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Abstract

This paper is concerned with high-dimensional modifications of
Akaike information criterion (AIC) for redundancy (no additional in-
formation) models in discriminant analysis. The AIC has been pro-
posed as an asymptotically unbiased estimator of the risk function
when the dimension is fixed and the sample size tends to infinity. On
the other hand, Fujikoshi (2002) attempted to modify the AIC in two-
groups discriminant analysis when the dimension and the sample size
tend to infinity. However, its modification was obtained under a re-
strictive assumption, and furthermore, it was difficult to extend the
method to multiple-groups case. In this paper, by a new approach we
propose HAIC which is an asymptotically unbiased estimator of the
risk function in multiple-groups discriminant analysis when both the
dimension and the sample size tend to infinity, for a general class of
candidated models. By simulation experiments it is shown that HAIC

is more useful than the usual AIC and CAIC.
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1. Introduction

This paper is concerned with selection of variables in discriminant anal-
ysis. One way of selecting variables is to formulate as a problem of selecting
redundancy models based on no additional information hypothesis due to
Rao (1948, 1973). Then, we apply the idea of a model selection criterion
AIC to the models.

The selection criterion AIC is proposed as an approximately unbiased
estimator (AIC) of the AIC type of risk defined by the expected log-predictive
likelihood. The AIC for redundancy models has been proposed under large-
sample framework, i.e., the dimension is fixed and the sample size tends to
infinity.

On the other hand, in discriminant analysis we encounter a high-dimensional
case, i.e., the case when the dimension is relatively large. There are some
works on asymptotic approximations for the expected probabilities of mis-
classification in the two-groups discriminant analysis under a high dimen-
sional framework. For these works, see, e.g., Raudys (1972), Wyman et al.
(1990), and Fujikoshi and Seo (1998), in which they point a goodness of such
approximations.

In this paper, we consider the problem of estimating the AIC type of
risk when both the dimension and sample size are large, in multiple-groups
discriminant analysis. More precisely, we attempt to reduce for the bias
term when we estimate the AIC type of risk by —2log likelihood, in a high
dimensional case. An attempt has been done by Fujikoshi (2002) in two-
groups discriminant analysis. However, a modification was obtained under
a restrictive assumption (see Section 3.1), and furthermore, it was difficult
to extend the method to multiple-groups case. In this paper, by a new
approach we obtain an asymptotically unbiased estimator of the risk function
in multiple-groups discriminant analysis when both the dimension and the

sample size tend to infinity, for a general class of candidated models. which
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is not necessary to include the true model. Such an estimator is called high-
dimensional AIC, which is denoted by HAIC. Furthermore, it is pointed that
HAIC has smaller biases than the AIC in a large-sample framework in a
wide range of dimensions and sample sizes, through simulation experiments.
It is also shown that HIC provides better model selections than does AIC or
CAIC.

2. Preliminaries

Let = (z1,...,2,)" be a p-dimensional random vector measurable on
(@) (4)

the individuals of each of ¢ + 1 populations IIy, ... Il Let @7, ... @y

be a sample from II;, and denote all the observations by the N x p matrix,
1 1 +1 +1

X:(wg),...,wgvl),...,wgq ),...,azg\?qﬂ)), (2.1)

where N = Ny +--- 4+ Ngyq. It is assumed that
E(x|ll;) = ¥,  Var(z|ll;) = X. (2.2)

We consider AIC and its high-dimensional modifications for a redundancy
model of a given subset of {z1,...,2z,}. Without loss of generality we treat a
candidate model M}, which means that the first k variate @3 = (z1, ..., 2)’
is sufficient, or the remainder variate €2 = (241, ..., 2,) is redundant, i.e.,
the remainder p — k variate x5 has no additional information in canonical
discriminant analysis, in presence of @;. In order to write the model M} in

terms of unknown parameters, let us consider the partitions
(i)
o_ [ K wo [ P Zw 2.3
K ( ugz) > ) ( 221 222 ; ( )

ph =pd =Tl =1, q+1; T=¥u35.

Then, My, is defined by

and let



Let f(X;©) be the density function of X under M; with © = {u®
w1 3} Further, let g(X) be the density function of X under the true
model M*. Then, we can write the AIC type of risk defined by the expected
log-predictive likelihood for a model M}, as

Ry = EyBy[~21og £(Z;6,)] (2.5)

where Z is an N X p random matrix that has the same distribution as X
and is independent of X, and Oy is the maximum likelihood estimator of ©
under M. Here E* and Var® denote the expectation under the true model.

Note that the risk Ry can be expressed as
Ry = Ex[~2log f(X;0)] + by, (2.6)
where
b = By Ey[—2log (7 00)] — Bx[-2log f(X; 0,0 (27)

This means that a naive estimator of Ry, is —2log f(X; C:)k), and by, is its bias

term in the estimation of Rj. In this paper we assume that
9(X) = f(X;0y), for some O. (2.8)

In the following we write O as © simply.
Let ) and & be the sample mean vectors of the observations of the ith

groups and all the groups, respectively, i.e.,

, 1 Q) 1 ~
:FZ 1,....,q+1; mzﬁzzwgy

Further, let W and B be the matrices of sums of squares and products due

to within-groups and between-groups, respectively, i.e.,

N; q+1

g+1
w=3 Y (@ -z -2y, B= ZN (" — ).
=1

Put T'= W + B and partition W, B and T in the same way as in (2.3).
Then we can write the MLE O, of © under M, (see, e.g., Fujikoshi (1985))
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as

ﬂgz):jgl)7 i:l,,”’q; ﬂ2:j2_f‘j1’

['=TyuT5, Ny =W, (2.9)
N222-1 =Tho1 =Ty — TQlTﬂ1T12a

and hence, putting £,(W,T) = —2log f(X; ©}) we have

(W, T) = Nlog|N~"'Wiy| + Nlog |N™'Ty4| + Np(1 + log 2)
|W22-1|

= —NI
8 Ty

+ Nlog|N"'W|+ Np(1 +log27). (2.10)

