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Abstract

In this paper, we deal with a bias correction of the Akaike information criterion (AIC)

for selecting variables in the canonical correlation analysis when a goodness of fit of the

model is assessed by the risk function consisting of the expected Kullback-Leibler loss

function with a normal assumption. Although the bias of the AIC to the risk function is

O(n−1) when the model is correctly specified, its order turns into O(1) when the model

is misspecified. By using the jackknife method with a constant adjustment, we propose a

new criterion that reduces the AIC’s bias to O(n−2) even when the model is misspecified,

and is an exact unbiased estimator of the risk function when data is generated from the

normal distribution. By conducting numerical experiments, we verify that our proposed

criteria perform better than the existing criteria.
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1. Introduction

Canonical correlation analysis (CCA), which analyzes the correlation of two linearly

combined variables, is an important method in multivariate analysis. CCA has been

introduced in many textbooks for applied statistical analysis (see e.g., Srivastava, 2002,
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Culture, Grant-in-Aid for Scientific Research (C), #22500259, 2010–2012.

1



Chapter 14.7; Timm, 2002, Chapter 8.7), and even now it is widely used in many applied

fields (e.g., Doeswijk et al., 2011; Khalil, Ouarda & St-Hilaire, 2011; Vahedia, 2011).

Determining the variables to be used is an important problem in CCA as well as selecting

the variables in the multivariate linear regression model. Hence, variable selection in

CCA has been investigated in many papers, e.g., MacKay (1977), Fujikoshi (1982; 1985),

Al-Kandari and Jolliffe (1997), Noble, Smith and Ye (2004), and Ogura (2010).

The choice of variables based on the minimization of an information criterion as typ-

ified by the Akaike information criterion (AIC), which was proposed by Akaike (1973),

is one of the major variable selection methods. Fujikoshi (1985) identified the problem

of variable selection in CCA as one of selecting corresponding covariance structures, and

proposed the AIC as a selector of covariance structures. The Kullback-Leibler (KL) dis-

crepancy (Kullback & Leibler, 1951) function, consisting of a density function of the

Wishart distribution, is frequently used in covariance structure analysis. To use the KL

discrepancy based on the Wishart density naturally means that the normality of the

variables is assumed. The AIC is an asymptotic unbiased estimator of the risk function

consisting of the expected KL loss function when the model being considered is completely

specified. Under this assumption, Fujikoshi (1985) and Fujikoshi and Kurata (2008) pro-

posed a bias-corrected AIC (corrected AIC: CAIC), which is an unbiased estimator of

the risk function. However, if the model being considered is not specified, a bias with

constant order will appear in the AIC.

One of the information criteria for correcting the bias of the AIC under model misspec-

ification is the Takeuchi information criterion (TIC) proposed by Takeuchi (1976), whose

bias-correction term is given by a moment estimator of the first term in an asymptotic

expansion of the bias to the risk function. Another criterion correcting the bias of the

AIC under model misspecification is the extended information criterion (EIC) proposed

by Ishiguro, Sakamoto, and Kitagawa (1997), whose bias-correction term is evaluated

from the bootstrap method. The TIC and EIC for selecting covariance structures were

studied by Ichikawa and Konishi (1999). Furthermore, Fujikoshi et al. (2008) and Ogura

(2010) dealt with the EIC for selecting variables in CCA. The orders of biases of both

criteria are O(n−1) even when the model is misspecified.

A purpose of this paper is to propose a bias-corrected AIC that reduces higher-order

bias even when the model being considered is misspecified. Since we use the jackknife

method for evaluating the bias-correction term, we call this new criterion the jackknife
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bias-corrected AIC (JAIC). By using a property of the jackknife estimator, we can reduce

the bias of the AIC to O(n−2). Besides this, we adjust the JAIC to an exact unbiased

estimator of the risk function when the distribution of the true model is the normal

distribution, which has been attempted in the multivariate linear regression model by

Yanagihara (2006) and Yanagihara, Kamo, and Tonda (2011). This adjustment will

remove the negative effects of an increase in dimensions.

This paper is organized in the following way. In Section 2, we describe the bias of

the AIC under model misspecification. In Section 3, we propose the JAIC for selecting

variables in CCA. In Section 4, we verify by numerical experiments that our criteria

perform better than the existing criteria, namely, the AIC, CAIC, TIC, and EIC. Technical

details are provided in the Appendix.

2. Bias of the AIC under Model Misspecification

Let z = (x′,y′)′ = (x1, . . . , xp, y1, . . . , yq)
′ be a (p+ q)-dimensional vector with

E[z] = µ =

(
µx

µy

)
, Cov[z] = Σ =

(
Σxx Σxy

Σ′
xy Σyy

)
.

Without loss of generality, we divide x and y into two sub-vectors x = (x′
1,x

′
2)

′ and

y = (y′
3,y

′
4)

′, where x1 and y3 are p1- and q1-dimensional random vectors, respectively.

Another expression of Σ corresponding to the divisions is

Σ =


Σ11 Σ12 Σ13 Σ14

Σ′
12 Σ22 Σ23 Σ24

Σ′
13 Σ′

23 Σ33 Σ34

Σ′
14 Σ′

24 Σ′
34 Σ44

 . (2.1)

Then, we are interested in whether x2 and y4 have any additional information. Let

z1, . . . , zn be n independent random vectors from z, and let S be the usual unbiased

estimator of Σ given by S = (n − 1)−1
∑n

i=1(zi − z̄)(zi − z̄)′, where z̄ = n−1
∑n

i=1 zi.

