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Abstract

This paper provides test statistics for the three hypotheses in profile analysis under high-
dimensional data. The existing methods in profile analysis have suffered from the curse of
high-dimensionality of the datasets, i.e., the singularity of the sample covariance matrix.
We propose the new test statistics without the inverse of the sample covariance matrix via
Cauchy-Schwarz inequality. The performed simulation evaluates the proposed procedures.
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1 Introduction

In the practical applications, we may have the statistical inference for the existence of the

interaction between k treatments and p responses or may be interested in the main effects of k

treatments and p responses, respectively. Then we may apply two-way analysis of variance if

the both of k treatments and p responses are mutually independent.

In this paper, let us consider the case that p responses are not independent. For k = 2, we

connect the lines between the plots (1, µi1), (2, µi2), . . ., (p, µip), which is called mean profile,

where µi1, . . . , µip are the p mean components from the i-th group for i = 1, 2.

No interaction can be described as Figure 1(a), i.e., H1 : µ11 − µ21 = µ12 − µ22 = · · · =

µ1p − µ2p ≡ γ, which is called “the parallelism hypothesis”. If there is no interaction between
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the treatments and the responses, then we may also estimate the level difference γ. The fact

that H2|H1 : γ = 0, which is called “the level hypothesis”, implies that no treatments’ main

effect exists, as described in Figure 1(b). On the other hand, mean profile with flatness implies

no responses’ main effect described as Figure 1(c) with the formulation: H3|H1 : µ11 = µ12 =

· · · = µ1p, µ21 = µ22 = · · · = µ2p, which is called “the flatness hypothesis”.

If the p-dimensional sample vector xij (i = 1, 2, j = 1, . . . , Ni) can be observed from two

groups Πi under multivariate normality with mean vector µi = (µi1, . . . , µip)
′ and the covariance

matrix Σ, then the statistical inference for the interaction or main effects can be considered.

Using the estimators of mean vector and covariance matrix:

xi =
1

Ni

Ni∑
j=1

xij , S =
1

n

2∑
i=1

Ni∑
j=1

(xij − xi)(xij − xi)
′,

where n = N1 +N2 − 2, as mentioned in Greenhouse and Geisser (1959), we can have the exact

tests that follows F distribution under null hypotheses. For general k groups, Srivastava (1987)

derived the likelihood ratio tests for the three hypotheses. In growth curve model, Fujikoshi

(2009) also derived a test for the parallelism hypothesis H1 via the likelihood ratio for k groups

using a canonical form. Yokoyama and Fujikoshi (1993) discussed the profile analysis with

random effects model. In recent years, some authors may also be interested in the effects of

non-normality in profile analysis, see e.g., Okamoto et al. (2006) and Maruyama (2007).

The above-mentioned classical methods suffer from the curse of high-dimensionality. They

cannot be applicable to the data set, such as microarrays data, for p > n owing to the singu-

larity of S. Thereby, in the last decade, several authors have the motivation to derive another

statistical procedures without S−1 and |S|. For example, the tests for covariance structure in

high-dimensional data could be derived in Ledoit and Wolf (2002) and Srivastava (2005). Fu-

jikoshi et al. (2010) have the invaluable reviews of the research based on the asymptotic theory

in high-dimensional data.

In this paper, we derive new test statistics in profile analysis without S−1 and |S|. The testing

procedures for H1 and H3|H1 are derived under the following high-dimensional asymptotic
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(a) The parallelism hypothesis H1
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(b) The level hypothesis H2|H1

(c) The flatness hypothesis H3|H1
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Figure 1: The mean profiles under three hypotheses
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frameworks:

A1 : tr[(ΣA)i] = O(p), i = 1, 2, 3, 4,

A2 : n → ∞, p → ∞, p/n → ξ ∈ (0,∞),

where A = Ip − (1/p)1p1
′
p and 1p denotes p-dimensional vector with the components of 1’s. On

the other hand, the testing procedure for H2|H1 is derived under the asymptotic frameworks A2

and

A3 : (1′pΣ1p)
i = O(p), i = 1, 2.

This paper is organized as follows. Section 2 presents the test statistics for H1, H2|H1 and

H3|H1, respectively. Section 3 proves the lemmas and corollaries. Section 4 has the simulation

studies and presents the asymptotic behavior of the proposed results. Finally, Section 5 concludes

the paper.

2 The proposed test statistics

In this section, we propose the test statistics for the three hypotheses: “the parallelism hypoth-

esis”, “the level hypothesis” and “the flatness hypothesis”. The first and third test statistics are

derived via Cauchy-Schwarz inequality

||a||2 · ||b||2 − (a, b)2 ≥ 0, (2.1)

where a and b are p-dimensional vectors, (a, b) = a′b and ||a||2 = (a,a).