Our main concern is to evaluate the bias term b, under the assumption

of normality. Note that in the evaluation, it is not assumed that M}, includes
the true model. Put

q+1 q+1
_ Nz i — Nz i _ i _
p=) n? 2= = —p)p - p)
i=1 =1

Corresponding to a partition of X, we partition = as

=_ ( Zu Zn
Zo1 Z22 )
Then, we can write by (see, e.g., Fujikoshi (2002)) as

NE(N +q+1)
N—k—q—2

1] [1]

by = —Np+

+ N2, (2.11)

where
by =E [T {1+ N HS+E} — T {1+ N HSy + En )] . (2:12)

Here the expectation E means the one under general normal populations.
Note that T and T); are distributed as noncentral Wishart distributions
Wy(n,3; NE) and Wi(n, X11; NZ11), respectively, where n = N — 1.

Our interest is to examine the problem of evaluating the bias term b, and

estimating it. In general, the bias correction problem has been studied under

a usual large sample framework,
LS: p,q,k; fix, N — oc.
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Fujikoshi (1985) derived an asymptotic unbiased estimator for b, under LS

without assuming that M, includes the true model, which is given as
bLs = b% + b2, (2.13)
where

1
b(LOg*_Q{k(q+1)+p—k+§p(p+1)},

i) = —2 (trC + %trC’Q + %(tr0)2> +2 (ter + %trCi + %(terV) :

Here
C=Y""2(L,+327'8)7", C='S i+ 257

and Y and Zj are the first k& x k submatrices of ¥ and =, respectively.
When M, includes the true model, b(Ll; = 0, and hence brg = bgg, which
corresponds to 2 X (the number of independent parameters under My). The

usual AIC and its corrected version have been proposed as

AIC = 6(W, T) + b0, (2.14)
and

CAIC = (W, T) + brs, (2.15)

respectively. Here, brs is the one obtained from byg by substituting the
sample quantities to C' and C}.

However, the result will not work well as the dimension p increases. In
order to overcome this weakness, we study asymptotic unbiased estimator

for by under two high-dimensional frameworks such that

HD1: ¢, k;fix, N = 00, p— 00, N—p—o00, c=p/N = ¢y € (0,1).
HD2: ¢;fix, N > 00, p—= 00, N—p— 00, c=p/N — ¢ € (0,1),
k— oo, N—k— o0, d=Fk/N—dye (0,1).

Our aim is to construct l;H p such that
E[BHD] =bup + Ol/Q(N_lap_17 k),
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where O;(N~, p~! k1) denotes the term of the jth order with respect to
(N=1 p~t k~1). The AIC with such a bias term is denoted as

HAIC = (,(W, T) + byp. (2.16)

3. Asymptotic Evaluation of the Bias Term

In this section we obtain asymptotic expressions for by in (2.12) under
high-dimensional frameworks. In the derivation we are not necessary to as-
sume that M} includes the true model M*, but we assume only that the true
model M* satisfies (2.8), i.e., that II;’s are normal populations. It is easy to

see that the by, in (2.12) can be expressed as

by =E [T {1+ N, +Q,} —tT, " {1+ N )L+ T, }].  (3.1)
Here

Q, = diag(wy....,w,y,0....,0), Uy =diag(¢n....,1,,0....,0), (3.2)

where w; > --- > w, > 0 and ¥; > --- > 1, > 0 are possibly non-zero
roots of ¥7'Z and ¥[]'Z11, respectively. Further, 7' and T}, are distributed
as noncentral Wishart distributions W, (n, I,; NQ,) and Wy(n, I;;; N¥}), re-
spectively. Such reductions are obtained by considering appropriate trans-

formations. For example, let H be an orthogonal matrix H such that
==HYy =212 =Q,
Then
7 H{(1L+ N HE+E} = to(H'STV2TESV2H) T {1+ N YL+ Q)
The reduction of the first expectation is obtained by noting that
H'YVPTS V20 ~ Wy(n, I; NQ,).
Similarly the expectation of the second term is obtained.
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3.1 Two-Groups Case

For two-groups case, Fujikoshi (2002) used the following expression for the
bias term by:

NE(N + 2)

N—-k—-3

+NHQ(N.p, ) — Q(N, k, 1)}, (3-3)

bk = —Np+

where
Q(N,p,7%) = E[tr(S + wu) {1+ N NI, +vv'}],
Q(N, k,77) = Bltr(S11 + wu) {1+ N Y, + v},
v=(VNINy/N)ZV2(uV — @) 72 = v'v = {(N; Ny)/N?}A? and
A? = (pV = p®ysH (p® — u®).

Here w and S are independently distributed as a normal distribution
N,(VNv,1,) and a Wishart distribution W,(N — 2, I,,), respectively. Simi-
larly Si1,u; and vy denote the first k£ parts of S, u and v, respectively, and

¢ = vjv,. Using that
(S+uu) =81 (1+u/'S u) 'S uw' S,
Fujikoshi (2002) derived an asymptotic expansion of Q(N, p, 7%) such that
Q(N,p,7°) = Qu(N,p,7%) + O5o(N~",p7"), (3.4)

assuming that w ~ N,(v, I,). However, the mean of u is not v, but vV Nv.

For a general case, the (1 in Fujikoshi (2002) should be corrected as follows:

N(Np+p—4)
N2 N 2y
Ql( 7p77_) N_p_2
N -3 2\—1 2\—2
These imply that the bias term can be expressed under HD2 as
NE(N + 2

N—-k—-3
FNH{QUN, p, 7%) = Qu(N, k, 1)} + O1p(N~Hp™H k7). (3.6)
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We note that the result (3.6) is the same as a special case of the result
(see Theorem 3.3) in the present paper. It is difficult to extend the above
method to the case ¢ > 2. For the case ¢ > 2, we give an alternative method

which is more powerful.