Suppose that z1, . . . , zn ∼ i.i.d. Np+q(µ,Σ). Following Fujikoshi (1985), the candidate

model that x2 and y4 have no additional information is expressed as

M : (n− 1)S ∼ Wp+q(n− 1,Σ) s.t. tr(Σ−1
xxΣxyΣ

−1
yy Σ

′
xy) = tr(Σ−1

11 Σ13Σ
−1
33 Σ

′
13). (2.2)

An estimator of Σ under M in (2.2) is given by

Σ̂ = argmin
Σ

{
F (S,Σ) s.t. tr(Σ−1

xxΣxyΣ
−1
yy Σ

′
xy) = tr(Σ−1

11 Σ13Σ
−1
33 Σ

′
13)

}
,
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where F (S,Σ) is the KL discrepancy function assessed by the Wishart density, which is

given by

F (S,Σ) = (n− 1)
{
tr(Σ−1S)− log |Σ−1S| − (p+ q)

}
.

In the analysis of covariance structure, the above discrepancy function is frequently called

the maximum likelihood discrepancy function (Jöreskog, 1967). Let S be divided in the

same way as Σ in (2.1), i.e.,

S =


S11 S12 S13 S14

S′
12 S22 S23 S24

S′
13 S′

23 S33 S34

S′
14 S′

24 S′
34 S44

 .

Then, from Fujikoshi and Kurata (2008) or Fujikoshi, Shimizu, and Ulyanov (2010, Chap-

ter 11.5), we can see that an explicit form of Σ̂ is given by

Σ̂ =


Σ̂11 Σ̂12 Σ̂13 Σ̂14

Σ̂′
12 Σ̂22 Σ̂23 Σ̂24

Σ̂′
13 Σ̂′

23 Σ̂33 Σ̂34

Σ̂′
14 Σ̂′

24 Σ̂′
34 Σ̂44



=


S11 S12 S13 S13S

−1
33 S34

S′
12 S22 S′

12S
−1
11 S13 S′

12S
−1
11 S13S

−1
33 S34

S′
13 S′

13S
−1
11 S12 S33 S34

S′
34S

−1
33 S

′
13 S′

34S
−1
33 S

′
13S

−1
11 S12 S′

34 S44

 . (2.3)

Actually, this interesting model is likely misspecified, i.e., the constraint of Σ in (2.2)

might be incorrect, and the distribution of (n − 1)S may not necessarily correspond to

the Wishart distribution (or, equivalently, it may be that there is no guarantee of the

normality of z). Hence, we write the true model as

M∗ : Cov[S] = Σ. (2.4)

In practice, we may simultaneously consider several candidate models. Among all the

candidate models, the model with the fewest number of parameters that fits the data

well is regarded as a good one. This idea can be executed by means of the so-called risk

function defined by

R = E[L(Σ̂)], (2.5)

where L(A) is the KL loss function expressed as

L(A) = E[F (S,A)] = (n− 1)
{
tr(A−1Σ)− E[log |A−1S|]− (p+ q)

}
. (2.6)
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The candidate model having the smallest risk function is regarded as the best model

among all the candidate models.

Although the minimum discrepancy F (S, Σ̂) is a rough estimator of R, it has a bias

with constant order as follows:

B = R− E[F (S, Σ̂)] = (n− 1)E[tr{Σ̂−1(Σ− S)}].

Let D be a (p + q) × d matrix expressing the operator that extracts d-elements from z

by D′z. Here, all the elements of D are 0 or 1 and satisfy D′D = Id. In particular, the

following matrices are used in this paper:

Dx =

(
Ip
Oq,p

)
, Dy =

(
Op,q

Iq

)
, D1 =

(
Ip1

Op+q−p1,p1

)
,

D3 =

 Op,q1

Iq1
Op+q−q1,q1

 , D(13) = (D1,D3),

where Op,q is a p× p matrix of zeros. Then we have

x = D′
xz, y = D′

yz, x1 = D′
1z, y3 = D′

3z,

(
x1

y3

)
= D′

(13)z.

By using the fact that tr(Σ̂−1S) = p+ q and the results in Fujikoshi and Kurata (2008),

we can rewrite the bias of F (S, Σ̂) for R as

B = (n− 1)
{
α(Dx) + α(Dy) + α(D(13))− α(D1)− α(D3)− (p+ q)

}
, (2.7)

where α(D) is defined by

α(D) = E[τ(S|D)], (2.8)

and

τ(S|D) = tr{(D′SD)−1D′ΣD}. (2.9)

It should be emphasized that the bias expressed as (2.7) is satisfied whether or not the

constraint of Σ in (2.2) holds.

