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Abstract

This paper is concerned with high-dimensional modifications of

Akaike information criterion (AIC) for redundancy (no additional in-

formation) models in discriminant analysis. The AIC has been pro-

posed as an asymptotically unbiased estimator of the risk function

when the dimension is fixed and the sample size tends to infinity. On

the other hand, Fujikoshi (2002) attempted to modify the AIC in two-

groups discriminant analysis when the dimension and the sample size

tend to infinity. However, its modification was obtained under a re-

strictive assumption, and furthermore, it was difficult to extend the

method to multiple-groups case. In this paper, by a new approach we

propose HAIC which is an asymptotically unbiased estimator of the

risk function in multiple-groups discriminant analysis when both the

dimension and the sample size tend to infinity, for a general class of

candidated models. By simulation experiments it is shown that HAIC

is more useful than the usual AIC and CAIC.
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1. Introduction

This paper is concerned with selection of variables in discriminant anal-

ysis. One way of selecting variables is to formulate as a problem of selecting

redundancy models based on no additional information hypothesis due to

Rao (1948, 1973). Then, we apply the idea of a model selection criterion

AIC to the models.

The selection criterion AIC is proposed as an approximately unbiased

estimator (AIC) of the AIC type of risk defined by the expected log-predictive

likelihood. The AIC for redundancy models has been proposed under large-

sample framework, i.e., the dimension is fixed and the sample size tends to

infinity.

On the other hand, in discriminant analysis we encounter a high-dimensional

case, i.e., the case when the dimension is relatively large. There are some

works on asymptotic approximations for the expected probabilities of mis-

classification in the two-groups discriminant analysis under a high dimen-

sional framework. For these works, see, e.g., Raudys (1972), Wyman et al.

(1990), and Fujikoshi and Seo (1998), in which they point a goodness of such

approximations.

In this paper, we consider the problem of estimating the AIC type of

risk when both the dimension and sample size are large, in multiple-groups

discriminant analysis. More precisely, we attempt to reduce for the bias

term when we estimate the AIC type of risk by −2 log likelihood, in a high

dimensional case. An attempt has been done by Fujikoshi (2002) in two-

groups discriminant analysis. However, a modification was obtained under

a restrictive assumption (see Section 3.1), and furthermore, it was difficult

to extend the method to multiple-groups case. In this paper, by a new

approach we obtain an asymptotically unbiased estimator of the risk function

in multiple-groups discriminant analysis when both the dimension and the

sample size tend to infinity, for a general class of candidated models. which
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is not necessary to include the true model. Such an estimator is called high-

dimensional AIC, which is denoted by HAIC. Furthermore, it is pointed that

HAIC has smaller biases than the AIC in a large-sample framework in a

wide range of dimensions and sample sizes, through simulation experiments.

It is also shown that HIC provides better model selections than does AIC or

CAIC.

2. Preliminaries

Let x = (x1, ..., xp)
′ be a p-dimensional random vector measurable on

the individuals of each of q + 1 populations Π1, . . . ,Πq+1. Let x
(i)
1 , . . . ,x

(i)
Ni

be a sample from Πi, and denote all the observations by the N × p matrix,

X =
(
x
(1)
1 , . . . ,x

(1)
N1
, . . . ,x

(q+1)
1 , . . . ,x

(q+1)
Nq+1

)
, (2.1)

where N = N1 + · · ·+Nq+1. It is assumed that

E(x|Πi) = µ(i), Var(x|Πi) = Σ. (2.2)

We consider AIC and its high-dimensional modifications for a redundancy

model of a given subset of {x1, . . . , xp}. Without loss of generality we treat a

candidate model Mk, which means that the first k variate x1 = (x1, . . . , xk)
′

is sufficient, or the remainder variate x2 = (xk+1, . . . , xp) is redundant, i.e.,

the remainder p − k variate x2 has no additional information in canonical

discriminant analysis, in presence of x1. In order to write the model Mk in

terms of unknown parameters, let us consider the partitions

µ(i) =

(
µ

(i)
1

µ
(i)
2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (2.3)

and let

µ
(i)
2·1 = µ

(i)
2 − Γµ

(i)
1 , i = 1, . . . , q + 1; Γ = Σ21Σ

−1
11 .

Then, Mk is defined by

Mk : µ
(1)
2·1 = · · · = µ

(q+1)
2·1

(
= µ

(i)
2·1

)
. (2.4)
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Let f(X; Θ) be the density function of X under Mk with Θ = {µ(1), . . . ,

µ(q+1),Σ}. Further, let g(X) be the density function of X under the true

model M∗. Then, we can write the AIC type of risk defined by the expected

log-predictive likelihood for a model Mk as

Rk = E∗
XE

∗
Z [−2 log f(Z; Θ̂k)], (2.5)

where Z is an N × p random matrix that has the same distribution as X

and is independent of X, and Θ̂k is the maximum likelihood estimator of Θ

under Mk. Here E∗ and Var∗ denote the expectation under the true model.

Note that the risk Rk can be expressed as

Rk = E∗
X [−2 log f(X; Θ̂k)] + bk, (2.6)

where

bk = E∗
XE

∗
Z [−2 log f(Z; Θ̂k)]− EX [−2 log f(X; Θ̂k)]. (2.7)

This means that a naive estimator of Rk is −2 log f(X; Θ̂k), and bk is its bias

term in the estimation of Rk. In this paper we assume that

g(X) = f(X; Θ0), for some Θ0. (2.8)

In the following we write Θ0 as Θ simply.

Let x̄(i) and x̄ be the sample mean vectors of the observations of the ith

groups and all the groups, respectively, i.e.,

x̄(i) =
1

Ni

Ni∑
j=1

x
(i)
j , i = 1, . . . , q + 1; x̄ =

1

N

q+1∑
i=1

Ni∑
j=1

x
(i)
j .

Further, let W and B be the matrices of sums of squares and products due

to within-groups and between-groups, respectively, i.e.,

W =

q+1∑
i=1

Ni∑
j=1

(x
(i)
j − x̄(i))(x

(i)
j − x̄(i))′, B =

q+1∑
i=1

Ni(x̄
(i) − x̄)(x̄(i) − x̄)′.

Put T = W + B and partition W , B and T in the same way as in (2.3).

Then we can write the MLE Θ̂k of Θ under Mk (see, e.g., Fujikoshi (1985))
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as

µ̂
(i)
1 = x̄

(i)
1 , i = 1, . . . , q; µ̂2 = x̄2 − Γ̂x̄1,

Γ̂ = T21T
−1
11 , NΣ̂11 = W11, (2.9)

NΣ̂22·1 = T22·1 = T22 − T21T
−1
11 T12,

and hence, putting ℓk(W,T ) = −2 log f(X; Θ̂k) we have

ℓk(W,T ) = N log |N−1W11|+N log |N−1T22·1|+Np(1 + log 2π)

= −N log
|W22·1|
|T22·1|

+N log |N−1W |+Np(1 + log 2π). (2.10)

Our main concern is to evaluate the bias term bk under the assumption

of normality. Note that in the evaluation, it is not assumed thatMk includes

the true model. Put

µ̄ =

q+1∑
i=1

Ni

N
µ(i), Ξ =

q+1∑
i=1

Ni

N
(µ(i) − µ̄)(µ(i) − µ̄)′.