3.2 Some Basic Results

For our evaluation of the by in (3.1), we use the following theorem.

Theorem 3.1. Let T' ~ W,(N — 1,1,; NQ), and partition T and Q as
Tll T12 Qll Ql?
T = 5 Q= )
( T21 TQQ ) < Q21 Q22
where T;; and € are p; X p;. If 49, Qo1 and (g are zero matrices, then
_ 1 1 p—Dn1
E |trT ! 1+—=|L+Q | =(14+—= ] —————
e {(ew) e = (0 5) 5
N — P1— 2 _ 1
+ (—N - 9 ) E |:tI'T111 {(1 + N) [pl + Qll}:| .

The proof of Theorem 3.1 is given in Appendix. Moreover, we use the
following lemma which is obtained by modifying the derivation in Fujikoshi
(1985).

Lemma 3.1. Suppose that T ~ W,(N — 1,%;m(2), and let L;p x p be a
constant matriz. Then, if p is fired, m = O(N) and Q2 = O(1), then

E[N*ttT'L] = NtrMA + (p + 3)trMA® + trAtr M A
—trtMA® — trAtrMA? + O(N~/?), (3.7)

where M = X7'L and A = (I, + (m/N)S*Q)~1. In particular, if m = N,

1
B[var {1+ 1) fo+al] = No+ o+ 2 - - £ O,

where n; = tr(I, + Q).



Combining Theorem 3.1 and Lemma 3.1, we obtain the following theorem.

Theorem 3.2. Suppose that T and €2 are the same ones as in Theorem 3.1.
Then, if py is fixed,

_ 1 N{Np+p—pi —3p}
E|N*t:T ' (14+—=)1,+Q%| = L
{ ' {< +N> Pt H N—-p-—2

+ <%pl__22> {K+O(N"2)}, (3.8)

where
K =2(p1+2)np — 2 — 77%, n; = tr(l,, + Q11)%‘-

It may be noted that the O(N~1/2) in (3.8) is not the same one as in the
usual large-sample case where p is fixed. The result (3.8) holds also under

the assumption that p is not fixed, for example, under HD1.

3.3 Evaluations of (3.1)

In this section we evaluate each of the expectations in (3.1). Using Theorem

3.2 the expectation of the first term in (3.1) is expressed as

E {NQtrTl { (1 ¥ %) I+ QH

N(Np+p—q2—3Q)+ N-—q—2
N—-—p—2 N—-—p—2

) {K,+O(N"Y%)}, (3.9

where

Ko =2(q+ 20w — 1o = My o = t0(Ig Q)7 (3.10)
and Q, = diag(wi, ...,w,). We note that the result holds under the asymp-
totic framework HD1, and also HD2 since the expectation does not depend
on k.

Next we show that

v (1))

_ N(Nk+k—q¢*—3q) N—qg—2
B N —Fk—2 N—Fk—2

) {Ky,+O(NT)} (3.11)
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where

Ky =2(q 4 2)m1p — 1oy — M1y Mg = tx(Iy + V), (3.12)
and ¥, = diag(¢1, ..., 1,). It is shown that the result holds for k > ¢, k = ¢
and k,q. In fact, when k > ¢, from Theorem 3.2 we have

E {NQtrT;Z1 { (1 + %) bt \Iij
_ N(]\J]\ftll)c(f; ) | (]]\\; - Z — 3) E [trTq—l { <1 + %) I+ \qu
- M (o) oy,

When £k = ¢, then T}, =T, ¥;, = ¥,, and hece we have

v (12 ) )

1
=E [N%rTq—l { <1 + N) I, + \Ifq}] = Nq+ Ky +O(N~/?).

When k < ¢, we may regard Ty ~ Wi(n, I;; Uy) as a submatrix of T}, ~
W, (n, I,;V,). Moreprecisely, we may write

Tq:(Tk *)’ \I]q:<%k 8)7 Tq7\Ijq;qxq’ Tk,\I]kaka

* %

Using Theorem 3.1 we have

1
E{trTq_l{(l—i—N) I+, ] —_—
N—-—k—-2 1
——— JE |t ( 1+ — ) L+ U g |
() el { () o]
This gives us
1 1 k—q
E [ty 1+— |1, +V¥ 1+—= | —F—
{1 k}] (w)w—k—z
_q_
E .
(=)
In this case VU, = diag(¢1,...,¢%,0,...,0). Again, using Lemma 3.1 we
obtain (3.11).
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Theorem 3.3. Let Ry be the risk function of the model M, defined by
(2.6), and let by be the bias term defined by (2.12) when we estimate Ry
by lp,(W,T) = —2log f(X; (:)k) Then the bias term can be expressed as

by = bup
N—q—2 1 N—q—2 B
—_ N~1/2 R E— N2 (3.1
+(N_p_2>><0( )+<N_k_2>><0( ),(3.13)
where byp = b(HO}) + bg)D,
NE(N +q¢+1)
by = —N
HD p+N—k—q—2
N(N —q¢* -3 N(Nk+k—q*—3
(NWNpt+p—¢—3¢) NWNk+k—g @7 (3.14)
N—-p—-2 N—Fk—-2

and

K, = 2(61 + 2)771w — TNow — Ufw Nip = tl"(fq + QQ)_ia
Ky =2(q 4 2)11p — 2y — My T = tr(Ly + ¥g) ™",

Q, = diag(wy,...,wy), ¥, = diag(¢s,...,¢,), and wy > -+ > w, > 0
and 1 > -+ > b, > 0 are possibly non-zero roots of Y1E and X1 'Zy,,

respectively.