Let κ4(D) be a multivariate kurtosis of D′z defined as

κ4(D) = E[{(z − µ)′D(D′ΣD)−1D′(z − µ)}2]− d(d+ 2). (2.10)

The bias B in (2.7) is evaluated as in the following theorem (the proof is given in Appendix

A.1):
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Theorem 1. Suppose that E[tr(S−2)] < ∞ and all the sixteenth multivariate moments

of z exist. Whether the constraint of Σ in (2.2) holds or not, the bias B is expanded as

B = κ4(Dx) + κ4(Dy) + κ4(D(13))− κ4(D1)− κ4(D3) + f(p1, q1) +O(n−1),

where f(p1, q1) = p2 + q2 + p+ q+ 2p1q1. Especially, when z ∼ Np+q(µ,Σ), the bias B is

explicitly expressed as

B = m(p1, q1) = (n− 1) {cn(p) + cn(q) + cn(p1 + q1)− cn(p1)− cn(q1)− (p+ q)} ,

where

cn(k) =
(n− 1)k

n− k − 2
. (2.11)

The AIC and CAIC for selecting variables in CCA, which were proposed by Fujikoshi

(1985) and Fujikoshi and Kurata (2008), are given by

AIC = F (S, Σ̂) + f(p1, q1), (2.12)

CAIC = F (S, Σ̂) +m(p1, q1). (2.13)

Notice that m(p1, q1) = f(p1, q1)+O(n−1). Furthermore, it follows from the same method

as in Theorem 1 that B = O(1) if E[tr(S−2)] < ∞ and all the eighth multivariate moments

of z exist. Thus, from the above results and Theorem 1, we obtain the following corollary.

Corollary 1. Suppose that E[tr(S−2)] < ∞ and all the eighth multivariate moments

of z exist. Whether the constraint of Σ in (2.2) holds or not, the orders of biases of the

AIC and CAIC become

R−E[AIC] =

{
O(n−1) (z ∼ Np+q(µ,Σ))
O(1) (otherwise)

, R−E[CAIC] =

{
0 (z ∼ Np+q(µ,Σ))
O(1) (otherwise)

.

Generally, the AIC will have a bias with constant order when the structure of the model

is misspecified. Furthermore, the CAIC in (2.13) was proposed under the assumption that

the covariance structure of the candidate model is true. However, Corollary 1 indicates

that if the normality of z holds, the AIC is an asymptotic unbiased estimator and the

CAIC is an unbiased estimator of R even when the covariance structure of the model is

misspecified. Additionally, by using the same idea as in Davies, Neath, and Cavanaugh
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(2006), i.e., the complete efficiency of S (see e.g., Siotani, Hayakawa & Fujikoshi, 1985,

pp. 18–20) and the Lehman-Scheffé theorem, we can prove that the CAIC is a uniformly

minimum-variance unbiased estimator (UMVUE) of R when z ∼ Np+q(µ,Σ). On another

front, Corollary 1 also points out that the AIC and CAIC have biases with constant order

if the normality of z is not satisfied.

3. Bias-corrected AICs under Model Misspecification

3.1. Existing Criteria

Based on the evaluation of the bias of the AIC in the previous section, in this section

we consider a bias correction of the AIC under model misspecification. A simple bias-

correction method under model misspecification is to estimate a bias-correction term

by the moment method. A bias-corrected AIC by the moment method is called the

TIC, which was proposed by Takeuchi (1976). In the selection of variables in CCA,

estimating the bias of the AIC by the moment method corresponds to estimating α(D)

by κ̂4(D) + d(d+ 1), where κ̂4(D) is an estimator of κ4(D) given by

κ̂4(D) =
1

n

n∑
i=1

wii(D)2 − d(d+ 2),

where wij(D) is defined by

wij(D) = (zi − z̄)′D(D′SD)−1D′(zi − z̄). (3.1)

By using this estimator, the TIC for selecting variables in CCA is defined by

TIC = AIC + κ̂4(Dx) + κ̂4(Dy) + κ̂4(D(13))− κ̂4(D1)− κ̂4(D3). (3.2)

The criterion in (3.2) can be regarded as the special case of selecting general covariance

structures, which was proposed by Ichikawa and Konishi (1999), although they did not

treat covariance structures in this paper. Theoretically, the TIC reduces the bias of

the AIC to O(n−1) under model misspecification. However, there is a possibility that

the TIC overly underestimates the risk function under the small sample because the bias-

correction term depends on estimators of fourth cumulants of the true distribution. These

estimators frequently give poor estimates under the small sample (see e.g., Yanagihara,

2007). Consequently, numerically, the TIC sometimes does not work well under the small

sample.
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The bias-correction by bootstrap is an effective bias-correction method. The AIC bias-

corrected by the bootstrap method is called the EIC, which was proposed by Ishiguro,

Sakamoto, and Kitagawa (1997). Let Σ̂b be the bth bootstrap estimator of Σ evaluated

from the bth bootstrap resample. From Fujikoshi et al. (2008), the EIC for selecting

variables in CCA is given by

EIC = F (S, Σ̂) + (n− 1)

{
1

m

(
1− 1

n

) m∑
b=1

tr(Σ̂−1
b S)− (p+ q)

}
, (3.3)

where m is the number of bootstrap iterations. The criterion in (3.3) is also a special

case of that for selecting general covariance structures, which was proposed by Ichikawa

and Konishi (1999). Theoretically, the EIC reduces the bias of the AIC to O(n−1) under

model misspecification as well as the TIC.