2.1 Test for the parallelism hypothesis H1

The parallelism hypothesis can be also formulated by H1 : µ1−µ2 = γ1p, where γ is unknown

parameter for the level difference. Applying a = 1p, b = µ1 −µ2 to (2.1), we can obtain a new

formulation for the parallelism hypothesis:

H1 : (µ1 − µ2)
′A(µ1 − µ2) = 0 vs. A1 : (µ1 − µ2)

′A(µ1 − µ2) > 0 (2.2)
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because the equality of (2.1) holds if and only if b = µ1 −µ2 is proportional to a = 1p. For the

naive estimator of the left-side of H1 stated in (2.2): T1 = (x1 − x2)
′A(x1 − x2), we have

E(T1) =

(
1

N1
+

1

N2

)
tr[ΣA], Var(T1) = 2

(
1

N1
+

1

N2

)2

tr[(ΣA)2]

and

U1 =
1
√
p

{(
1

N1
+

1

N2

)−1

(x1 − x2)
′A(x1 − x2)− tr[ΣA]

}
d−→ N(0, 2c2)

under the asymptotic frameworks A1 and A2, where “
d−→” denotes the convergence in distribu-

tion, as shown in Lemma 3.1. Therefore, by standardizing T1, we have T ∗
1 = (

√
p/σ1)U1

d−→

N(0, 1) under the asymptotic frameworks A1 and A2, where σ1 =
√
2pc2. However, T ∗

1 depends

on the unknown constant ci’s for i = 1, 2. Instead we propose the following test statistic T̂ ∗
1

obtained by using unbiased and consistent estimator of ci obtained in Lemma 3.3.

Theorem 2.1. If the parallelism hypothesis H1 holds, then

T̂ ∗
1 =

1

σ̂1

{(
1

N1
+

1

N2

)−1

(x1 − x2)
′A(x1 − x2)− pĉ1

}
d−→ N(0, 1)

under the high-dimensional asymptotic frameworks A1 and A2, where σ̂1 =
√

2pĉ2, ĉ1 =

tr(SA)/p and

ĉ2 =
n2

(n+ 2)(n− 1)

{
tr[(SA)2]− 1

n
{tr(SA)}2

}
.

Proof. Using Lemma 3.3, under the high-dimensional asymptotic frameworks A1 and A2, it

also holds that 1/
√
2ĉ2

p−→ 1/
√
2c2. On the other hand, it follows that U1

d−→ N(0, 2c2) and

V1 = −√
p(ĉ1 − c1)

p−→ 0 under the asymptotic frameworks A1 and A2. Finally, applying

Slutsky’s theorem completes the proof.

By the testing procedure based on T̂ ∗
1 , if T̂

∗
1 > zα, then the parallelism hypothesis H1 is

rejected, where zα is the upper 100α% point of N(0, 1).
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2.2 Test for the level hypothesis H2|H1

The level hypothesis can be also formulated by H2|H1 : γ = 0. We have an unbiased estimator

of γ: T2 = (x1 − x2)
′1p/p and its variance

Var(T2) =
1

p

(
1

N1
+

1

N2

)
1′pΣ1p.

It follows from standardizing T2 that

T ∗
2 =

{
(x1 − x2)

′1p
p

− γ

}/√
1

p

(
1

N1
+

1

N2

)
d1 ∼ N(0, 1), (2.3)

where d1 = 1′pΣ1
′
p/p. Combining (2.3) and Corollary 3.4, we obtain the following theorem and

corollary.

Theorem 2.2. If the level hypothesis H2|H1 holds, then

T̂ ∗
2 =

(
p

N1
+

p

N2

)− 1
2 (x1 − x2)

′1p√
d̂1

d−→ N(0, 1)

under the high-dimensional asymptotic frameworks A2 and A3, where d̂1 = 1′pS1p/p.

By the testing procedure based on T̂ ∗
2 , if |T̂ ∗

2 | > zα/2, then the level hypothesis H2|H1 is

rejected. If H2|H1 is rejected, we may be interested in the interval estimation for the level

difference γ.

Corollary 2.3. Under asymptotic frameworks A2 and A3, an approximate interval estimation

for the level difference γ with the significant level 1− α can be obtained by[
(x1 − x2)

′1p
p

− zα
2

√
d̂1(N1 +N2)

pN1N2
,
(x1 − x2)

′1p
p

+ zα
2

√
d̂1(N1 +N2)

pN1N2

]
.

2.3 Test for the flatness hypothesis H3|H1

The flatness hypothesis can be also formulated by H3|H1 : µ12 = δ1p, where µ12 = {N1/(N1 +

N2)}µ1+{N2/(N1+N2)}µ2 and δ is unknown constant. In a similar manner to Subsection 2.1,

we can obtain a new formulation for the flatness hypothesis:

H3|H1 : µ′
12Aµ12 = 0 vs. A3|H1 : µ′

12Aµ12 > 0.
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Corollary 3.2 shows that

U3 =
1
√
p

{(
1

N1 +N2

)−1

x′
12Ax12 − tr[ΣA]

}
d−→ N(0, 2c2)

under asymptotic frameworks A1 and A2, where x12 = {N1/(N1+N2)}x1+{N2/(N1+N2)}x2.