In general, the bias term by p includes divergent terms under HD2. How-
ever, it is possible to make it a convergent term under some additional as-
sumptions. In the following we examine the limiting value of byp when
p/N — 0. Note that the p/N — 0 implies that k/N — 0 and ¢/N — 0. The

constant term bg)p can be expressed as

%D—Z{Mq+n p—k+ pp+1 + e ——
2)(p — (k4 2)(k — q)(k
L2 g tat3)  (k+2)( ) +q+$ (3.16)

N—p-—2 N —
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Therefore, we have

lim 9 = pl®
/zlvrgo HD = "L§

Similarly, it is pointed that the constant term has the following property
bigp = big + OLs(N7'/?),

where Opg(N~1/2) denotes the order under the large-sample framework, i.e.,
under the case when p is fixed.

In order to get the relationship between b(Llé)w and b%)D, we use that

q
rC =S E(L, +T7'E) T =)

i=1

1+ w;
_Z 1:’0(«01 =4~ Nw,

q 2 2
2 1~ 1~ 1 Wi
trC tr{Z I, + >~ } ;1 (1+wi)

z‘]: 14+ w)? =21 +w)+1
1—i—wi)

=q — 2N + M-
=1

Furthermore,
L oo, 1 2 2
2 trC’+§trC’ —|—§(trC) =q° + 3¢ — K,
and similary
Lo, 1 2 2
2 | trCy + §trC’k + E(tTCk) =q° +3q — Ky.
These imply that

li b = b d h lim byp =brs. 3.17
o5 Viip = Vi, ond bence B byp =bis. (81T

It is also pointed that

bg) b(l) + Ops(N7Y?) and hence byp = brs + Ops(N~Y?).  (3.18)

13



4. High-Dimensional AIC Criteria

In order to get an asymptotic unbiased estimator of b, or Ry it is enough
to get asymptotic unbiased estimators for K, and K,. Let W and B be the
matrices of sums of squares and products due to within-groups and between-
groups, respectively. Then, we know that W and B are independently dis-
tributed as W,(N — ¢ — 1,%) and W,(q,X; N=). Further, let W, and By
be the first k£ x k submatrices of W and B, respectively. Then, W) and
By, are independently distributed as Wi (N — g — 1, %) and Wy (q, Xg; NZk),
respectively. When £ is fixed, based on large-sample theory it is easy to see
that

E[tr(Iy + W, 'By) 7] = tr(ly + 5,'E) 7 + O(N )
= M +k—q+ONT?),

where O(N ~7) denotes the term of the jth order with respect to N=! when
k is fixed. This suggests an asymptotic unbiased estimator of 7;, defined by

Ty = tr(Ly + W 'By) ™" — (k — q). (4.1)

Therefore, when £ is fixed, we get an asymptotic unbiased estimator of Ky
defined by

Ky = 2(q + 2)fiy — flog — M- (4.2)
Next we consider to estimate n;, and 7,, under HD1 or HD2. We use
high-dimensional estimators of n;, and 7, defined by

fiw = (1 — ) "tr (Ip + W_1B> B —(1—=¢)"(p—q), (4.3)

o = (1= d) it <1k n W;Bk>l S—dih—g (44)

These estimators are asymptotically unbiased estimators as in Theorem

4.1 whose proof is given in Appendix.
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Theorem 4.1. Let 1), be the estimator in (4.3) of ni in (3.10). Suppose
that ¢ = p/N — ¢o € (0,1). Then,

E(ﬁzw) = Niw + 01/2(N_17p_1)‘

Similarly, let 7, be the estimator in (4.4) of ny in (3.12). Suppose that
d=Fk/N —dy € (0,1). Then,

E(iy) = 1y + O12(N ™ k™).

Using (4.3) and (4.4) we have the following high-dimensional asymptotic
estimators of K, and Ky:

Ky =2(q+2)fhw = flow = My Ky = 2(q+ 21y — Ao — 1y (4.5)

When d tends to zero, we can see that f(w tends to f(w. This means that the
estimator R’w may be used even for the case when £ is small. Therefore, we

propose the following high-dimensional estimator of by p:
bp = b, + 01, (4.6)
which may be used when k is small, where
- N—q—2\ - N—q—2\ -
P = (2K, - [ —— 2 ) K.
HD = \N —p—2 N—k-2)""
Theorem 4.2. Under the high-dimensional asymptotic framework HD2 it

holds that
E(Z;HD) =by+ O (N1 p L k) (4.7)

Proof. From Theorem 4.1 we have
E(bup) = bup + O1p(N~Hp~ ' k).
The final result is obtained by using Theorem 3.3. [
Finally we propose the following high-dimensional AIC:
HAIC = 6,(W, T) + b9 + b7, (4.8)
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We have seen that HAIC is an asymptotic unbiased estimator of Ry under
HD2. We have pointed some relationships between by and bgp. So we can
say that such relationships can be expected also for brs and byp.

When ¢ = 1, we have

@ - 2) (@)~ sy, W= (N-2)s,

where S is the usual pooled sample covariance matrix. Then, it is well known
(see, e.g., Fujikoshi et al. (2010)) that

a(D* — D?)

N —2+aD?
+Np(1 + log 2m),

G(W,T) = Nlog{1+ }+N10g|{(N—2)/N}S|

where D and D; are the Mahalanobis distances based on & and xi, respec-

tively, and a = (N1N3)/N. The quantity by in (3.6) involves the unknown

2 and 72, or equivalently A% and A?. In a practical use it is

parameters 7
suggested to replace these by the following unbiased estimators (see, e.g.,

Fujikoshi et al. (2010)):

A2:N_p_3D2— Np AQZN_k_S » Nk
N -2 NN, T N-2 "' NNy
Therefore, it is suggested to use
(D? - D7)

HAIC = Nlog{1+ -

m} + Nlog |{(N —2)/N}S|

NE(N +2)
1+1 — _—
+Np(1+log2m) — Np + I —

+N2{Q1(N7p7 7:2) - QI(N7k77:12)}’

where 72 = {(N;N,)/N?}A? and 72 = {(N,N,)/N?}A2. Here, we note that
HAIC is not exactly the same as HAIC with ¢ = 1, but they are asymptoti-

(4.9)

cally equivalent in a high-dimensional sense. In fact, we have

1 NyNyN—=p—=3 ., p)°"
=11 D*— =
1+ 72 { TN N2 N

-1
~(1— c)l{l + N}VNQ (@ —z@yw-(z® - w(2))} :
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where ”a" means an asymptotially equivalence in a high-dimensional frame-
work HD1. Further, using that (I, + uv')™! = I, — (1 + v/v) 'uv’,

-1
{1 + N 2 gy (a0 - j(2>)}

-1
= trd I, + TW“(:E(” —z®) (2 — :c(Q))’} —(p-1)

Similarly

1

m ~(1—co)tr(l,+W'B) 2 —(1-¢)%(p—1).