3.2. Proposed Criterion

In this subsection, we propose a bias-corrected AIC which reduces the bias of the AIC

to O(n−2) by using the jackknife method with a constant adjustment. Let S[−i,−j] be the

(i, j)th jackknife unbiased estimator of Σ, which is given by

S[−i,−j] =
1

n− 3

n∑
k ̸=i,j

(zk − z̄[−i,−j])(zk − z̄[−i,−j])
′, (3.4)

where z̄[−i,j] is the (i, j)th jackknife sample mean, which is given by z̄[−i,−j] = (n −
2)−1

∑n
k ̸=i,j zk. Then, we define the following jackknife residuals sum of squares:

r(D) =
1

n(n− 1)

n∑
k ̸=i,j

(zi − zj)
′D(D′S[−i,−j]D)−1D′(zi − zj). (3.5)

Since zi and zj are independent of S[−i,−j], and E[(zi − zj)(zi − zj)
′] = 2Σ, we obtain

E[r(D)] = E[tr{(D′S[−i,−j]D)−1D′ΣD}] = E[τ(S[−i,−j]|D)], (3.6)

where τ(A|D) is given in (2.9). Since S[−i,−j] = S + Op(n
−1) holds, r(D) becomes

an asymptotic unbiased estimator of α(D). By slightly modifying r(D), we define an

estimator of α(D) as

α̂(D) =
(n− 1)(n− d− 4)

(n− d− 2)(n2 − 3n− 2d− 2)
{2d+ (n− 2)r(D)}. (3.7)
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Then, we propose a new criterion called the jackknife bias-corrected AIC (JAIC) as

JAIC = F (S, Σ̂)

+ (n− 1)
{
α̂(Dx) + α̂(Dy) + α̂(D(13))− α̂(D1)− α̂(D3)− (p+ q)

}
.

(3.8)

The order of the bias of the JAIC to R is stated by the following theorem (the proof is

given in Appendix A.2):

Theorem 2. Suppose that E[tr(S−2)] < ∞ and all the twenty-fourth multivariate mo-

ments of z exist. Whether the constraint of Σ in (2.2) holds or not, the order of bias of

the JAIC becomes

R− E[JAIC] =

{
0 (z ∼ Np+q(µ,Σ))
O(n−2) (otherwise)

.

We summarize the results on the orders of the biases of the information criteria handled

in this paper in Table 1. It may be noted that the JAIC has the highest performance on

the bias correction among all the criteria.

Table 1. The order of the bias of each criterion

AIC CAIC TIC EIC JAIC
Under normality O(n−1) 0 O(n−1) O(n−1) 0

Under nonnormality O(1)∗ O(1)∗ O(n−1)∗∗ O(n−1)∗∗ O(n−2)∗∗∗

Note) E[tr(S−2)] < ∞, and existences of all the eighth, sixteenth and twenty-fourth multivariate

moments of z are required for obtaining the orders superscripted by ∗, ∗∗, and ∗∗∗, respectively.

Cauchy-Schwarz’s Although the formula of r(D) is simple, its computation time is

long when n or d is large. This is caused by the necessity for n(n − 1)/2 calculations of

inverse matrices. Such a problem can be avoided by using another expression of r(D) as

in the following theorem (the proof of this theorem is given in Appendix A.3):

Theorem 3. Let H(D) be the n × n symmetric matrix whose (i, j)th element is given

as

hij(D)

=
n2(wii(D) + wjj(D)− 2wij(D))− 2nb1b2(wii(D)wjj(D)− wij(D)2)

n2 − nb2(wii(D) + wjj(D))− b1b2{2wij(D)− b1(wii(D)wjj(D)− wij(D)2)}
,

(3.9)

where wij(D) is given by (3.1) and bj is defined by

bj =
n

n− j
. (3.10)
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Then, r(D) in (3.5) is rewritten as

r(D) =
b21

2b3n2
1′
nH(D)1n =

(n− 3)

n(n− 1)2

n∑
i>j

hij(D), (3.11)

where 1n is an n-dimensional vector of ones.

Since only one calculation of an inverse matrix is required for the computation of

(3.11), the computation time of r(D) using (3.11) is faster than that using (3.5). Table

2 shows the ratio: {average computation times of r(D) using (3.11)}/{average computa-

tion times of r(D) using (3.5)} at 100 repetitions when we generate z1, . . . , zn from the

normal distribution and D = Ip+q. From the table, we can see that the formula in (3.11)

dramatically reduces the computation time of r(D), especially when n or p+ q are large.

Table 2. Ratio of the average computation time of (3.11) to that of (3.5)

HHHHHHp+ q
n

50 100 250 500

4 0.21 0.18 0.17 0.15
8 0.22 0.18 0.15 0.14
16 0.18 0.15 0.12 0.10
32 0.12 0.10 0.08 0.05
64 —- 0.04 0.03 0.02

4. Numerical Study

In this section, we conduct numerical studies to show that the JAIC in (3.8) works

better than the AIC in (2.12), the CAIC in (2.13), the TIC in (3.2), or the EIC in (3.3).

Simulation data was generated from z = (z1, . . . , z8)
′ = Σ1/2ε, where ε is an 8-dimensional

error vector distributed according to the distribution with E[ε] = 08 and Cov[ε] = I8,

and Σ is a 8× 8 matrix defined by

Σ =



1.000 0.000 1.000 1.300 0.100 0.200 0.470 0.530
0.000 1.000 1.200 1.400 0.200 0.100 0.460 0.520
1.000 1.200 5.440 3.580 0.340 0.320 1.022 1.154
1.300 1.400 3.580 8.050 0.410 0.400 1.255 1.417
0.100 0.200 0.340 0.410 1.000 0.000 1.500 1.700
0.200 0.100 0.320 0.400 0.000 1.000 1.600 1.800
0.470 0.460 1.022 1.255 1.500 1.600 6.810 5.630
0.530 0.520 1.154 1.417 1.700 1.800 5.630 11.730


.
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Here, 0m is an m-dimensional vector of zeros. The sixteenth candidate models Mi,j

(i = 1, . . . , 4; j = 1, . . . , 4), with n = 100 and 250, were prepared for simulations. We

divided z into x = (x1, . . . , x4)
′ = (z1, . . . , z4)

′ and y = (y1, . . . , y4)
′ = (z5, . . . , z8)

′. The

x1 and y3 in the model Mi,j are x1 = (x1, . . . , xi)
′ and y3 = (y1, . . . , yj)

′. In this case, the

true model is M2,2.