Then, we also propose the following test statistic.

Theorem 2.4. If the flatness hypothesis H3|H1 holds, then

T̂ ∗
3 =

1

σ̂3

{(
1

N1 +N2

)−1

x′
12Ax12 − pĉ1

}
d−→ N(0, 1)

under the high-dimensional asymptotic frameworks A1 and A2, where σ̂3 =
√

2pĉ2.

Proof. The proof is completed by a similar manner to Theorem 2.1.

By the testing procedure based on T̂ ∗
3 , if T̂

∗
3 > zα, then the flatness hypothesis H3|H1 is

rejected.

3 Lemmas

We list the key results which complete the proofs of the main theorems.

Lemma 3.1. If the parallelism hypothesis H1 holds, then U1
d−→ N(0, 2c2) under the high-

dimensional asymptotic frameworks A1 and A2.

Proof. U1 equals {
∑r

j=1 λjYj−tr[ΣA]}/√p, where r is the rank of AΣA′, λj is the characteristic

roots of AΣA′ and Yj is independently and identically distributed as a chi-square distribution

with 1 degree of freedom for j = 1, . . . , r. It should be noted that r = p − 1 or p − 2 be-

cause rank[AΣ] + rank[A′] − p ≤ r ≤ min{rank[AΣ], rank[A′]}. Further we have the following

characteristic function:

φ(t) = E[exp(itU1)] =

r∏
j=1

(
1− 2i

λj√
p
t

)− 1
2

exp

{
− it
√
p
tr[ΣA]

}
,

where i =
√
−1. Therefore, we have

lnφ(t) = −1

2

r∑
j=1

ln

(
1− 2i

λj√
p
t

)
− it

√
p
tr[ΣA] =

(it)2

2
· 2c2 +O

(
|t|3
√
p
c3

)
,

by applying Taylor expansion to ln{1− 2it(λj/
√
p)}.
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In a similar manner to Lemma 3.1, we have the following corollary.

Corollary 3.2. If the flatness hypothesis H3|H1 holds, then U3
d−→ N(0, 2c2) under the high-

dimensional asymptotic frameworks A1 and A2.

The next lemma and corollary prove the unbiasedness and consistency of ĉi (i = 1, 2) and

d̂1 by using the moments derived by Himeno (2007) and Hyodo et al. (2012).

Lemma 3.3. For i = 1, 2, ĉi is an unbiased and consistent estimator of ci under the high-

dimensional asymptotic frameworks A1 and A2.

Proof. It holds that E(ĉi) = ci, Var(ĉ1) = (2c2)/(np) = O(n−2), and

Var(ĉ2) = −8c22
n4

+
4c22
n3

+
4c22
n2

+
48c4
n5p

− 48c4
n4p

− 28c4
n3p

+
20c4
n2p

+
8c4
np

= O(n−2),

for i = 1, 2. Under the high-dimensional frameworks A1 and A2, applying ĉi’s for i = 1, 2 to

Chebyshev’s inequality completes the proof.

Corollary 3.4. d̂1 is an unbiased and consistent estimator of d1 under the high-dimensional

asymptotic frameworks A2 and A3.

4 Simulation studies

Under the null hypotheses, we conduct Monte Carlo simulation with 10,000 replications in order

to investigate the attained significance level of T̂ ∗
i (i = 1, 2, 3) (i.e., type I error), respectively.

Then the selected parameters are as follows: µ1 = µ2 = 0, α = 0.05, Σ = (1 − ρ)Ip + ρ1p1
′
p

for ρ = 0, 0.2, 0.5. The dimensionality and the sample sizes are set as ξ = 4; (p,N1, N2) =(100,

14, 13), (200, 26, 26), (400, 51, 51) and ξ = 2; (p,N1, N2) =(100, 26, 26), (200, 51, 51),

(400,101,101). The results are listed in Tables 1 and 2.

5 Conclusion

We have the testing procedures for three hypotheses for profile analysis in high-dimensional data

via Cauchy-Schwarz inequality. In profile analysis, our paper provides the testing procedures
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which are applicable to high-dimensional data. We also perform Monte Carlo simulation in

order to observe the type I error of the proposed results under some selected parameters. The

proposed procedures have the type I error that is close to the desired level of significance when

both of the dimensionality and the total sample size are larger.

However, the type I errors in the both of the tests for the parallelism hypothesis and the

flatness hypothesis increase when the off-diagonal elements of Σ are larger. It can be also

observed that the type I error also increases in all the three procedures when the ratio of the

dimensionality to the total sample size denoted by ξ is larger. Thereby, in some cases, the

proposed testing procedures should be improved.
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