These imply that HAIC is asymptoticall the same as HAIC with ¢ = 1.

5. Simulation Results

In this section, we attempt to give an impression of the relative perfor-
mances of AIC, CAIC and HAIC as an estimator of Ry through simulation
experiments. Furthermore, we also examine relative frequencies selected by

the criteria. The risk function Ry is expressed as
Ry = Ex[—2log f(X;Ox)] + b,
where by, is defined by (2.7). The three information criteria are given as

AIC = 0, (W, T) + b(Log7
CAIC = 0, (W, T) + b + 1),
HAIC = 6, (W, T) + b9, + b1

where (,(W,T) = —2log f(X; Oy).

In our simulation experiments, we assume that the true model is
i . 1 1 *
M+ 2|l ~ N(pD,9), (i=1,...,q+1), pi) =+ = pi (p— k) x 1.
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The covariance matrix was assumed to be X = I,. We considered the follow-

ing three cases of (p, k*, q):

Pl; (p7 k*7Q> = (5747 2)7 P27 (pv k*7Q) = (1078a 2)7 P3a (p7 k*aQ) = (207 1072)

In our setting the elements of p = (u?), ey S))’ were determined as fol-
lows:
Plvp:57k*:47q:2
j 1 2 3 1 5
ptV [ 367 -3.67 0.00 0.00 0.00
p? 212 212 424 000 0.00
pV 1050 050 050 -1.50  0.00
Py; p=10,k*=8,q=2
j 1 2 3 1 5 6 7 8 9 10
u;l) 0.95 095 095 095 095 -474 0.00 0.00 0.00 0.00
p? 1080 0.80 0.80 0.80 0.80 0.80 -4.81 0.0 0.00 0.00
u;g) 0.23 0.23 023 0.23 0.23 023 0.23 -1.62 0.00 0.00
P3; p=20,k*=10,q=2
J 1 2 3 4 5 6 7 8 9 10 11 20
ugl) 0.69 0.69 0.69 0.69 069 0.69 0.69 -48 0.00 0.00 0.00 0.00
/1§2) 0.61 0.61 0.61 0.61 0.61 0.61 0.61 061 -490 0.00 0.00 0.00
pV 018 018 018 018 018 018 018 0.8 018 -1.64 0.00 0.00
The candidate models considered are considered M,k = 1,...,p. Let Xy

and =i, be the first k£ x k matrices of ¥ and =, respectively. Let wg; >

—_
—

wia > 0 be the possible non-zero roots of X7'=. In our setting the roots were

determined as follows:

Py, p=5k=4¢g=2
kRl 1 2 3 4 5
1.68 687 9.00 9.00 9.00
NA 0.76 3.17 3.67 3.67

WE1
WE2

Py, p=10,k*=8,q=2
k 1 2 3 4 5 6 7 8 9 10
0.10 0.19 0.29 0.38 048 6.37 9.00 9.00 9.00 9.00
NA 0.00 0.00 0.00 0.00 0.31 3.08 3.67 3.67 3.67

Wk1
Wk2
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Py p=20, k* =10, ¢ =2

k 1 2 3 4 ) 6 7 8 9 10 11 20
wpr | 010 019 0.29 038 048 6.37 9.00 9.00 9.00 9.00 9.00 --- 9.00
w2 | NA 0.00 0.00 0.00 0.00 0.31 3.08 3.67 3.67 3.67 3.67 --- 3.67

(NA means that the value is not defined)

For the sample sizes (N1, No, N3) the following three cases were considered:

Ny: (Np, Nay N3) = (30,30,30), Ny (N, Na, N3) = (50,50, 50),
N.; (N1, Na, N3) = (100, 100, 100).

Then, first the averages of R, AIC, CAIC and HAIC were computed
with 10,000 replications. The results are given in Table 1. In Table 2 we
give differences between R and each of AIC, CAIC and HAIC. In Table 3
we give selected percentages of AIC, CAIC and HAIC.

From Table 1 and Table 2, the large sample approximations AIC and
CAIC perform well for P;. In the case of P;, we can see that CAIC is
better than AIC in the estimation of Rj. In contrast, the large sample
approximations AIC and CAIC are poor for P, and P3. When p is large, we
can see that HAIC is better than AIC and CAIC in the estimation of R in
particular that sample size is small. In particular, the approximation HAIC
is the best of these approximations for all cases.