Let ν ∼ N8(08, I8) and δ ∼ χ2
6 be a mutually independent random vector and variable,

and let Ψ be an 8 × 8 matrix defined by Ψ = I8 + 181
′
8/3. Then, ε was generated from

the following three distributions:

• Distribution 1 (multivariate normal distribution): ε = ν,

• Distribution 2 (scale mixture of multivariate normal distribution): ε =
√
δ/6ν,

• Distribution 3 (scale and location mixtures of multivariate normal distribution): ε =

Ψ−1/2{(δ/6− 1)18 +
√
δ/6ν}.

It is easy to see that distributions 1 and 2 are symmetric, and distribution 3 is skewed.

First, we studied the bias of each information criterion. Figure 1 shows R in (2.5)

and E[AIC], E[CAIC], E[TIC], E[EIC], and E[JAIC]. These values were obtained for

10,000 iterations. The horizontal axis of each figure expresses the candidate model (or the

subindex i, j of Mi,j). From these figures, we can see that the biases of the CAIC were

very small when ε ∼ N8(08, I8). However, when the distribution of ε was not normal, the

biases of the CAIC became large. On the other hand, the biases of the JAIC were very

small even when the distribution of ε was not normal. The biases of the EIC were not so

large, but they were larger than those of the JAIC. When the sample size was not large,

the biases of the TIC were large. This is because the estimation of α(D) did not work

well.

Next, we compared the performances of variable selections using the AIC, CAIC, TIC,

EIC, and JAIC by the following two properties:

(i) the selection probability: the frequency of the model chosen by minimizing the

information criterion.

(ii) the prediction error of the best model (PEB): the risk function of the best model

chosen by the information criterion, which is defined by

PEB = E[L(Σ̂B)],
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Figure 1. Risk function and average of each criterion

where L(A) is the loss function given by (2.6) and Σ̂B is the estimator of Σ in (2.3)

under the best model.

The information criterion with the highest selection probability of the true model and
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Table 3. Selection probability of the model and the prediction error of the best model
(PEB) in the case of the multivariate normal distribution

n = 100 n = 250
Selection Probability (%) Selection Probability (%)

Model Risk AIC CAIC TIC EIC JAIC Risk AIC CAIC TIC EIC JAIC

1,1 69.3 3.7 5.1 3.3 4.7 5.1 81.7 0.0 0.0 0.0 0.2 0.0
1,2 66.4 13.4 16.0 12.3 12.9 15.8 72.5 2.2 2.3 2.1 2.7 2.4
1,3 67.6 3.2 3.4 3.2 6.5 3.7 73.6 0.6 0.7 0.6 1.7 0.7
1,4 68.9 2.7 2.5 2.8 3.6 2.5 74.7 0.4 0.4 0.5 1.1 0.5
2,1 66.3 12.8 15.4 11.9 12.7 15.3 72.5 2.1 2.3 2.0 3.0 2.4
2,2 63.4 33.3 34.6 32.0 26.8 33.4 61.5 61.4 64.6 60.1 37.0 64.0
2,3 65.9 6.9 5.5 7.6 7.6 5.9 63.7 9.7 9.4 10.2 15.7 9.4
2,4 68.5 3.6 2.2 4.2 3.3 2.3 65.8 4.8 4.0 5.0 6.9 4.1
3,1 67.6 3.5 3.7 3.5 5.8 3.8 73.6 0.5 0.5 0.5 1.4 0.5
3,2 65.9 6.8 5.5 7.3 8.0 5.6 63.6 9.1 8.4 9.3 15.4 8.6
3,3 69.7 1.6 1.0 1.9 1.2 1.0 66.9 2.0 1.6 2.0 3.7 1.5
3,4 73.7 0.8 0.4 1.0 0.5 0.4 70.3 0.8 0.6 1.1 1.3 0.6
4,1 68.8 2.8 2.3 2.8 3.1 2.5 74.6 0.5 0.4 0.5 1.1 0.5
4,2 68.5 3.7 2.1 4.5 3.0 2.4 65.8 4.8 4.1 5.1 7.3 4.2
4,3 73.7 0.8 0.3 1.0 0.4 0.3 70.3 0.8 0.5 0.9 1.3 0.5
4,4 79.1 0.5 0.1 0.7 0.1 0.1 74.8 0.3 0.2 0.4 0.3 0.2
PEB 68.6 68.0 68.9 68.2 68.1 65.2 64.9 65.3 65.9 64.9

Note) The bold face indicates the model having the true covariance structure.

the smallest prediction error of the best model is regarded as a high-performance model

selector. In the basic concept of the AIC, a good model-selection method is one that

chooses the best model so that the prediction is improved. Hence, PEB is a more important

property than the selection probability.