Corresponding to a partition of Σ, we partition Ξ as

Ξ =

(
Ξ11 Ξ12

Ξ21 Ξ22

)
.

Then, we can write bk (see, e.g., Fujikoshi (2002)) as

bk = −Np+ Nk(N + q + 1)

N − k − q − 2
+N2b̃k, (2.11)

where

b̃k = E
[
trT−1

{
(1 +N−1)Σ + Ξ

}
− trT−1

11

{
(1 +N−1)Σ11 + Ξ11

}]
. (2.12)

Here the expectation E means the one under general normal populations.

Note that T and T11 are distributed as noncentral Wishart distributions

Wp(n,Σ;NΞ) and Wk(n,Σ11;NΞ11), respectively, where n = N − 1.

Our interest is to examine the problem of evaluating the bias term bk and

estimating it. In general, the bias correction problem has been studied under

a usual large sample framework,

LS : p, q, k; fix, N → ∞.
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Fujikoshi (1985) derived an asymptotic unbiased estimator for bk under LS

without assuming that Mk includes the true model, which is given as

bLS = b
(0)
LS + b

(1)
LS, (2.13)

where

b
(0)
LS = 2

{
k(q + 1) + p− k +

1

2
p(p+ 1)

}
,

b
(1)
LS = −2

(
trC +

1

2
trC2 +

1

2
(trC)2

)
+ 2

(
trCk +

1

2
trC2

k +
1

2
(trCk)

2

)
.

Here

C = Σ−1Ξ(Ip + Σ−1Ξ)−1, Ck = Σ−1
k Ξk(Ik + Σ−1

k Ξk)
−1,

and Σk and Ξk are the first k × k submatrices of Σ and Ξ, respectively.

When Mk includes the true model, b
(1)
LS = 0, and hence bLS = b

(0)
LS, which

corresponds to 2× (the number of independent parameters under Mk). The

usual AIC and its corrected version have been proposed as

AIC = ℓk(W,T ) + b
(0)
LS, (2.14)

and

CAIC = ℓk(W,T ) + b̂LS, (2.15)

respectively. Here, b̂LS is the one obtained from bLS by substituting the

sample quantities to C and Ck.

However, the result will not work well as the dimension p increases. In

order to overcome this weakness, we study asymptotic unbiased estimator

for bk under two high-dimensional frameworks such that

HD1 : q, k; fix, N → ∞, p→ ∞, N − p→ ∞, c = p/N → c0 ∈ (0, 1).

HD2 : q; fix, N → ∞, p→ ∞, N − p→ ∞, c = p/N → c0 ∈ (0, 1),

k → ∞, N − k → ∞, d = k/N → d0 ∈ (0, 1).

Our aim is to construct b̂HD such that

E[b̂HD] = bHD +O1/2(N
−1, p−1, k−1),
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where Oj(N
−1, p−1, k−1) denotes the term of the jth order with respect to

(N−1, p−1, k−1). The AIC with such a bias term is denoted as

HAIC = ℓk(W,T ) + b̂HD. (2.16)

3. Asymptotic Evaluation of the Bias Term

In this section we obtain asymptotic expressions for bk in (2.12) under

high-dimensional frameworks. In the derivation we are not necessary to as-

sume thatMk includes the true modelM∗, but we assume only that the true

model M∗ satisfies (2.8), i.e., that Πi’s are normal populations. It is easy to

see that the b̃k in (2.12) can be expressed as

b̃k = E
[
trT−1

{
(1 +N−1)Ip + Ωp

}
− trT−1

k

{
(1 +N−1)Ik +Ψk

}]
. (3.1)

Here

Ωp = diag(ω1. . . . , ωq, 0. . . . , 0), Ψk = diag(ψ1. . . . , ψq, 0. . . . , 0), (3.2)

where ω1 ≥ · · · ≥ ωq ≥ 0 and ψ1 ≥ · · · ≥ ψq ≥ 0 are possibly non-zero

roots of Σ−1Ξ and Σ−1
11 Ξ11, respectively. Further, T and Tk are distributed

as noncentral Wishart distributions Wp(n, Ip;NΩp) and Wk(n, Ik;NΨk), re-

spectively. Such reductions are obtained by considering appropriate trans-

formations. For example, let H be an orthogonal matrix H such that

Ξ̃ = H ′Σ−1/2ΞΣ−1/2H = Ωp.

Then

trT−1
{
(1 +N−1)Σ + Ξ

}
= tr(H ′Σ−1/2TΣ−1/2H)−1

{
(1 +N−1)Ip + Ωp

}
.

The reduction of the first expectation is obtained by noting that

H ′Σ−1/2TΣ−1/2H ∼ Wp(n, Ip;NΩp).

Similarly the expectation of the second term is obtained.
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3.1 Two-Groups Case

For two-groups case, Fujikoshi (2002) used the following expression for the

bias term bk:

bk = −Np+ Nk(N + 2)

N − k − 3

+N2{Q(N, p, τ 2)−Q(N, k, τ 21 )}, (3.3)

where

Q(N, p, τ 2) = E[tr(S + uu′)−1{(1 +N−1)Ip + νν ′}],

Q(N, k, τ 21 ) = E[tr(S11 + u1u
′
1)

−1{(1 +N−1)Ik + ν1ν
′
1}],

ν = (
√
N1N2/N)Σ−1/2(µ(1) − µ(2)), τ 2 = ν ′ν = {(N1N2)/N

2}∆2 and

∆2 = (µ(1) − µ(2))′Σ−1(µ(1) − µ(2)).

Here u and S are independently distributed as a normal distribution

Np(
√
Nν, Ip) and a Wishart distribution Wp(N − 2, Ip), respectively. Simi-

larly S11,u1 and ν1 denote the first k parts of S,u and ν, respectively, and

τ 21 = ν ′
1ν1. Using that

(S + uu′)−1 = S−1 − (1 + u′S−1u)−1S−1uu′S−1,

Fujikoshi (2002) derived an asymptotic expansion of Q(N, p, τ 2) such that

Q(N, p, τ 2) = Q1(N, p, τ
2) +O5/2(N

−1, p−1), (3.4)

assuming that u ∼ Np(ν, Ip). However, the mean of u is not ν, but
√
Nν.