For model selections of AIC, CAIC and HAIC, from Table 3 the prob-
abilities of selecting the true model are increasing as the sample-sizes are
increasing. HAIC selects the true model with higher probabilities than does
AIC or CAIC.
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Table 1. Risks and the averages of AIC, CAIC and HAIC
The case: (P, N,)

The case; (P, Ny)

M | Risk AIC  CAIC HAIC M;, | Risk AIC  CAIC HAIC
1 1555.9 1558.5 1552.8 1555.9 1 | 2577.9 2581.7 2576.1 2577.9
2 1412.0 1410.6 1408.2 1411.9 2 | 23349 23352 2332.8 2334.9
3 1316.8 1312.4 1312.2 1316.7 3 | 2173.7 21713 21711 2173.7
4 1309.6 1304.0 1304.0 1309.5 4 ] 2159.3 2156.2 2156.2 2159.3
) 1312.5 1305.9 1305.9 1312.5 ) 2162.0 2158.1 2158.1 2162.0
The case ; (P, N,)
My | Risk AIC  CAIC HAIC
1 5134.1 51394 5133.8 5134.7
2 | 46444 4646.2 4643.8 4644.8
3 | 4318.0 4317.3 4317.1 43184
4 4286.9 4285.2 4285.2 4286.8
) 4289.0 4287.2 42872 4289.0
The case; (P2, N,) The case; (P, Ny)
M | Risk AIC  CAIC HAIC M;, | Risk AIC  CAIC HAIC
1 ]2971.4 29589 2951.2 2969.7 1 | 4892.0 4888.1 4880.5 4891.0
2 ]2966.1 2953.1 2945.7 2964.6 2 | 4881.6 4877.5 4870.2 4880.9
3 | 2961.7 2948.0 2940.8 2960.3 3 | 48724 4867.9 4860.7 4871.8
4 1 2958.0 2943.3 2936.3 2956.8 4 | 4864.0 4859.0 4852.1 4863.6
5 | 2955.0 2939.0 2932.3 2953.8 5 | 4856.5 4850.7 4844.0 4856.1
6 | 2791.2 2770.4 2767.0 2790.0 6 | 4579.7 4569.6 4566.2 4579.2
7 | 2666.5 2640.5 2640.2 2665.2 7 | 4367.3 4353.2 4352.9 4367.0
8 ] 2657.9 2630.2 2630.2 2657.0 8 | 4350.5 4335.0 4335.0 4350.1
9 | 2661.2 2631.9 2631.9 2660.8 9 | 4353.3 4336.9 4336.8 4353.1
10 | 2664.9 2633.6 2633.6 2664.9 10 | 4356.2 4338.7 4338.7 4356.2
The case; (P, N..)
My | Risk AIC  CAIC HAIC
1 |9707.2 9709.0 9701.5 9706.5
2 1 9684.3 9685.8 9678.4 9683.6
3 19663.2 9664.3 9657.2 9662.5
4 ] 9644.1 9644.6 9637.6 9643.2
5 19626.0 9626.4 9619.7 9625.5
6 | 9067.7 9064.5 9061.1 9067.3
7 | 8638.1 8631.4 8631.1 8637.9
8 | 8600.6 8593.1 8593.1 8600.3
9 | 8602.6 8595.0 8595.0 8602.8
10 | 8605.3 8596.9 8596.9 8605.3
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The case; (P3, N,)

The case (Ps, Ny)

k Ry AlIC CAIC HAIC k Ry, AIC CAIC HAIC
1 | 5803.5 5665.0 5657.0 5798.6 1 19377.0 9307.3 9299.5 9374.8
2 | 5802.0 5662.6 5654.8 5796.8 2 193724 9302.3 9294.6 9370.1
3 | 5800.5 5660.4 5652.7 5795.4 3 | 9368.3 92974 9289.9 9365.8
4 | 5799.7 5658.4 5650.8 5H794.4 4 193644 9292.8 92854 9361.8
5 | 5798.7 5656.5 5649.1 5793.7 5 | 9360.7 9288.4 9281.2 9358.2
6 | 5798.0 5654.6 5647.4 5793.3 6 | 9357.3 92844 92772 9354.9
7 | 5797.9 5652.9 56459 5793.3 7 193544 9280.5 9273.5 9352.1
8 | 5632.6 5482.3 5478.6 5628.0 8 | 9074.6 8996.6 8992.8 9072.5
9 | 5502.4 5346.6 5346.1 5498.2 9 | 8853.4 8770.3 8770.0 8851.0
10 | 5494.2 5335.8 5335.6 5490.0 10 | 8835.7 8751.4 8751.2 8833.6
11 | 5498.5 5337.5 5337.2 5494.4 11 | 8839.1 8753.2 8753.1 8836.8
12 | 5502.8 5339.1 5338.9 5499.0 12 | 8842.2 8755.0 8754.9 8840.2
13 | 5507.3 5340.7 5340.5 5503.9 13 | 8845.6 8756.8 8756.7 8843.6
14 | 5511.8 5342.3 5H342.1 5509.1 14 | 8848.7 8758.5 87H8.4 8847.2
15 | 5517.0 5343.8 5343.7 5514.6 15 | 8852.2 8760.2 8760.1 8850.8
16 | 5522.6 5345.4 5345.3 5520.4 16 | 8856.0 8762.0 8761.9 8854.7
17 | 5528.2 5346.8 5346.7 5526.6 17 | 8859.8 8763.6 8763.6 8858.7
18 | 5534.4 5348.2 5348.2 5533.1 18 | 8863.8 8765.3 8765.3 8862.8
19 | 5540.3 5349.6 5349.6 5540.0 19 | 8867.4 8767.0 8767.0 8867.1
20 | 5547.3 5350.9 5350.9 5547.3 20 | 8871.5 8768.7 8768.7 8871.5
The case; (P3, N,)

k Ry AIC CAIC HAIC

1 | 18423.7 18395.3 18387.6 18422.3

2 | 18411.7 18383.1 18375.6 18410.4

3 | 18401.3 18371.6 18364.1 18399.1

4 | 18390.5 18360.7 18353.3 18388.6

5 | 18380.8 18350.3 18343.1 18378.6

6 | 18371.0 18340.4 18333.3 18369.2

7 | 18361.7 18331.0 18324.0 18360.3

8 | 17797.4 17762.9 17759.2 17795.9

9 | 17349.0 173104 17310.1 17347.5

10 | 17310.5 17270.8 17270.7 17308.8

11 | 17313.1  17272.8 172727 17311.3

12 | 17315.6  17274.7 17274.6 17314.0

13 | 17318.8 17276.6 17276.5 17316.6

14 | 17321.0 17278.5 17278.4 17319.3

15 | 17323.6 17280.4 17280.3 17322.1

16 | 17325.5 172822 17282.2 17324.9

17 | 17328.5  17284.1 17284.1 17327.7

18 | 17331.5 17285.9 17285.9 17330.6

19 | 17333.8 17287.8 17287.7 17333.5

20 | 17336.6 17289.6 17289.6 17336.6
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Table 2. Differences of Risks and each of AIC, CAIC and HAIC