Tables 3, 4, and 5 show the selection probability and prediction error when the distri-

butions of ε are 1, 2, and 3, respectively. From the tables, we can see that the selection

probabilities of the CAIC were highest among those of all criteria when n = 100 and the

distribution of ε was normal. However, the differences between those of the CAIC and

the JAIC were not so large. When n = 250 and the distribution of ε was not normal, the

selection probabilities of the CAIC were far below those of the JAIC. On the other hand,

the prediction errors of the JAIC when the distribution of ε was not normal were the

smallest among all criteria. Although the prediction errors of the CAIC were the smallest

when the distribution of ε was normal, the differences between those of the CAIC and

the JAIC were very small. On the other hand, the prediction errors of the EIC were not

so large, but the selection probabilities of the EIC were the lowest among all the criteria.
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Table 4. Selection probability of the model and the prediction error of the best model
(PEB) in the case of the scale mixture of multivariate normal distribution

n = 100 n = 250
Selection Probability (%) Selection Probability (%)

Model Risk AIC CAIC TIC EIC JAIC Risk AIC CAIC TIC EIC JAIC

1,1 91.2 3.6 4.8 6.0 7.8 10.1 103.3 0.2 0.2 0.5 0.8 0.6
1,2 88.6 9.4 12.1 12.4 12.7 17.3 94.5 2.0 2.3 4.4 5.5 5.6
1,3 90.2 3.7 4.3 4.3 7.3 4.8 95.9 0.7 0.8 1.1 2.8 1.3
1,4 91.9 3.3 3.5 3.6 4.8 3.0 97.5 0.9 1.0 1.1 2.1 1.2
2,1 88.7 9.8 12.5 12.7 14.0 17.9 94.5 2.1 2.5 4.2 4.9 5.4
2,2 86.5 23.3 26.1 23.3 18.8 24.0 84.2 41.1 44.5 51.1 30.0 56.1
2,3 89.8 7.7 6.9 6.5 6.6 4.4 87.1 10.9 10.7 9.5 13.6 8.5
2,4 93.3 6.0 4.2 4.5 3.1 2.1 90.1 8.9 8.2 5.8 7.0 4.1
3,1 90.3 3.7 4.2 4.4 7.5 4.7 95.9 0.7 0.8 1.3 3.0 1.4
3,2 89.9 8.2 7.6 6.6 6.7 4.9 87.0 11.2 11.1 9.2 13.0 7.9
3,3 95.0 3.3 2.6 2.5 1.8 1.1 91.4 4.0 3.5 2.4 4.3 1.7
3,4 100.4 2.8 1.4 1.7 0.6 0.4 96.0 3.1 2.4 1.2 1.8 0.5
4,1 92.0 3.9 3.7 3.9 4.7 3.1 97.4 0.9 1.0 1.0 2.0 1.0
4,2 93.4 6.2 4.0 4.4 3.1 2.0 90.0 7.9 7.1 5.2 7.0 3.7
4,3 100.4 2.9 1.5 1.8 0.5 0.2 96.0 3.3 2.5 1.1 1.7 0.6
4,4 107.8 2.3 0.7 1.3 0.2 0.1 102.1 2.3 1.6 0.8 0.6 0.3
PEB 95.5 93.9 94.3 92.4 92.3 91.8 91.3 90.3 90.9 89.6

Note) The bold face indicates the model having the true covariance structure.

Furthermore, although the performance of the TIC when the sample size was large was

not so bad, the performance when the sample size was small was bad. We simulated

several other models and obtained similar results. Hence, we recommend using the JAIC

for selecting variables in CCA.

Appendix

A.1. The Proof of Theorem 1

In order to prove Theorem 1, it is sufficient to evaluate α(D) given by (2.8). Let

εi = zi − µ, and

V =
1√
n

n∑
i=1

(εiε
′
i −Σ), u =

1√
n

n∑
i=1

εi.

When all the fourth multivariate moments of z exist, V and u have asymptotic normality,

thus V = Op(1) and u = Op(1) as n → ∞. Hence, a stochastic expansion of D′SD is

14



Table 5. Selection probability of the model and the prediction error of the best model
(PEB) in the case of the scale and location mixture of multivariate normal distribution

n = 100 n = 250
Selection Probability (%) Selection Probability (%)

