 is a positive semidefinite matrix, we have

1

n
{AIC(ℓ2)− AIC(ℓ1)}

p→ log |Σ1/2
∗ Ψℓ2,0Σ

1/2
∗ +Σ∗| − log |Σ∗| = log |Ip +Ψℓ2,0| > 0.

This result implies that

lim
n→∞

P (AIC(ℓ2) > AIC(ℓ1)) = 1, lim
n→∞

P (AIC(ℓ1) > AIC(ℓ2)) = 0.

Using the above two equalities and a basic probability theorem, we have

lim
n→∞

P (∩ℓ∈J−\{j}{AIC(ℓ) > AIC(j)}) = 1, (j ∈ J+),

lim
n→∞

P (∩ℓ∈J+\{j}{AIC(ℓ) > AIC(j)}) = 0, (j ∈ J−).

Thus, from the above equalities and (A.1), we obtain the following result.

lim
n→∞

P (ĵa = j) =

{
0 (j ∈ J−)
lim
n→∞

P (∩ℓ∈J+\{j}{AIC(ℓ) > AIC(j)}) (j ∈ J+)
. (A.2)

From here to the end of proof, we assume j ∈ J+. Let V and Zj be the p × p and the

kj × p matrices defined by

V =
1√
n
(E ′E − nIp), Zj = (X ′

jXj)
−1/2X ′

jE ,

where E = (Y −Xj∗Θ∗)Σ
−1/2
∗ . It is well known that V has an asymptotic normality as

n → ∞, and Zj ∼ Nkj×p(Okj ,p, Ikjp). Furthermore, using

Σ−1/2
∗ Σ̂jΣ

−1/2
∗ =

1

n
E ′(In − Pj)E =

1

n
(E ′E −Z ′

jZj),

we have

Σ−1/2
∗ Σ̂jΣ

−1/2
∗ = Ip +

1√
n
V − 1

n
Z ′

jZj.

From the above expression, the first term of the AIC(j) can be expanded as

n log |Σ̂j| = n log |Σ∗|+
√
ntr(V )− {tr(V 2) + tr(ZjZj)}+Op(n

−1/2).
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Let zj be a kjp-dimensional random vector defined by zj = vec(Zj), where vec(A) is an

operator that transforms a matrix to a vector by stacking the first to the last columns

of A, i.e., vec(A) = (a′
1, . . . ,a

′
m)

′ when A = (a1, . . . ,am) (see, e.g., Harville 1997, chap.

16.2). Then, it follows from the expansion and the equality tr(Z ′
jZj) = z′

jzj that

AIC(ℓ)− AIC(j) = −(z′
ℓzℓ − z′

jzj) + 2p(kℓ − kj) +Op(n
−1/2). (A.3)

Consequently, by combining (A.3) with (A.2), Theorem 1 is proved.

A.2. The Proof of Corollary 1

Let zj be the same random vector as in Theorem 1. Notice that when ℓ1 ⊂ ℓ2 ⊂ ℓ3 and

ℓ1, ℓ2, ℓ3 ∈ J+, z
′
ℓ3
zℓ3 − z′

ℓ1
zℓ1 is distributed according to the chi-square distribution with

p(kℓ3 − kℓ1) degrees of freedom, and z′
ℓ2
zℓ2 − z′

ℓ1
zℓ1 and z′

ℓ3
zℓ3 − z′

ℓ2
zℓ2 are independently

distributed according to the chi-square distributions with p(kℓ2 − kℓ1) and p(kℓ3 − kℓ2)

degrees of freedoms, respectively. Using these properties, when the candidate models are

nested, the distribution in (3.1) is rewritten as

P

(
max

α=1,...,k−k∗

∑α
i=1(wi − 2p) < 0

)
, (A.4)

where w1, . . . , wk−k∗ are independently and identically distributed according to the chi-

square distribution with p degrees of freedom. Using lemma 1 of Shibata (1976), the

probability (A.4) is explicitly evaluated as (3.2).

A.3. The Proof of Theorem 2

First, we consider the case of j ∈ J−. Let W1,W2, and W3 be p × p mutually

independent random matrices distributed according to Wp(n − kj+ , Ip), Wp(dj, Ip), and

Wp(γj, Ip;ΓjΓ
′
j), respectively, where dj = kj+ − kj − γj and Γj is given by (2.6). Using

these three matrices, we have

nΣ−1/2
∗ Σ̂jΣ

−1/2
∗ = W1 +W2 +W3, nΣ−1/2

∗ Σ̂j+Σ
−1/2
∗ = W1.