The case; P;
AIC CAIC HAIC
My | Ny Ny N | Ny Ny N.| N, Ny N
1 -26 -38 -53(31 18 03|00 00 -06
2 14 -03 -181]38 21 06|01 00 -0.5
3 4.4 2.5 08 |46 27 09]02 01 -03
4 56 3.1 1.7 |56 31 17|01 -01 0.1
5 67 38 1967 38 19|00 00 0.0
The case; P,
AIC CAIC HAIC
My | Ny Ny N. | Ny Ny N.| N, Ny N
1 125 39 -1.8|201 114 57|17 1.0 0.7
2 13.0 40 -15]205 114 58|16 0.7 0.7
3 13.7 45 -1.11]209 11.7 60|14 0.6 0.7
4 147 49 -041]216 119 65|12 03 09
5 16.0 58 -04 227 126 64|12 04 0.5
6 20.8 101 3.2 | 243 135 6.7]13 05 04
7 26.0 142 6.8 |26.2 144 70|13 03 0.3
8 277 155 75 | 278 155 75109 04 0.3
9 293 164 76 | 293 165 7.6 1|04 0.2 -0.2
10 | 31.3 175 83 | 313 175 83| 0.0 0.0 0.0
The case; P;
AIC CAIC HAIC
Mk Na Nb Nc Na Nb Nc Na Nb Nc
1 138.5 69.6 28.4 | 146.5 77.5 36.1 |49 22 14
2 139.4 70.1 28.6 | 1472 77.8 36.2 |52 22 13
3 140.1  70.9 29.7 | 1478 785 371 |51 25 21
4 141.3 71.6 29.8 | 1489 79.0 371 |53 25 1.9
5 142.3 723 30.5 | 149.7 79.6 37.7 | 50 25 2.2
6 1434 729 30.5 | 150.7 80.1 37.7 |47 24 18
7 145.0 73.8 30.6 | 152.1 80.9 376 |47 23 14
8 150.2 78.0 345 | 1540 81.7 382 |45 21 1.5
9 155.8 83.1 38.6 | 156.3 834 389 |43 24 1.5
10 | 1584 84.3 396 | 1586 84.4 39.7 |41 21 1.7
11 | 161.0 859 404 | 161.3 &86.0 404 |41 22 1.8
12 | 163.7 87.2 41.0 | 163.9 873 41.0| 3.8 20 1.7
13 | 166.6 88.9 42.2 | 166.7 &89.0 423 |34 2.0 22
14 | 169.6 90.2 425 | 169.7 90.3 425 |28 1.5 1.7
15 | 173.2 92.0 43.2 | 173.3 92.1 432 |24 14 1.5
16 | 177.2 94.0 433 | 1773 94.1 433 |21 1.2 0.6
17 | 1814 96.2 444 | 1814 96.2 445 |16 1.1 0.8
18 | 186.1 98.5 45.6 | 186.2 985 456 | 1.2 1.0 0.9
19 | 190.7 100.4 46.0 | 190.8 1004 46.0 | 0.3 0.3 0.2
20 | 196.4 1029 47.0 | 196.4 1029 47.01| 0.0 0.0 0.0
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Table 3. Selected percentages of AIC, CAIC and HAIC

The case; P;
N, N, N,

M, AIC CAIC HAIC AIC CAIC HAIC AIC CAIC HAIC
1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 71% 7.3% 11.7% 0.7% 0.8% 1.2% 0.0% 0.0% 0.0%
4| 78.3% 785% 80.5% | 84.9% 85.0% 88.6% | 85.6% 85.7% 87.7%
51 14.6% 14.2% 79% | 14.4% 14.2% 10.2% | 14.4% 14.3% 12.3%

The case; P,
N, N, N,

M, AIC CAIC HAIC AIC CAIC HAIC AIC CAIC HAIC
1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
7 4.2% 4.3% 10.6% 0.4% 0.4% 0.8% 0.0% 0.0% 0.0%
8 | 72.8% 73.0% 81.4% | 79.3% 79.6% 88.4% | 81.1% 81.2% 86.0%
9| 14.7% 14.5% 6.5% | 13.6% 13.4% 82% | 12.5% 12.4% 10.0%

10 8.4% 8.2% 1.5% 6.7% 6.6% 2.6% 6.5% 6.4% 4.0%
The case; P;
N, N, N,

M, AIC CAIC HAIC AIC CAIC HAIC AIC CAIC HAIC
1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
7 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
9 3.7% 3.9% 12.0% 0.2% 0.2% 0.7% 0.0% 0.0% 0.0%

10 | 65.2% 65.6% 81.6% | 73.5% 73.8% 88.4% | 77.7% 78.0% 85.7%
11 | 12.2% 12.1% 51% | 11.5% 11.5% 7.3% | 10.9% 10.8% 8.7%
12 5.8% 5.6% 1.0% 5.5% 5.4% 2.4% 4.6% 4.6% 3.1%
13 3.7% 3.6% 0.2% 3.1% 3.0% 0.7% 2.3% 2.2% 1.1%
4 24% 24% 01% | 1.9% 1.9% 03% | 1L.7% 1.7% 0.8%
15 1.7% 1.6% 0.0% 1.6% 1.5% 0.1% 0.9% 0.9% 0.3%
16 1.5% 1.5% 0.0% 0.9% 0.9% 0.0% 0.6% 0.6% 0.2%
17 1.1% 1.1% 0.0% 0.7% 0.6% 0.0% 0.5% 0.5% 0.1%
18 1.0% 1.0% 0.0% 0.6% 0.5% 0.0% 0.4% 0.4% 0.1%
19 0.8% 0.7% 0.0% 0.4% 0.4% 0.0% 0.2% 0.2% 0.0%
20 1.0% 0.9% 0.0% 0.3% 0.3% 0.0% 0.2% 0.2% 0.0%
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We have seen that
bup = brs + Ors(N~V2).