Model Risk AIC CAIC TIC EIC JAIC Risk AIC CAIC TIC EIC JAIC

1,1 95.1 3.8 5.0 5.8 7.3 10.2 105.4 0.1 0.1 0.2 0.9 0.3
1,2 92.6 9.3 11.7 12.3 13.7 17.7 96.6 2.4 2.8 4.9 5.0 6.4
1,3 94.2 4.1 4.7 4.6 7.6 5.1 98.1 1.0 1.0 1.4 3.2 1.6
1,4 96.0 3.4 3.5 3.7 4.6 3.1 99.6 1.0 1.0 1.1 2.3 1.1
2,1 92.5 9.8 12.3 12.7 13.2 17.7 96.6 2.1 2.4 4.5 4.9 6.2
2,2 90.5 21.6 24.3 21.6 18.3 22.5 86.3 39.9 43.0 50.4 28.6 54.6
2,3 94.0 7.6 7.4 6.7 7.1 4.8 89.3 10.7 10.7 8.9 13.1 8.0
2,4 97.6 7.1 5.2 5.5 3.3 2.4 92.3 8.7 7.8 5.6 6.6 3.9
3,1 94.1 3.9 4.3 4.2 6.9 4.5 98.1 0.9 1.0 1.3 3.4 1.5
3,2 93.9 7.4 7.1 6.5 6.7 4.6 89.3 10.6 10.7 9.2 13.9 8.0
3,3 99.1 3.6 2.5 2.7 1.8 1.2 93.7 4.0 3.5 2.2 4.3 1.5
3,4 104.7 3.1 1.5 2.0 0.7 0.4 98.2 3.3 2.7 1.5 1.7 0.8
4,1 95.9 3.4 3.4 3.5 4.5 3.0 99.6 0.9 0.9 1.2 2.6 1.1
4,2 97.5 6.8 5.0 5.2 3.6 2.4 92.3 8.8 8.1 5.8 7.2 4.2
4,3 104.7 3.2 1.6 2.0 0.6 0.3 98.2 3.2 2.6 1.3 1.6 0.6
4,4 112.3 2.1 0.6 1.2 0.2 0.1 104.4 2.4 1.7 0.6 0.6 0.2
PEB 99.8 98.2 98.7 96.5 96.4 94.3 93.7 92.6 93.2 91.9

Note) The bold face indicates the model having the true covariance structure.

derived as

D′SD = D′ΣD +
1√
n
D′V D − 1

n
D′(uu′ −Σ)D +Op(n

−3/2).

This expansion implies a stochastic expansion of τ(S|D) given in (2.9) as

τ(S|D) = d− 1√
n
τ(V |D) +

1

n

[
tr
(
{D′V D(D′ΣD)−1}2

)
+tr{D′(uu′ −Σ)D(D′ΣD)−1}

]
+Op(n

−3/2).

(A.1)

Notice that E[V ] = Op+q,p+q and E[uu′] = Σ, and

E
[
tr
(
{D′V D(D′ΣD)−1}2

)]
= κ4(D) + d(d+ 1),

where κ4(D) is given by (2.10). From the fact that the top term in the remainder term

in (A.1) can be expressed as an odd polynomial function of V and u and the Cauchy-

Schwarz inequality, the order of the expectation of the Op(n
−3/2) term in (A.1) is O(n−2)

when E[tr(S−2)] < ∞ and all the sixteenth multivariate moments of z exist. Therefore,

when E[tr(S−2)] < ∞ and all the sixteenth multivariate moments of z exist, α(D) can
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be expanded as

α(D) = d+
1

n
{κ4(D) + d(d+ 1)}+O(n−2). (A.2)

Moreover, if z ∼ Np+q(µ,Σ), (n − 1)D′SD ∼ Wd(n − 1,D′ΣD). Hence, from the

property of the Wishart distribution (see e.g., Siotani, Hayakawa & Fujikoshi, 1985, p.

74, Theorem 2.4.6), we derive

α(D) = cn(d), (A.3)

where cn(d) is given by (2.11). Substituting (A.2) or (A.3) into (2.7) yields the expression

for B in Theorem 1.

A.2. The Proof of Theorem 2

In order to prove Theorem 2, it is sufficient to show that

E[α̂(D)] =

{
cn(d) (z ∼ Np+q(µ,Σ))
α(D) +O(n−3) (otherwise)

. (A.4)

By using the same idea as in the proof of Theorem 1, when E[tr(S−2)] < ∞ and all the

twenty-fourth multivariate moments of z exist, α(D) can be expanded as

α(D) = d+
1

n
β1(D) +

1

n2
β2(D) +O(n−3). (A.5)

An explicit form of β1(D) is given by (A.2). By comparing with (2.8) and (3.6), we can

see that the difference between α(D) and E[r(D)] is only the sample size of an unbiased

estimator of Σ. Hence, when E[tr(S−2)] < ∞ and all the twenty-fourth multivariate

moments of z exist, E[r(D)] can be also expanded as

E[r(D)] = d+
1

n− 2
β1(D) +

1

(n− 2)2
β2(D) +O(n−3). (A.6)

Notice that {2d + (n − 2)r(D)}/n = d + (n − 2){r(D) − d}/n. Hence, by using this

equation and the equations (A.5) and (A.6), we have

E

[
1

n
{2d+ (n− 2)r(D)}

]
= d+

1

n
β1(D) +

1

n(n− 2)
β2(D) +O(n−3)

= α(D) +O(n−3). (A.7)

Meanwhile, it is clear that

n(n− 1)(n− d− 4)

(n− d− 2)(n2 − 3n− 2d− 2)
= 1 +O(n−3). (A.8)
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Hence, combining (A.7) and (A.8) yields the lower result in (A.4). Furthermore, by using

the same idea as in the derivation of the equation (A.3), if z ∼ Np+q(µ,Σ), we have

E[r(D)] = E[τ(S[−i,−j]|D)] = cn−2(d),

where cn(m) is given by (2.11). Therefore, when z ∼ Np+q(µ,Σ), the upper result in

(A.4) is also proved as

E[α̂(D)] =
(n− 1)(n− d− 4)

(n− d− 2)(n2 − 3n− 2d− 2)

{
2d+

(n− 2)(n− 3)d

n− d− 4

}
= cn(d).