It follows from the property of Wishart distributions (see Fujikoshi, Shimizu, and Ulyanov

2010, p. 57 th. 3.2.4) that

log |Σ̂j| − log |Σ̂j+ | = log
|W1 +W2 +W3|

|W1 +W2|
+ log

|W1 +W2|
|W1|

= − log
|U1|

|U1 +U2|
− log

|U3|
|U3 +U4|

, (A.5)
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where U1, U2, U3, and U4 are random matrices distributed according to Wishart or

noncentral Wishart distributions;

U1 ∼ Wγj(n− kj − p, Iγj), U2 ∼ Wγj(p, Iγj ;Γ
′
jΓj),

U3 ∼ Wdj(n− kj − γj − p, Idj), U4 ∼ Wdj(p, Idj).
(A.6)

Here, U1 andU2 are mutually independent, andU3 andU4 are also mutually independent.

When cn,p → c0 ∈ [0, 1), we have

1

n− kj − p
U1

p→ Iγj ,
1

n− kj − γj − p
U3

p→ Idj ,
1

p
U4

p→ Idj . (A.7)

From the definition of the noncentral Wishart distribution, a different expression of U2 is

given as U2 = (Z + Γj)
′(Z + Γj), where Z ∼ Np×γj(Op,γj , Ipγj). Thus, we derive

vec(U2) = vec(Z ′Z) + vec(Γ′
jZ) + vec(Z ′Γj) + vec(Γ′

jΓj). (A.8)

Notice that

Cov[vec(Γ′
jZ)] = Iγj ⊗ Γ′

jΓj, Cov[vec(Z ′Γj)] = Γ′
jΓj ⊗ Iγj . (A.9)

Hence, vec(Γ′
jZ) = Op(n

1/2p1/2) and vec(Z ′Γj) = Op(n
1/2p1/2) are obtained, because

Γ′
jΓj = O(np) is satisfied. Needless to say, vec(Z ′Z) = Op(1) holds. These results imply

the convergence in probability of U2 as

1

np
U2

p→ ∆j,0, (A.10)

where ∆j,0 = limcn,p→c0(np)
−1Γ′

jΓj in the assumption A4. Combining the equations (A.7)

and (A.10) yields

1

np
(U1 +U2)

p→ ∆j,0,
1

n− kj − γj − p
(U3 +U4)

p→ 1

1− c0
Idj .

Using the results of the convergence of the probability, the first and second terms in (A.5)

are expanded as

− log
|U1|

|U1 +U2|
= log

(
p

1− cn,p − kj/n

)γj

− log
|U1/(n− kj − p)|
|(U1 +U2)/(np)|

= γj log p− γj log(1− c0) + log |∆j,0|+ op(1), (A.11)

and

− log
|U3|

|U3 +U4|
= − log

|U3/(n− kj − γj − p)|
|(U3 +U4)/(n− kj − γj − p)|

= −dj log(1− c0)+op(1). (A.12)
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Since log |∆j,0| is a constant, limcn,p→c0(log p)
−1 log |∆j,0| = 0 holds. Substituting the

equations (A.11) and (A.12) into (A.5) yields

1

log p
(log |Σ̂j| − log |Σ̂j+ |)

p→ γj > 0. (A.13)

Using the same idea as in the derivation of (A.12), it can be shown that

1

log p
(log |Σ̂j+ | − log |Σ̂j∗ |)

p→ 0. (A.14)

Let mj be the penalty term in the AICc for the model j. Then, we have

mj =
2n

n− kj − p− 1

{
pkj +

1

2
p(p+ 1)

}
=

npcn,p
1− cn,p

+
p

(1− cn,p)2
{(2− cn,p)kj + 1}+O(pn−1).

From the expansion of mj, mj −mj∗ is expanded as

mj −mj∗ =
rj(2− cn,p)p

(1− cn,p)2
+O(pn−1), (A.15)

where rj = kj − k∗. Hence, differences between the penalty terms of the AICcs and the

AICs are convergent as

lim
cn,p→c0

1

n log p
{2(kj − k∗)p} = 0, lim

cn,p→c0

1

n log p
(mj −mj∗) = 0.