For a general case, the Q1 in Fujikoshi (2002) should be corrected as follows:

N2Q1(N, p, τ
2) =

N(Np+ p− 4)

N − p− 2

+2

(
N − 3

N − p− 2

){
3(1 + τ 2)−1 − (1 + τ 2)−2

}
. (3.5)

These imply that the bias term can be expressed under HD2 as

bk = −Np+ Nk(N + 2)

N − k − 3

+N2{Q1(N, p, τ
2)−Q1(N, k, τ

2
1 )}+O1/2(N

−1, p−1, k−1). (3.6)
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We note that the result (3.6) is the same as a special case of the result

(see Theorem 3.3) in the present paper. It is difficult to extend the above

method to the case q ≥ 2. For the case q ≥ 2, we give an alternative method

which is more powerful.

3.2 Some Basic Results

For our evaluation of the b̃k in (3.1), we use the following theorem.

Theorem 3.1. Let T ∼ Wp(N − 1, Ip;NΩ), and partition T and Ω as

T =

(
T11 T12
T21 T22

)
, Ω =

(
Ω11 Ω12

Ω21 Ω22

)
,

where Tij and Ωij are pi × pj. If Ω12, Ω21 and Ω22 are zero matrices, then

E

[
trT−1

{(
1 +

1

N

)
Ip + Ω

}]
=

(
1 +

1

N

)
p− p1

N − p− 2

+

(
N − p1 − 2

N − p− 2

)
E

[
trT−1

11

{(
1 +

1

N

)
Ip1 + Ω11

}]
.

The proof of Theorem 3.1 is given in Appendix. Moreover, we use the

following lemma which is obtained by modifying the derivation in Fujikoshi

(1985).

Lemma 3.1. Suppose that T ∼ Wp(N − 1,Σ;mΩ), and let L; p × p be a

constant matrix. Then, if p is fixed, m = O(N) and Ω = O(1), then

E[N2trT−1L] = NtrM∆+ (p+ 3)trM∆2 + tr∆trM∆

− trM∆3 − tr∆trM∆2 +O(N−1/2), (3.7)

where M = Σ−1L and ∆ = (Ip + (m/N)Σ−1Ω)−1. In particular, if m = N ,

E

[
N2trT−1

{(
1 +

1

N

)
Ip + Ω

}]
= Np+ 2(p+ 2)η1 − η2 − η21 +O(N−1/2),

where ηi = tr(Ip + Ω)−i.
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Combining Theorem 3.1 and Lemma 3.1, we obtain the following theorem.

Theorem 3.2. Suppose that T and Ω are the same ones as in Theorem 3.1.

Then, if p1 is fixed,

E

[
N2trT−1

{(
1 +

1

N

)
Ip + Ω

}]
=
N{Np+ p− p21 − 3p1}

N − p− 2

+

(
N − p1 − 2

N − p− 2

){
K +O(N−1/2)

}
, (3.8)

where

K = 2(p1 + 2)η1 − η2 − η21, ηi = tr(Ip1 + Ω11)
−i.

It may be noted that the O(N−1/2) in (3.8) is not the same one as in the

usual large-sample case where p is fixed. The result (3.8) holds also under

the assumption that p is not fixed, for example, under HD1.

3.3 Evaluations of (3.1)

In this section we evaluate each of the expectations in (3.1). Using Theorem

3.2 the expectation of the first term in (3.1) is expressed as

E

[
N2trT−1

{(
1 +

1

N

)
Ip + Ωp

}]
=
N(Np+ p− q2 − 3q)

N − p− 2
+

(
N − q − 2

N − p− 2

)
{Kω +O(N−1/2)}, (3.9)

where

Kω = 2(q + 2)η1ω − η2ω − η21ω, ηiω = tr(Iq + Ωq)
−i, (3.10)

and Ωq = diag(ω1, . . . , ωq). We note that the result holds under the asymp-

totic framework HD1, and also HD2 since the expectation does not depend

on k.

Next we show that

E

[
N2trT−1

k

{(
1 +

1

N

)
Ik +Ψk

}]
=
N(Nk + k − q2 − 3q)

N − k − 2
+

(
N − q − 2

N − k − 2

){
Kψ +O(N−1/2)

}
,(3.11)
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where

Kψ = 2(q + 2)η1ψ − η2ψ − η21ψ, ηiψ = tr(Iq +Ψq)
−i, (3.12)

and Ψq = diag(ψ1, . . . , ψq). It is shown that the result holds for k > q, k = q

and k, q. In fact, when k > q, from Theorem 3.2 we have

E

[
N2trT−1

k

{(
1 +

1

N

)
Ik +Ψk

}]
=
N(N + 1)(k − q))

N − k − 2
+

(
N − q − 2

N − k − 2

)
E

[
trT−1

q

{(
1 +

1

N

)
Iq +Ψq

}]
=
N(Nk + k − q2 − 3q)

(N − k − 2)
+

(
N − q − 2

N − k − 2

){
Kψ +O(N−1/2)

}
.

When k = q, then Tk = Tq, Ψk = Ψq, and hece we have

E

[
N2trT−1

k

{(
1 +

1

N

)
Ik +Ψk

}]
= E

[
N2trT−1

q

{(
1 +

1

N

)
Iq +Ψq

}]
= Nq +Kψ +O(N−1/2).

When k < q, we may regard Tk ∼ Wk(n, Ik; Ψk) as a submatrix of Tq ∼
Wq(n, Iq; Ψq). Moreprecisely, we may write

Tq =

(
Tk ∗
∗ ∗

)
, Ψq =

(
Ψk O
O O

)
, Tq,Ψq; q × q, Tk,Ψk; k × k.

Using Theorem 3.1 we have

E

[
trT−1

q

{(
1 +

1

N

)
Iq +Ψq

}]
=

(
1 +

1

N

)
q − k

N − q − 2

+

(
N − k − 2

N − q − 2

)
E

[
trT−1

k

{(
1 +

1

N

)
Ik +Ψk

}]
.

This gives us

E

[
trT−1

k

{(
1 +

1

N

)
Ik +Ψk

}]
=

(
1 +

1

N

)
k − q

N − k − 2

+

(
N − q − 2

N − k − 2

)
E

[
trT−1

q

{(
1 +

1

N

)
Iq +Ψq

}]
.

In this case Ψq = diag(ψ1, . . . , ψk, 0, . . . , 0). Again, using Lemma 3.1 we

obtain (3.11).