A.3. The Proof of Theorem 3

For simplicity, in this subsection, we write wij(D) given in (3.1) and hij(D) given

in (3.9) as wij and hij, respectively. Let ai be a (p + q)-dimensional vector defined by

ai = zi − z̄, and Aij and C be the (p + q) × 2 and the 2 × 2 matrices defined by

Aij = (ai,aj) and C = I2 + (n− 2)−1121
′
2, respectively. Notice that S[−i,−j] in (3.4) can

be rewritten as

S[−i,−j] =
n− 1

n− 3

(
S − 1

n− 1
AijCA′

ij

)
.

By applying the general formula of the inversion of a matrix (see e.g., Siotani, Hayakawa

& Fujikoshi, 1985, p. 591, Theorem A.2.1) to the above equality, we have

(D′S[−i,−j]D)−1

=
n− 3

n− 1

{
(D′SD)−1 − 1

n− 1
(D′SD)−1D′AijG

−1
ij A

′
ijD(D′SD)−1

}
,

(A.9)

where Gij = C−1 − (n− 1)−1A′
ijD(D′SD)−1D′Aij. It is easy to obtain

G−1
ij =

1

nδij

(
n− 1− b1wjj 1 + b1wij

1 + b1wij n− 1− b1wii

)
,

where bj is given by (3.10) and δij is the determinant of Gij given by

δij =
n− 2

n

(
1− 1

n
b2(wii + wjj)−

1

n2
b1b2{2wij − b1(wiiwjj − w2

ij)}
)
.

Since zi − zj = ai − aj, we obtain

r(D) =
1

2n(n− 1)

n∑
i,j

(ai − aj)
′D(D′S[−i,−j]D)−1D′(ai − aj).
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Substituting (A.9) into the above equality yields

r(D) =
(n− 3)

2n(n− 1)2
r1(D) +

(n− 3)

2n(n− 1)3
r2(D), (A.10)

where

r1(D) =
n∑
i,j

(ai − aj)
′D(D′SD)−1D′(ai − aj),

r2(D) =
n∑
i,j

(ai − aj)
′D(D′SD)−1D′AijG

−1
ij A

′
ijD(D′SD)−1(ai − aj).

It follows from the equalities
∑n

i=1 ai = 0p+q and
∑n

i=1 aia
′
i = (n− 1)S that

r1(D) = 2n(n− 1)p. (A.11)

Moreover, we obtain

r2(D) = (n− 1)2
n∑
i,j

ℓ′(G−1
ij − 2C−1 +Gij)ℓ,

where ℓ = (1,−1)′. Notice that

ℓ′G−1
ij ℓ =

1

nδij
{2(n− 2)− b1(wii + wjj + 2wij)} ,

ℓ′C−1ℓ = 2, ℓ′Gijℓ = 2− 1

n
b1(wii + wjj − 2wij).

These equalities imply that

r2(D) = −2n(n− 1)2(n+ p) + (n− 1)2
n∑
i,j

1

nδij
{2(n− 2)− b1(wii + wjj + 2wij)}

= −2n(n− 1)2p+ (n− 1)
n∑
i,j

hij. (A.12)

Substituting (A.11) and (A.12) into (A.10) yields the result (3.11).
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[2] Al-Kandari, N. M. & Jolliffe, I. T. (1997). Variable selection and interpretation in

canonical correlation analysis. Comm. Statist. Simulation Comput., 26, 873–900.

[3] Davies, S. J., Neath, A. A. & Cavanaugh, J. E. (2006). Estimation optimality of cor-

rected AIC and modified Cp in linear regression model. International Statist. Review,

74, 161–168.

[4] Doeswijk, T. G., Hageman, J. A., Westerhuis, J. A., Tikunov, Y., Bovy. A. &

van Eeuwijk, F. A. (2011). Canonical correlation analysis of multiple sensory di-

rected metabolomics data blocks reveals corresponding parts between data blocks.

Chemometr. Intell. Lab., 107, 371–376.

[5] Fujikoshi, Y. (1982). A test for additional information in canonical correlation anal-

ysis. Ann. Inst. Statist. Math., 34, 523–530.

[6] Fujikoshi, Y. (1985). Selection of variables in discriminant analysis and canonical

correlation analysis. In Multivariate Analysis VI (Ed. P. R. Krishnaiah), 219–236,

North-Holland, Amsterdam.

[7] Fujikoshi, Y. & Kurata, H. (2008). Information criterion for some independence struc-

tures. In New Trends in Psychometrics (Eds. K. Shigemasu, A. Okada, T. Imaizumi

& T. Hoshino), 69–78, Universal Academy Press, Tokyo.

[8] Fujikoshi, Y., Shimizu, R. & Ulyanov, V. V. (2010). Multivariate Statistics: High-

Dimensional and Large-Sample Approximations. John Wiley & Sons, Hoboken, New

Jersey.

[9] Fujikoshi, Y., Sakurai, T., Kanda, S. & Sugiyama, T. (2008). Bootstrap information

criterion for selection of variables in canonical correlation analysis. J. Inst. Sci. Engi.,

Chuo Univ., 14, 31–49 (in Japanese).

19



[10] Ichikawa, M. & Konishi, S. (1999). Model evaluation and information criteria in

covariance structure analysis. British J. Math. Statist. Psych., 52, 285–302.

[11] Ishiguro, M., Sakamoto, Y. & Kitagawa, G. (1997). Bootstrapping log likelihood and

EIC, an extension of AIC. Ann. Inst. Statist. Math., 49, 411–434.
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