This means that as IV is large, HIC approaches to CAIC. In order to reconfirm

this property, we tried the following additional experiments on P;:
Ng; (N1, No, N3) = (150,150, 150), Ng; (N1, N2, N3) = (200,200, 200).

The results are given in Tables 4 and 5. We can see that HAIC approaches
to CAIC as N is large.

Table 4. Risks and the averages of AIC, CAIC and HAIC

The case: (P, Ny)

Risk AIC CAIC HAIC
7690.2 7695.3 7689.7 7690.3
6953.4 6955.3 6952.9 6953.6
6462.9 6462.7 6462.5 6463.3
6414.2 6413.6 6413.6 6414.6
6416.8 6415.6 6415.6 6416.8

The case; (P, N,)

Risk AIC CAIC HAIC
10248.1 10253.3 10247.7 10248.1
9264.7  9266.2  9263.9  9264.4
8608.8  8608.1  8607.9  8608.6
8542.6  8542.2 85422  8543.0
8545.1 8544.2 8544.2 8545.1

OTPPO-’)M»—!E

OW.-PW[\D»—*E

Table 5. Differences of CAIC and HAIC

Na Nb Nc Nd Ne
-3.2 -18 -09 -06 -04
-3.7 -21 -10 -07 -0.5
-45 -26 -1.3 -08 -0.6
-5.0 -3.2 -15 -1.0 -0.8
-6.7 -38 -19 -12 -09

UY»POJ[\D»—AE

6. Conclusive Remarks

In this paper, first we derived asymptotic formulas for the bias term in

the problem of estimating the AIC type of risk Ry in the multiple-groups
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case in the situation where the dimensions p and & may be large. The re-
sults were obtained without assuming that the true model is included in
the model M. It was shown that the high-dimensional approximations
are more useful than the large-sample approximations in a sense that the
large-sample approximations can be obtained from the high-dimensional ap-
proximations by considering their large-sample approximations. Based on
the high-dimensional results we proposed HAIC, which is a high-dimensional
asymptotic unbiased estimator of Ry under the high-dimensional framework
HD2. By simulation experiments, it was shown that for estimating the risk
function HAIC is better than the large sample AIC and its corrected CAIC
in a wide range. Further, it was pointed that HIC provides better model
selections than does AIC or CAIC. It was also noted that HAIC approaches
to CAIC as the sample size N is large.

A. Proofs of Theorems 3.1 and 4.1

Proof of Theorem 3.1.
For our derivation, we use the following properties (see Kabe (1964)) on
Wishart matrix: Let T' ~ Wy(n, I,; NQ) with n = N — 1, and T and Q be

partitioned as
_( Tn Tip QO
T_(T21 T22>’ Q—(o 0 )

respectively, where T; : p; X p; and £ : p; X pj. If Qq9, Q91 and gy are zero

matrices, then
(1) Toza ~ Wy (n = p1, I,).
(2) TorTyy"? ~ Nopysip (0, L, © L),
(3) Thy ~ Wy, (n, Ly, = Q11).

(4) T22.1, T21T1_11/2 and TH are independent.
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It is easy to see that

1 1
trT { <1 + N) I, + Q} — trTyt { (1 + N) I, + Qn}
" - 1 ~Ty'T
= el (T T' Ip—yp,) { (1 + N) I, + Q} ( 111 12 )
p—p1

1 . _
= (1 + N) (trW‘lZTl‘llZ’ + trW—1> + Wz P T 7

where W = Ty = Ty — T21T1_11T12 and Z = T21T1_11/2. From the above

properties,
W~ Wm(n - Py, Ip2>7 Z ~ Np2><Pl(O7 Ip2 ® IP1)> Tll ~ Wm (n7 Ipl : Qll)?

and W, Z and T} are independent. Therefore, the required result is obtained

by computing these expectations.

Proof of Theorem 4.1.

We may assume that B and W are independently distributed as W, (¢, £; NZ)
and W,(N — ¢ — 1, %), respectively. Note that the noncentrality matrix N=
can be expressed as M M’ with a p x ¢ matrix M. Therefore, B and W can

be written as
W = 21/21421/2, B = 21/2Z2121/2,

where Z ~ Npuo(27V2M, 1,0 1,), A~ W,(N —q—1),1,), and Z and A are
independent. Let

B, =277 and W, = BY*(ZA~'Z")"'B"/2.

Then, it is known (Wakaki, Fujikoshi and Ulyanov (2002) or Fujikoshi, Ulyanov

and Shimizu (2010)) that B, and W, are independently distributed as W,(p, I,; NI")

and W, (m, I,,), respectively, where I' = M’ "M and m = N—p—1. Further,
the non-zero characteristic roots of BW ! are equal to the ones of Bqu_l,

and hence we have
tr(L, + W'B) " =tr(I, + W, 'By) ™" + (p — q).
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Let U and V' be defined by

1 1 1 1 1
-B,=1,+-0+—=U, —W,=I,+—7=
D q q c \/2—9 m q q \/m
with ¢ = p/N. Then, under the asymptotic framework HD2 the limiting
distribution of (U, V') is normal. We can see that

v,

(1 =)+ W, 'By) = I+ T+ O1p(N 71, p7h).
Therefore,

(1—c) (L, + W 'B)™
=(1- c)_itr(fq + Wq_qu)_i +(1—¢)(p—q)
=tr(f; + )7+ (1 =)' (p— ) + Orp(N 1 p7h).

The first result is obtained by noting that tr(7, + I')™* = n,,. Similarly the

second result is proved.
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