11



Theorem 3.3. Let Rk be the risk function of the model Mk defined by

(2.6), and let bk be the bias term defined by (2.12) when we estimate Rk

by ℓk(W,T ) = −2 log f(X; Θ̂k). Then the bias term can be expressed as

bk = bHD

+

(
N − q − 2

N − p− 2

)
×O(N−1/2) +

(
N − q − 2

N − k − 2

)
×O(N−1/2),(3.13)

where bHD = b
(0)
HD + b

(1)
HD,

b
(0)
HD = −Np+ Nk(N + q + 1)

N − k − q − 2

+
N(Np+ p− q2 − 3q)

N − p− 2
− N(Nk + k − q2 − 3q)

N − k − 2
, (3.14)

b
(1)
HD =

(
N − q − 2

N − p− 2

)
Kω −

(
N − q − 2

N − k − 2

)
Kψ, (3.15)

and

Kω = 2(q + 2)η1ω − η2ω − η21ω, ηip = tr(Iq + Ωq)
−i,

Kψ = 2(q + 2)η1ψ − η2ψ − η21ψ, ηiψ = tr(Iq +Ψq)
−i,

Ωq = diag(ω1, . . . , ωq), Ψq = diag(ψ1, . . . , ψq), and ω1 ≥ · · · ≥ ωq ≥ 0

and ψ1 ≥ · · · ≥ ψq ≥ 0 are possibly non-zero roots of Σ−1Ξ and Σ−1
11 Ξ11,

respectively.

In general, the bias term bHD includes divergent terms under HD2. How-

ever, it is possible to make it a convergent term under some additional as-

sumptions. In the following we examine the limiting value of bHD when

p/N → 0. Note that the p/N → 0 implies that k/N → 0 and q/N → 0. The

constant term b
(0)
HD can be expressed as

b
(0)
HD = 2

{
k(q + 1) + p− k +

1

2
p(p+ 1)

}
+
k(k + q + 2)(k + 2q + 3)

N − k − q − 2

+
(p+ 2)(p− q)(p+ q + 3)

N − p− 2
− (k + 2)(k − q)(k + q + 3)

N − k − 2
. (3.16)
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Therefore, we have

lim
p/N→0

b
(0)
HD = b

(0)
LS.

Similarly, it is pointed that the constant term has the following property

b
(0)
HD = b

(0)
LS +OLS(N

−1/2),

where OLS(N
−1/2) denotes the order under the large-sample framework, i.e.,

under the case when p is fixed.

In order to get the relationship between b
(1)
LS and b

(1)
HD, we use that

trC = trΣ−1Ξ(Ip + Σ−1Ξ)−1 =

q∑
i=1

ωi
1 + ωi

=

q∑
i=1

(1 + ωi)− 1

1 + ωi
= q − η1ω,

trC2 = tr
{
Σ−1Ξ(Ip + Σ−1Ξ)−1

}2
=

q∑
i=1

(
ω2
i

1 + ωi

)2

=

q∑
i=1

(1 + ωi)
2 − 2(1 + ωi) + 1

(1 + ωi)2
= q − 2η1ω + η2ω.

Furthermore,

2

(
trC +

1

2
trC2 +

1

2
(trC)2

)
= q2 + 3q −Kω,

and similary

2

(
trCk +

1

2
trC2

k +
1

2
(trCk)

2

)
= q2 + 3q −Kψ.

These imply that

lim
p/N→0

b
(1)
HD = b

(1)
LS, and hence lim

p/N→0
bHD = bLS. (3.17)

It is also pointed that

b
(1)
HD = b

(1)
LS +OLS(N

−1/2), and hence bHD = bLS +OLS(N
−1/2). (3.18)
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4. High-Dimensional AIC Criteria

In order to get an asymptotic unbiased estimator of bk or Rk it is enough

to get asymptotic unbiased estimators for Kω and Kψ. Let W and B be the

matrices of sums of squares and products due to within-groups and between-

groups, respectively. Then, we know that W and B are independently dis-

tributed as Wp(N − q − 1,Σ) and Wp(q,Σ;NΞ). Further, let Wk and Bk

be the first k × k submatrices of W and B, respectively. Then, Wk and

Bk are independently distributed as Wk(N − q− 1,Σk) and Wk(q,Σk;NΞk),

respectively. When k is fixed, based on large-sample theory it is easy to see

that

E
[
tr(Ik +W−1

k Bk)
−i] = tr(Ik + Σ−1

k Ξk)
−i + Õ(N−1/2)

= ηiψ + k − q + Õ(N−1/2),

where Õ(N
−j) denotes the term of the jth order with respect to N−1 when

k is fixed. This suggests an asymptotic unbiased estimator of ηiψ defined by

η̃iψ = tr(Ik +W−1
k Bk)

−i − (k − q). (4.1)

Therefore, when k is fixed, we get an asymptotic unbiased estimator of Kψ

defined by

K̃ψ = 2(q + 2)η̃1ψ − η̃2ψ − η̃21ψ. (4.2)

Next we consider to estimate ηiω and ηiψ under HD1 or HD2. We use

high-dimensional estimators of ηiω and ηiψ defined by

η̂iω = (1− c)−itr

(
Ip +W−1B

)−i

− (1− c)−i(p− q), (4.3)

η̂iψ = (1− d)−itr

(
Ik +W−1

k Bk

)−i

− (1− d)−i(k − q). (4.4)

These estimators are asymptotically unbiased estimators as in Theorem

4.1 whose proof is given in Appendix.
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Theorem 4.1. Let η̂iω be the estimator in (4.3) of ηiω in (3.10). Suppose

that c = p/N → c0 ∈ (0, 1). Then,

E(η̂iω) = ηiω +O1/2(N
−1, p−1).

Similarly, let η̂iψ be the estimator in (4.4) of ηiψ in (3.12). Suppose that

d = k/N → d0 ∈ (0, 1). Then,

E(η̂iψ) = ηiψ +O1/2(N
−1, k−1).

Using (4.3) and (4.4) we have the following high-dimensional asymptotic

estimators of Kω and Kψ:

K̂ω = 2(q + 2)η̂1ω − η̂2ω − η̂21ω, K̂ψ = 2(q + 2)η̂1ψ − η̂2ψ − η̂21ψ. (4.5)

When d tends to zero, we can see that K̂ψ tends to K̃ψ. This means that the

estimator K̂ψ may be used even for the case when k is small. Therefore, we

propose the following high-dimensional estimator of bHD:

b̂HD = b
(0)
HD + b̂

(1)
HD, (4.6)

which may be used when k is small, where

b̂
(1)
HD =

(
N − q − 2

N − p− 2

)
K̂ω −

(
N − q − 2

N − k − 2

)
K̂ψ.

Theorem 4.2. Under the high-dimensional asymptotic framework HD2 it

holds that

E(b̂HD) = bk +O1/2(N
−1, p−1, k−1) (4.7)

Proof. From Theorem 4.1 we have

E(b̂HD) = bHD +O1/2(N
−1, p−1, k−1).

The final result is obtained by using Theorem 3.3.