Using these results with the results (A.13) and (A.14), the difference between the infor-

mation criteria of the model j and the true model j∗ is convergent as

1

n log p
{AIC(j)− AIC(j∗)}

p→ γj > 0,
1

n log p
{AICc(j)− AICc(j∗)}

p→ γj > 0. (A.16)

Next, we consider the case of j ∈ J+. Notice that

nΣ−1/2
∗ Σ̂jΣ

−1/2
∗ ∼ Wp(n− kj, Ip), nΣ−1/2

∗ Σ̂j∗Σ
−1/2
∗ ∼ Wp(n− k∗, Ip).

It follows from the property of Wishart distributions (see Fujikoshi, Shimizu, and Ulyanov

2010, p. 57 th. 3.2.4) that

n log |Σ̂j| − n log |Σ̂j∗ | = n log
|B1|

|B1 +B2|
= −n log |Irj +B2B

−1
1 |, (A.17)

where rj = kj−k∗, and B1 and B2 are rj×rj independent random matrices with Wishart

distributions;

B1 ∼ Wrj(n− k∗ − p, Irj), B2 ∼ Wrj(p, Irj).
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Notice that as cn,p → c0 ∈ [0, 1),

1

n− k∗ − p
B1

p→ Irj ,
1

p
B2

p→ Irj .

Using these results and p < n, the right-hand side of (A.17) is expanded as

−n log |Irj +B2B
−1
1 | = −n log

∣∣∣∣∣Irj + p

n− k∗ − p

(
1

p
B2

)(
1

n− k∗ − p
B1

)−1
∣∣∣∣∣

= −n log

∣∣∣∣Irj + p

n− k∗ − p

{
Irj +Op(p

−1/2)
}∣∣∣∣ .

Therefore, the equation (A.17) divided by p is evaluated as

n

p
(log |Σ̂j| − log |Σ̂j∗|) = − 1

cn,p
log |Irj/(1− cn,p) +Op(p

1/2n−1)|

=
rj
cn,p

log(1− cn,p) +Op(p
−1/2).

Furthermore, it follows from the equality (A.15) that

1

p
(mj −mj∗) =

rj(2− cn,p)

(1− cn,p)2
+O(n−1).

From these results, we can see that

1

p
{AIC(j)− AIC(j∗)} = rj

{
1

cn,p
log(1− cn,p) + 2

}
+Op(p

−1/2),

1

p
{AICc(j)− AICc(j∗)} = rj

{
1

cn,p
log(1− cn,p) +

1

1− cn,p
+

1

(1− cn,p)2

}
+Op(p

−1/2).

Notice that the limc→0 c
−1 log(1 − c) = −1, and c−1 log(1 − c) + 2 is a monotonically

decreasing function in 0 ≤ c < 1. Thus, when c0 < ca holds, and ca is a constant

satisfying log(1 − c0) + 2c0 = 0, c−1
0 log(1 − c0) + 2 > 0 is satisfied. Therefore, when

c0 < ca, we derive

1

p
{AIC(j)− AIC(j∗)}

p→ rj

{
1

c0
log(1− c0) + 2

}
> 0. (A.18)

Meanwhile, c−1 log(1− c)+ (1− c)−1 +(1− c)−2 is a monotonically increasing function in

0 ≤ c < 1. Thus, we have

1

p
{AICc(j)− AICc(j∗)}

p→ rj

{
1

c0
log(1− c0) +

1

1− c0
+

1

(1− c0)2

}
> 0. (A.19)

It follows from the results in (A.16), (A.18). and (A.19) that

lim
cn,p→c0

P (ĵa = j) = 0, (j ∈ J \{j∗}, c0 ∈ [0, ca)),

lim
cn,p→c0

P (ĵc = j) = 0, (j ∈ J \{j∗}, c0 ∈ [0, 1)).
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Consequently, Theorem 2 is proved.