Finally we propose the following high-dimensional AIC:

HAIC = ℓk(W,T ) + b
(0)
HD + b̂

(1)
HD. (4.8)
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We have seen that HAIC is an asymptotic unbiased estimator of Rk under

HD2. We have pointed some relationships between bLS and bHD. So we can

say that such relationships can be expected also for b̂LS and b̂HD.

When q = 1, we have

B =
N1N2

N
(x̄(1) − x̄(2))(x̄(1) − x̄(2))′, W = (N − 2)S,

where S is the usual pooled sample covariance matrix. Then, it is well known

(see, e.g., Fujikoshi et al. (2010)) that

ℓk(W,T ) = N log

{
1 +

a(D2 −D2
1)

N − 2 + aD2
1

}
+N log |{(N − 2)/N}S|

+Np(1 + log 2π),

where D and D1 are the Mahalanobis distances based on x and x1, respec-

tively, and a = (N1N2)/N . The quantity bk in (3.6) involves the unknown

parameters τ 2 and τ 21 , or equivalently ∆2 and ∆2
1. In a practical use it is

suggested to replace these by the following unbiased estimators (see, e.g.,

Fujikoshi et al. (2010)):

∆̃2 =
N − p− 3

N − 2
D2 − Np

N1N2

, ∆̃2
1 =

N − k − 3

N − 2
D2

1 −
Nk

N1N2

.

Therefore, it is suggested to use

H̃AIC = N log

{
1 +

a(D2 −D2
1)

N − 2 + aD2
1

}
+N log |{(N − 2)/N}S|

+Np(1 + log 2π)−Np+
Nk(N + 2)

N − k − 3
(4.9)

+N2{Q1(N, p, τ̃
2)−Q1(N, k, τ̃

2
1 )},

where τ̃ 2 = {(N1N2)/N
2}∆̃2 and τ̃ 21 = {(N1N2)/N

2}∆̃2
1. Here, we note that

H̃AIC is not exactly the same as HAIC with q = 1, but they are asymptoti-

cally equivalent in a high-dimensional sense. In fact, we have

1

1 + τ̃ 2
=

{
1 +

N1N2

N2

N − p− 3

N − 2
D2 − p

N

}−1

≈ (1− c)−1

{
1 +

N1N2

N
(x̄(1) − x̄(2))′W−1(x̄(1) − x̄(2))

}−1

,
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where ”≈” means an asymptotially equivalence in a high-dimensional frame-

work HD1. Further, using that (Ip + uv′)−1 = Ip − (1 + u′v)−1uv′,{
1 +

N1N2

N
(x̄(1) − x̄(2))′W−1(x̄(1) − x̄(2))

}−1

= tr

{
Ip +

N1N2

N
W−1(x̄(1) − x̄(2))(x̄(1) − x̄(2))′

}−1

− (p− 1)

= tr(Ip +W−1B)−1 − (p− 1).

Similarly

1

(1 + τ̃ 2)2
≈ (1− c)−2tr(Ip +W−1B)−2 − (1− c)−2(p− 1).

These imply that H̃AIC is asymptoticall the same as HAIC with q = 1.

5. Simulation Results

In this section, we attempt to give an impression of the relative perfor-

mances of AIC, CAIC and HAIC as an estimator of Rk through simulation

experiments. Furthermore, we also examine relative frequencies selected by

the criteria. The risk function Rk is expressed as

Rk = E∗
X [−2 log f(X; Θ̂k)] + bk,

where bk is defined by (2.7). The three information criteria are given as

AIC = ℓk(W,T ) + b
(0)
LS,

CAIC = ℓk(W,T ) + b
(0)
LS + b̂

(1)
LS,

HAIC = ℓk(W,T ) + b
(0)
HD + b̂

(1)
HD,

where ℓk(W,T ) = −2 log f(X; Θ̂k).

In our simulation experiments, we assume that the true model is

Mk∗ : x|Πi ∼ N(µ(i),Σ), (i = 1, . . . , q+1), µ
(1)
2·1 = · · · = µ

(q+1)
2·1 ; (p−k∗)×1.
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The covariance matrix was assumed to be Σ = Ip. We considered the follow-

ing three cases of (p, k∗, q):

P1; (p, k∗, q) = (5, 4, 2), P2; (p, k∗, q) = (10, 8, 2), P3; (p, k∗, q) = (20, 10, 2).

In our setting the elements of µ(i) = (µ
(i)
1 , . . . , µ

(i)
p )′ were determined as fol-

lows:

P1; p = 5, k∗ = 4, q = 2
j 1 2 3 4 5

µ
(1)
j 3.67 -3.67 0.00 0.00 0.00

µ
(2)
j 2.12 2.12 -4.24 0.00 0.00

µ
(3)
j 0.50 0.50 0.50 -1.50 0.00

P2; p = 10, k∗ = 8, q = 2
j 1 2 3 4 5 6 7 8 9 10

µ
(1)
j 0.95 0.95 0.95 0.95 0.95 -4.74 0.00 0.00 0.00 0.00

µ
(2)
j 0.80 0.80 0.80 0.80 0.80 0.80 -4.81 0.00 0.00 0.00

µ
(3)
j 0.23 0.23 0.23 0.23 0.23 0.23 0.23 -1.62 0.00 0.00

P3; p = 20, k∗ = 10, q = 2
j 1 2 3 4 5 6 7 8 9 10 11 · · · 20

µ
(1)
j 0.69 0.69 0.69 0.69 0.69 0.69 0.69 -4.86 0.00 0.00 0.00 · · · 0.00

µ
(2)
j 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 -4.90 0.00 0.00 · · · 0.00

µ
(3)
j 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 -1.64 0.00 · · · 0.00

The candidate models considered are considered Mk, k = 1, . . . , p. Let Σkk

and Ξkk be the first k × k matrices of Σ and Ξ, respectively. Let ωk1 ≥
ωk2 ≥ 0 be the possible non-zero roots of Σ−1Ξ. In our setting the roots were

determined as follows:

P1; p = 5, k∗ = 4, q = 2
k 1 2 3 4 5
ωk1 1.68 6.87 9.00 9.00 9.00
ωk2 NA 0.76 3.17 3.67 3.67

P2; p = 10, k∗ = 8, q = 2
k 1 2 3 4 5 6 7 8 9 10
ωk1 0.10 0.19 0.29 0.38 0.48 6.37 9.00 9.00 9.00 9.00
ωk2 NA 0.00 0.00 0.00 0.00 0.31 3.08 3.67 3.67 3.67
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P3; p = 20, k∗ = 10, q = 2
k 1 2 3 4 5 6 7 8 9 10 11 · · · 20
ωk1 0.10 0.19 0.29 0.38 0.48 6.37 9.00 9.00 9.00 9.00 9.00 · · · 9.00
ωk2 NA 0.00 0.00 0.00 0.00 0.31 3.08 3.67 3.67 3.67 3.67 · · · 3.67

(NA means that the value is not defined)

For the sample sizes (N1, N2, N3) the following three cases were considered:

Na; (N1, N2, N3) = (30, 30, 30), Nb; (N1, N2, N3) = (50, 50, 50),

Nc; (N1, N2, N3) = (100, 100, 100).

Then, first the averages of Rk, AIC, CAIC and HAIC were computed

with 10,000 replications. The results are given in Table 1. In Table 2 we

give differences between Rk and each of AIC, CAIC and HAIC. In Table 3

we give selected percentages of AIC, CAIC and HAIC.

From Table 1 and Table 2, the large sample approximations AIC and

CAIC perform well for P1. In the case of P1, we can see that CAIC is

better than AIC in the estimation of Rk. In contrast, the large sample

approximations AIC and CAIC are poor for P2 and P3. When p is large, we

can see that HAIC is better than AIC and CAIC in the estimation of Rk in

particular that sample size is small. In particular, the approximation HAIC

is the best of these approximations for all cases.

For model selections of AIC, CAIC and HAIC, from Table 3 the prob-

abilities of selecting the true model are increasing as the sample-sizes are

increasing. HAIC selects the true model with higher probabilities than does

AIC or CAIC.
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Table 1. Risks and the averages of AIC, CAIC and HAIC

The case: (P1, Na)
Mk Risk AIC CAIC HAIC
1 1555.9 1558.5 1552.8 1555.9
2 1412.0 1410.6 1408.2 1411.9
3 1316.8 1312.4 1312.2 1316.7
4 1309.6 1304.0 1304.0 1309.5
5 1312.5 1305.9 1305.9 1312.5

The case; (P1, Nb)
Mk Risk AIC CAIC HAIC
1 2577.9 2581.7 2576.1 2577.9
2 2334.9 2335.2 2332.8 2334.9
3 2173.7 2171.3 2171.1 2173.7
4 2159.3 2156.2 2156.2 2159.3
5 2162.0 2158.1 2158.1 2162.0

The case ; (P1, Nc)
Mk Risk AIC CAIC HAIC
1 5134.1 5139.4 5133.8 5134.7
2 4644.4 4646.2 4643.8 4644.8
3 4318.0 4317.3 4317.1 4318.4
4 4286.9 4285.2 4285.2 4286.8
5 4289.0 4287.2 4287.2 4289.0

The case; (P2, Na)
Mk Risk AIC CAIC HAIC
1 2971.4 2958.9 2951.2 2969.7
2 2966.1 2953.1 2945.7 2964.6
3 2961.7 2948.0 2940.8 2960.3
4 2958.0 2943.3 2936.3 2956.8
5 2955.0 2939.0 2932.3 2953.8
6 2791.2 2770.4 2767.0 2790.0
7 2666.5 2640.5 2640.2 2665.2
8 2657.9 2630.2 2630.2 2657.0
9 2661.2 2631.9 2631.9 2660.8
10 2664.9 2633.6 2633.6 2664.9

The case; (P2, Nb)
Mk Risk AIC CAIC HAIC
1 4892.0 4888.1 4880.5 4891.0
2 4881.6 4877.5 4870.2 4880.9
3 4872.4 4867.9 4860.7 4871.8
4 4864.0 4859.0 4852.1 4863.6
5 4856.5 4850.7 4844.0 4856.1
6 4579.7 4569.6 4566.2 4579.2
7 4367.3 4353.2 4352.9 4367.0
8 4350.5 4335.0 4335.0 4350.1
9 4353.3 4336.9 4336.8 4353.1
10 4356.2 4338.7 4338.7 4356.2

The case; (P2, Nc)
Mk Risk AIC CAIC HAIC
1 9707.2 9709.0 9701.5 9706.5
2 9684.3 9685.8 9678.4 9683.6
3 9663.2 9664.3 9657.2 9662.5
4 9644.1 9644.6 9637.6 9643.2
5 9626.0 9626.4 9619.7 9625.5
6 9067.7 9064.5 9061.1 9067.3
7 8638.1 8631.4 8631.1 8637.9
8 8600.6 8593.1 8593.1 8600.3
9 8602.6 8595.0 8595.0 8602.8
10 8605.3 8596.9 8596.9 8605.3
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The case; (P3, Na)
k Rk AIC CAIC HAIC
1 5803.5 5665.0 5657.0 5798.6
2 5802.0 5662.6 5654.8 5796.8
3 5800.5 5660.4 5652.7 5795.4
4 5799.7 5658.4 5650.8 5794.4
5 5798.7 5656.5 5649.1 5793.7
6 5798.0 5654.6 5647.4 5793.3
7 5797.9 5652.9 5645.9 5793.3
8 5632.6 5482.3 5478.6 5628.0
9 5502.4 5346.6 5346.1 5498.2
10 5494.2 5335.8 5335.6 5490.0
11 5498.5 5337.5 5337.2 5494.4
12 5502.8 5339.1 5338.9 5499.0
13 5507.3 5340.7 5340.5 5503.9
14 5511.8 5342.3 5342.1 5509.1
15 5517.0 5343.8 5343.7 5514.6
16 5522.6 5345.4 5345.3 5520.4
17 5528.2 5346.8 5346.7 5526.6
18 5534.4 5348.2 5348.2 5533.1
19 5540.3 5349.6 5349.6 5540.0
20 5547.3 5350.9 5350.9 5547.3

The case (P3, Nb)
k Rk AIC CAIC HAIC
1 9377.0 9307.3 9299.5 9374.8
2 9372.4 9302.3 9294.6 9370.1
3 9368.3 9297.4 9289.9 9365.8
4 9364.4 9292.8 9285.4 9361.8
5 9360.7 9288.4 9281.2 9358.2
6 9357.3 9284.4 9277.2 9354.9
7 9354.4 9280.5 9273.5 9352.1
8 9074.6 8996.6 8992.8 9072.5
9 8853.4 8770.3 8770.0 8851.0
10 8835.7 8751.4 8751.2 8833.6
11 8839.1 8753.2 8753.1 8836.8
12 8842.2 8755.0 8754.9 8840.2
13 8845.6 8756.8 8756.7 8843.6
14 8848.7 8758.5 8758.4 8847.2
15 8852.2 8760.2 8760.1 8850.8
16 8856.0 8762.0 8761.9 8854.7
17 8859.8 8763.6 8763.6 8858.7
18 8863.8 8765.3 8765.3 8862.8
19 8867.4 8767.0 8767.0 8867.1
20 8871.5 8768.7 8768.7 8871.5