A.4. The Proof of Theorem 3

The proof in the case of j ∈ J+ is the same as that in Theorem 2, so it is sufficient

to prove Theorem 3 only in the case of j ∈ J−, where we use assumption A4′ instead of

assumption A4. Thus, we will show that the selection probability of the model j ∈ J−

converges to 0. In order to prove this, we use U1, U2, U3, and U4, which are given

by (A.6). Notice that Γ′
jΓj ≤ λmax(Γ

′
jΓj)Iγj . Hence, when the assumption A4′ holds,

Γ′
jΓj = o(n2η2n,p) holds. Recall thatU2 = (Z+Γj)

′(Z+Γj), where Z ∼ Np×γj(Op,γj , Ipγj).

From the order of Γ′
jΓj and the results in (A.9), we can see that vec(Γ′

jZ) = op(nηn,p)

and vec(Z ′Γj) = op(nηn,p). These results and equation (A.8) imply the convergence in

probability of U2 and U1 +U2 as

1

nηn,p
(U2 − Γ′

jΓj)
p→ Oγj ,γj ,

1

nηn,p
(U1 +U2 − Γ′

jΓj)
p→ Oγj ,γj . (A.20)

Let ∆j = (nηn,p)
−1Γ′

jΓj. It follows from λmin(∆j) = 1 that

lim inf
cn,p→c0

log |∆j| ≥ 0.

The above result and the assumption that limcn,p→c0 ηn,p = ∞ lead us to

lim inf
cn,p→c0

1

log ηn,p
log |∆j| ≥ 0. (A.21)

The results in (A.7) and (A.20) give an expansion of − log(|U1|/|U1 +U2|) as

− log
|U1|

|U1 +U2|
= log

(
ηn,p

1− cn,p − kj/n

)γj

− log
|U1/(n− kj − p)|
|(U1 +U2)/(nηn,p)|

= γj log ηn,p − γj log(1− c0) + log |∆j|+ op(1). (A.22)

Hence, substituting equations (A.12) and (A.22) into (A.5) yields

1

log ηn,p
(log |Σ̂j| − log |Σ̂j+ | − log |∆j|)

p→ γj > 0. (A.23)

Using the same idea as in the derivation of (A.12), it can be shown that

1

log ηn,p
(log |Σ̂j+| − log |Σ̂j∗|)

p→ 0. (A.24)

From the result in (A.15), the differences between the penalty terms of the AICs, and the

AICcs are convergent as

lim
cn,p→c0

1

n log ηn,p
{2(kj − k∗)p} = 0, lim

cn,p→c0

1

n log ηn,p
(mj −mj∗) = 0.
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The above results with the results in (A.23) and (A.24) imply the convergence in prob-

ability of the differences between the information criteria of the model j and the true

model j∗ is expressed as

1

n log ηn,p
{AIC(j)− AIC(j∗)− log |∆j|}

p→ γj > 0,

1

n log ηn,p
{AICc(j)− AICc(j∗)− log |∆j|}

p→ γj > 0.

Combining the above results with the result in (A.21) yields

lim
cn,p→c0

P (ĵa = j) = 0, lim
cn,p→c0

P (ĵc = j) = 0, (j ∈ J−).

Consequently, Theorem 3 is proved.

A.5. The Proof of Theorem 4

Notice that the differences between the penalty terms of the BICs and the CAICs are

convergent as

lim
n→∞

1

n
{p(kj − k∗) log n} = lim

n→∞

1

n
{p(kj − k∗)(1 + log n)} = 0,

and

lim
n→∞

1

log n
{p(kj − k∗) log n} = lim

n→∞

1

log n
{p(kj − k∗)(1 + log n)} = p(kj − k∗).

Thus, using the same method as in the proof of Theorem 1, we have

1

n
{BIC(j)− BIC(j∗)}

p→ log |Ip +Ψj,0| > 0,

1

n
{CAIC(j)− CAIC(j∗)}

p→ log |Ip +Ψj,0| > 0,
(j ∈ J−),

and

1

log n
{BIC(j)− BIC(j∗)}

p→ p(kj − k∗) > 0,

1

log n
{CAIC(j)− CAIC(j∗)}

p→ p(kj − k∗) > 0.
(j ∈ J+\{j∗}).

These results imply that

lim
n→∞

P (ĵb = j∗) = lim
n→∞

P (ĵo = j∗) = 1.