The case; (P3, Na)
k Rk AIC CAIC HAIC
1 18423.7 18395.3 18387.6 18422.3
2 18411.7 18383.1 18375.6 18410.4
3 18401.3 18371.6 18364.1 18399.1
4 18390.5 18360.7 18353.3 18388.6
5 18380.8 18350.3 18343.1 18378.6
6 18371.0 18340.4 18333.3 18369.2
7 18361.7 18331.0 18324.0 18360.3
8 17797.4 17762.9 17759.2 17795.9
9 17349.0 17310.4 17310.1 17347.5
10 17310.5 17270.8 17270.7 17308.8
11 17313.1 17272.8 17272.7 17311.3
12 17315.6 17274.7 17274.6 17314.0
13 17318.8 17276.6 17276.5 17316.6
14 17321.0 17278.5 17278.4 17319.3
15 17323.6 17280.4 17280.3 17322.1
16 17325.5 17282.2 17282.2 17324.9
17 17328.5 17284.1 17284.1 17327.7
18 17331.5 17285.9 17285.9 17330.6
19 17333.8 17287.8 17287.7 17333.5
20 17336.6 17289.6 17289.6 17336.6
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Table 2. Differences of Risks and each of AIC, CAIC and HAIC

The case; P1

AIC CAIC HAIC
Mk Na Nb Nc Na Nb Nc Na Nb Nc

1 -2.6 -3.8 -5.3 3.1 1.8 0.3 0.0 0.0 -0.6
2 1.4 -0.3 -1.8 3.8 2.1 0.6 0.1 0.0 -0.5
3 4.4 2.5 0.8 4.6 2.7 0.9 0.2 0.1 -0.3
4 5.6 3.1 1.7 5.6 3.1 1.7 0.1 -0.1 0.1
5 6.7 3.8 1.9 6.7 3.8 1.9 0.0 0.0 0.0

The case; P2

AIC CAIC HAIC
Mk Na Nb Nc Na Nb Nc Na Nb Nc

1 12.5 3.9 -1.8 20.1 11.4 5.7 1.7 1.0 0.7
2 13.0 4.0 -1.5 20.5 11.4 5.8 1.6 0.7 0.7
3 13.7 4.5 -1.1 20.9 11.7 6.0 1.4 0.6 0.7
4 14.7 4.9 -0.4 21.6 11.9 6.5 1.2 0.3 0.9
5 16.0 5.8 -0.4 22.7 12.6 6.4 1.2 0.4 0.5
6 20.8 10.1 3.2 24.3 13.5 6.7 1.3 0.5 0.4
7 26.0 14.2 6.8 26.2 14.4 7.0 1.3 0.3 0.3
8 27.7 15.5 7.5 27.8 15.5 7.5 0.9 0.4 0.3
9 29.3 16.4 7.6 29.3 16.5 7.6 0.4 0.2 -0.2
10 31.3 17.5 8.3 31.3 17.5 8.3 0.0 0.0 0.0

The case; P3

AIC CAIC HAIC
Mk Na Nb Nc Na Nb Nc Na Nb Nc

1 138.5 69.6 28.4 146.5 77.5 36.1 4.9 2.2 1.4
2 139.4 70.1 28.6 147.2 77.8 36.2 5.2 2.2 1.3
3 140.1 70.9 29.7 147.8 78.5 37.1 5.1 2.5 2.1
4 141.3 71.6 29.8 148.9 79.0 37.1 5.3 2.5 1.9
5 142.3 72.3 30.5 149.7 79.6 37.7 5.0 2.5 2.2
6 143.4 72.9 30.5 150.7 80.1 37.7 4.7 2.4 1.8
7 145.0 73.8 30.6 152.1 80.9 37.6 4.7 2.3 1.4
8 150.2 78.0 34.5 154.0 81.7 38.2 4.5 2.1 1.5
9 155.8 83.1 38.6 156.3 83.4 38.9 4.3 2.4 1.5
10 158.4 84.3 39.6 158.6 84.4 39.7 4.1 2.1 1.7
11 161.0 85.9 40.4 161.3 86.0 40.4 4.1 2.2 1.8
12 163.7 87.2 41.0 163.9 87.3 41.0 3.8 2.0 1.7
13 166.6 88.9 42.2 166.7 89.0 42.3 3.4 2.0 2.2
14 169.6 90.2 42.5 169.7 90.3 42.5 2.8 1.5 1.7
15 173.2 92.0 43.2 173.3 92.1 43.2 2.4 1.4 1.5
16 177.2 94.0 43.3 177.3 94.1 43.3 2.1 1.2 0.6
17 181.4 96.2 44.4 181.4 96.2 44.5 1.6 1.1 0.8
18 186.1 98.5 45.6 186.2 98.5 45.6 1.2 1.0 0.9
19 190.7 100.4 46.0 190.8 100.4 46.0 0.3 0.3 0.2
20 196.4 102.9 47.0 196.4 102.9 47.0 0.0 0.0 0.0
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Table 3. Selected percentages of AIC, CAIC and HAIC

The case; P1

Na Nb Nc

Mk AIC CAIC HAIC AIC CAIC HAIC AIC CAIC HAIC
1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 7.1% 7.3% 11.7% 0.7% 0.8% 1.2% 0.0% 0.0% 0.0%
4 78.3% 78.5% 80.5% 84.9% 85.0% 88.6% 85.6% 85.7% 87.7%
5 14.6% 14.2% 7.9% 14.4% 14.2% 10.2% 14.4% 14.3% 12.3%

The case; P2

Na Nb Nc

Mk AIC CAIC HAIC AIC CAIC HAIC AIC CAIC HAIC
1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
7 4.2% 4.3% 10.6% 0.4% 0.4% 0.8% 0.0% 0.0% 0.0%
8 72.8% 73.0% 81.4% 79.3% 79.6% 88.4% 81.1% 81.2% 86.0%
9 14.7% 14.5% 6.5% 13.6% 13.4% 8.2% 12.5% 12.4% 10.0%
10 8.4% 8.2% 1.5% 6.7% 6.6% 2.6% 6.5% 6.4% 4.0%

The case; P3

Na Nb Nc

Mk AIC CAIC HAIC AIC CAIC HAIC AIC CAIC HAIC
1 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
2 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
4 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
5 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
6 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
7 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
9 3.7% 3.9% 12.0% 0.2% 0.2% 0.7% 0.0% 0.0% 0.0%
10 65.2% 65.6% 81.6% 73.5% 73.8% 88.4% 77.7% 78.0% 85.7%
11 12.2% 12.1% 5.1% 11.5% 11.5% 7.3% 10.9% 10.8% 8.7%
12 5.8% 5.6% 1.0% 5.5% 5.4% 2.4% 4.6% 4.6% 3.1%
13 3.7% 3.6% 0.2% 3.1% 3.0% 0.7% 2.3% 2.2% 1.1%
14 2.4% 2.4% 0.1% 1.9% 1.9% 0.3% 1.7% 1.7% 0.8%
15 1.7% 1.6% 0.0% 1.6% 1.5% 0.1% 0.9% 0.9% 0.3%
16 1.5% 1.5% 0.0% 0.9% 0.9% 0.0% 0.6% 0.6% 0.2%
17 1.1% 1.1% 0.0% 0.7% 0.6% 0.0% 0.5% 0.5% 0.1%
18 1.0% 1.0% 0.0% 0.6% 0.5% 0.0% 0.4% 0.4% 0.1%
19 0.8% 0.7% 0.0% 0.4% 0.4% 0.0% 0.2% 0.2% 0.0%
20 1.0% 0.9% 0.0% 0.3% 0.3% 0.0% 0.2% 0.2% 0.0%
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We have seen that

bHD = bLS +OLS(N
−1/2).