Consequently, Theorem 4 is proved.
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A.6. The Proof of Theorem 5

Notice that the differences between the penalty terms of the BICs and the CAICs are

convergent as

lim
cn,p→c0

1

p log n
{p(kj − k∗) log n} = lim

cn,p→c0

1

p log n
{p(kj − k∗)(1 + log n)} = rj.

Thus, using the same method as in the proof of Theorem 2, we have

1

p log n
{BIC(j)− BIC(j∗)}

p→ rj > 0,

1

p log n
{CAIC(j)− CAIC(j∗)}

p→ rj > 0,
(j ∈ J+\{j∗}). (A.25)

Moreover, it is easy to obtain

1

n log p
{p(kj − k∗) log n} = cn,prj

(
− log cn,p

log p
+ 1

)
,

1

n log p
p{(kj − k∗)(log n+ 1)} = cn,prj

(
1− log cn,p

log p
+ 1

)
.

Since limc→0 c log c = 0 holds, we derive

lim
cn,p→c0

1

n log p
{p(kj − k∗) log n} = lim

cn,p→c0

1

n log p
{p(kj − k∗)(1 + log n)} = c0rj.

Therefore, if γj > c0(k∗ − kj) is satisfied for all j ∈ {j ∈ J−|k∗ − kj > 0}, it follows in the

same way as in the proof of Theorem 3 that

1

n log p
{BIC(j)− BIC(j∗)}

p→ γj + c0rj > 0,

1

n log p
{CAIC(j)− CAIC(j∗)}

p→ γj + c0rj > 0,
(j ∈ J−). (A.26)

The equations (A.25) and (A.26) imply that

lim
cn,p→c0

P (ĵb = j∗) = lim
cn,p→c0

P (ĵo = j∗) = 1.

Consequently, Theorem 5 is proved.
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[17] Sârbu, C., Onişor, C., Posa, M., Kevresan, S. & Kuhajda, K. (2008). Modeling and

prediction (correction) of partition coefficients of bile acids and their derivatives by

multivariate regression methods. Talanta, 75, 651–657.

[18] Saxén, R. & Sundell, J. (2006). 137Cs in freshwater fish in Finland since 1986 – a sta-

tistical analysis with multivariate linear regression models. J. Environ. Radioactiv.,

87, 62–76.

[19] Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist., 6, 461–464.

[20] Shao, J. (1997). An asymptotic theory for linear model selection. Statist. Sinica, 7,

221–264.

[21] Shibata, R. (1976). Selection of the order of an autoregressive model by Akaike’s

information criterion. Biometrika, 63, 117–126.

[22] Shibata, R. (1980). Asymptotically efficient selection of the order of the model for

estimating parameters of a linear process. Ann. Statist., 8, 147–164.

[23] Siotani, M., Hayakawa, T. & Fujikoshi, Y. (1985). Modern Multivariate Statistical

Analysis: A Graduate Course and Handbook. American Sciences Press, Columbus,

Ohio.

[24] Srivastava, M. S. (2002). Methods of Multivariate Statistics. John Wiley & Sons, New

York.

23



[25] Sugiura, N. (1978). Further analysis of the data by Akaike’s information criterion

and the finite corrections. Commun. Statist. Theory Methods, A7, 13–26.

[26] Timm, N. H. (2002). Applied Multivariate Analysis. Springer-Verlag, New York.

[27] Yamamura, M., Yanagihara, H., & Srivastava, M. S. (2010). Variable selection in

multivariate linear regression models with fewer observations than the dimension.

Japanese J. Appl. Statist., 39, 1–19.

[28] Yanagihara, H. (2006). Corrected version of AIC for selecting multivariate normal

linear regression models in a general nonnormal case. J. Multivariate Anal., 97, 1070–

1089.

[29] Yanagihara, H., Kamo, K. & Tonda, T. (2011). Second-order bias-corrected AIC in

multivariate normal linear models under nonnormality. Canad. J. Statist., 39, 126–

146.

[30] Yang, Y. (2005). Can the strengths of AIC and BIC be shared? A conflict between

model indentification and regression estimation. Biometrika, 92, 937–950.

[31] Yoshimoto, A., Yanagihara, H. & Ninomiya, Y. (2005). Finding factors affecting

a forest stand growth through multivariate linear modeling. J. Jpn. For. Soc., 87,

504–512 (in Japanese).

24