This means that asN is large, HIC approaches to CAIC. In order to reconfirm

this property, we tried the following additional experiments on P1:

Nd; (N1, N2, N3) = (150, 150, 150), Ne; (N1, N2, N3) = (200, 200, 200).

The results are given in Tables 4 and 5. We can see that HAIC approaches

to CAIC as N is large.

Table 4. Risks and the averages of AIC, CAIC and HAIC

The case: (P1, Nd)
Mk Risk AIC CAIC HAIC
1 7690.2 7695.3 7689.7 7690.3
2 6953.4 6955.3 6952.9 6953.6
3 6462.9 6462.7 6462.5 6463.3
4 6414.2 6413.6 6413.6 6414.6
5 6416.8 6415.6 6415.6 6416.8

The case; (P1, Ne)
Mk Risk AIC CAIC HAIC
1 10248.1 10253.3 10247.7 10248.1
2 9264.7 9266.2 9263.9 9264.4
3 8608.8 8608.1 8607.9 8608.6
4 8542.6 8542.2 8542.2 8543.0
5 8545.1 8544.2 8544.2 8545.1

Table 5. Differences of CAIC and HAIC

Mk Na Nb Nc Nd Ne

1 -3.2 -1.8 -0.9 -0.6 -0.4
2 -3.7 -2.1 -1.0 -0.7 -0.5
3 -4.5 -2.6 -1.3 -0.8 -0.6
4 -5.5 -3.2 -1.5 -1.0 -0.8
5 -6.7 -3.8 -1.9 -1.2 -0.9

6. Conclusive Remarks

In this paper, first we derived asymptotic formulas for the bias term in

the problem of estimating the AIC type of risk Rk in the multiple-groups
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case in the situation where the dimensions p and k may be large. The re-

sults were obtained without assuming that the true model is included in

the model Mk. It was shown that the high-dimensional approximations

are more useful than the large-sample approximations in a sense that the

large-sample approximations can be obtained from the high-dimensional ap-

proximations by considering their large-sample approximations. Based on

the high-dimensional results we proposed HAIC, which is a high-dimensional

asymptotic unbiased estimator of Rk under the high-dimensional framework

HD2. By simulation experiments, it was shown that for estimating the risk

function HAIC is better than the large sample AIC and its corrected CAIC

in a wide range. Further, it was pointed that HIC provides better model

selections than does AIC or CAIC. It was also noted that HAIC approaches

to CAIC as the sample size N is large.

A. Proofs of Theorems 3.1 and 4.1

Proof of Theorem 3.1.

For our derivation, we use the following properties (see Kabe (1964)) on

Wishart matrix: Let T ∼ Wp(n, Ip;NΩ) with n = N − 1, and T and Ω be

partitioned as

T =

(
T11 T12
T21 T22

)
, Ω =

(
Ω11 O
O O

)
,

respectively, where Tij : pi× pj and Ωij : pi× pj. If Ω12, Ω21 and Ω22 are zero

matrices, then

(1) T22·1 ∼ Wp2(n− p1, Ip2).

(2) T21T
−1/2
11 ∼ Np2×p1(O, Ip2 ⊗ Ip1).

(3) T11 ∼Wp2(n, Ip1 : Ω11).

(4) T22·1, T21T
−1/2
11 and T11 are independent.
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It is easy to see that

trT−1

{(
1 +

1

N

)
Ip + Ω

}
− trT−1

11

{(
1 +

1

N

)
Ip1 + Ω11

}
= trT−1

22·1
(
−T21T−1

11 Ip−p1
){(

1 +
1

N

)
Ip + Ω

}(
−T−1

11 T12
Ip−p1

)
=

(
1 +

1

N

)(
trW−1ZT−1

11 Z
′ + trW−1

)
+ trW−1ZT

−1/2
11 Ω11T

−1/2
11 Z ′,

where W = T22·1 = T22 − T21T
−1
11 T12 and Z = T21T

−1/2
11 . From the above

properties,

W ∼ Wp2(n− p1, Ip2), Z ∼ Np2×p1(O, Ip2 ⊗ Ip1), T11 ∼ Wp1(n, Ip1 : Ω11),

andW , Z and T11 are independent. Therefore, the required result is obtained

by computing these expectations.

Proof of Theorem 4.1.

Wemay assume that B andW are independently distributed asWp(q,Σ;NΞ)

and Wp(N − q − 1,Σ), respectively. Note that the noncentrality matrix NΞ

can be expressed as MM ′ with a p× q matrix M . Therefore, B and W can

be written as

W = Σ1/2AΣ1/2, B = Σ1/2ZZ ′Σ1/2,

where Z ∼ Np×q(Σ
−1/2M, Ip⊗ Iq), A ∼ Wp(N − q− 1), Ip), and Z and A are

independent. Let

Bq = Z ′Z and Wq = B1/2(ZA−1Z ′)−1B1/2.

Then, it is known (Wakaki, Fujikoshi and Ulyanov (2002) or Fujikoshi, Ulyanov

and Shimizu (2010)) thatBq andWq are independently distributed asWq(p, Iq;NΓ)

andWq(m, Iq), respectively, where Γ =M ′Σ−1M andm = N−p−1. Further,

the non-zero characteristic roots of BW−1 are equal to the ones of BqW
−1
q ,

and hence we have

tr(Ip +W−1B)−i = tr(Iq +W−1
q Bq)

−i + (p− q).
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Let U and V be defined by

1

p
Bq = Iq +

1

c
Θ+

1
√
p
U,

1

m
Wq = Iq +

1√
m
V,

with c = p/N . Then, under the asymptotic framework HD2 the limiting

distribution of (U, V ) is normal. We can see that

(1− c)(Iq +W−1
q Bq) = Iq + Γ +O1/2(N

−1, p−1).

Therefore,

(1− c)−itr(Ip +W−1B)−i

= (1− c)−itr(Iq +W−1
q Bq)

−i + (1− c)−i(p− q)

= tr(Iq + Γ)−i + (1− c)−i(p− q) +O1/2(N
−1, p−1).

The first result is obtained by noting that tr(Iq + Γ)−i = ηiω. Similarly the

second result is proved.
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