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Abstract

The AIC and Cp and their modifications have been proposed for

multivariate linear regression models under a large-sample framework

when the sample size n is large, but the dimension p is fixed. In this

paper, first we propose a high-dimensional AIC (denoted by HAIC)

which is approximately unbiased estimator of the risk under a high-

dimensional framework such that p/n → c ∈ (0, 1). It is noted that

our new criterion do work in a wide range of p and n. Recently

Yanagihara, Wakaki and Fujikoshi (2012) noted that AIC has a con-

sistency property under some assumption on a noncentrality matrix

when p/n → c ∈ [0, 1). In this paper we show that several crite-

ria including HAIC and Cp have also a consistency property under

a different assumption from the previous work on the noncentrality

matrix when p/n → c ∈ (0, 1). Our results are checked numerically

by conducting a Mote Carlo simulation.
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1. Introduction

We consider a multivariate linear regression of p response variables

Y1, . . . , Yp on a subset of k explanatory variables x1, . . . , xk. Suppose that

there are n observations on Y = (Y1, . . . , Yp)
′ and x = (x1, . . . , xk)

′, and let

Y : n×p and X : n×k be the observation matrices of Y and x with the sam-

ple size n, respectively. The multivariate linear regression model including

all the explanatory variables is written as

Y ∼ Nn×p(XΘ,Σ⊗ In), (1.1)

where Θ is a k × p unknown matrix of regression coefficients and Σ is a

p× p unknown covariance matrix. The notation Nn×p(·, ·) means the matrix

normal distribution such that the mean of Y isXΘ and the covariance matrix

of vecY is Σ⊗In, i.e., the rows of Y are independently normal with the same

covariance matrix Σ. We assume that n− p− k − 1 > 0, and rank(X) = k.

We consider the problem of selecting the best model from a collection of

candidate models specified by a linear regression of y on subvectors of x. A

generic candidate model can be expressed in terms of a subset j of the set

ω = {1, . . . , k} of integers and the matrix Xj consisting of the columns of X

indexed by the kj integers in j. The candidate model is expressed as

Mj : Y ∼ Nn×p(XjΘj,Σj ⊗ In), (1.2)

where Θj is a kj × p unknown matrix of regression coefficients and Σj is a

p× p unknown covariance matrix of the model j.

The AIC (Akaike, 1973) and Cp (Mallows, 1973) for Mj are given by

AIC = n log |Σ̂j|+ np(log 2π + 1) + 2

{
kjp+

1

2
p(p+ 1)

}
, (1.3)

Cp = (n− k)trΣ̂
−1

ω Σ̂j + 2pkj, (1.4)
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where nΣ̂j = Y′(In−Pj)Y and Pj = Xj(X
′
jXj)

−1X′
j. Note that Σ̂ω and Pω

are defined from Σ̂j and Pj as j = ω, and kω = k, Xω = X. In addition to

these criteria, there are several modifications such as CAIC, MAIC, Cp and

MCp (Bedrick and Tsai, 1994; Fujikoshi and Satoh, 1997; see Sections 2 and

3) which were proposed as approximately unbiased estimators of AIC-type

and Cp-type risks, based on a large-sample theory. The modifications were

studied by assuming that the true model is included into the full model Mω,

and the order of a standardized noncentrality matrix Ωj = Γ′
jΓj is O(n−1),

where Γj is a rj × p matrix and rj = k − kj.

In general, the approximations based on a large-sample framework be-

come inaccurate as the dimension p increases while the sample size n remains

fixed. On the other hand, in last year we encounter more and more problems

in applications when p is comparable with n or even exceeds it. So, it is im-

portant to examine behaviors of these criteria when the dimension is large,

for example, a high-dimensional framework such that

p/n → c ∈ (0, 1) (1.5)

In this paper we first derive a high-dimensional AIC denoted by HAIC

which is an asymptotic unbiased estimator of AIC-type risk under (1.5).

It is noted that HAIC includes AIC, CAIC and MAIC since they are ob-

tained from HAIC by considering large-sample asymptotic. Next we show

consistency properties of these criteria and Cp, MCp. Recently Yanagihara,

Wakaki and Fujikoshi (2012) pointed out that AIC and CAIC have a con-

sistency property under (1.5) when the order of noncentrality matrix ΓjΓ
′
j

is assumed to be O(pn). In this paper different consistency properties are

derived for HAIC, Cp, MCp and also AIC, CAIC under (1.5), when the order

of noncentrality matrix ΓjΓ
′
j is assumed to be O(n). Our results are also

checked numerically by conducting a Mote Carlo simulation.
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2. High-Dimensional AIC

As is well known, the AIC was proposed as an approximately unbiased

estimator of the expected log-predictive likelihood. Let f(Y;Θj,Σj) be the

density function of Y under Mj. Then the expected log-predictive likelihood

of Mj is defined by

RA = EYEYF
[−2 log f(YF; Θ̂j, Σ̂j)], (2.1)

where Σ̂j and Θ̂j are the maximum likelihood estimators of Σj and Θj under

Mj, respectively. Here YF : n×p may be regarded as a future random matrix

that has the same distribution as Y and is independent of Y. Furthermore, E

denotes the expectations with respect to the true model. The risk is expressed

as

RA = EYEYF
[−2 log f(Y; Θ̂j, Σ̂j)] + bA, (2.2)

where

bA = EYEYF
[−2 log f(YF; Θ̂j, Σ̂j) + 2 log f(Y; Θ̂j, Σ̂j)]. (2.3)

The AIC and its modifications have been proposed by regarding bA as the bias

term when we estimate RA by the −2×(maximum likelihood of the model j)

as

−2 log f(Y; Θ̂j, Σ̂j) = n log |Σ̂j|+ np(log 2π + 1),

and by evaluating the bias term bA. Although there are many bias-corrected

AICs, in this paper we take up two modifications CAIC (Bedrick and Tsai,

1994) and MAIC (Fujikoshi and Satoh, 1997). These modifications are ex-

pressed as

CAIC = AIC+
2(kj + p+ 1)

n− kj − p− 1

{
kjp+

1

2
p(p+ 1)

}
, (2.4)

MAIC = CAIC+2kjtr(Lj − Ip)− {tr(Lj − Ip)}2 − tr(Lj − Ip)
2, (2.5)

where Lj is defined by

Lj =
n− kj
n− k

Σ̂ωΣ̂
−1

j .
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For a justification of these criteria, it was assumed that the true model is

included in the full model Mω. We also assume it in this paper. Let Mj0 be

the smallest model including the true model, i.e.,

Mj0 : Y ∼ Nn×p(Xj0Θj0 ,Σj0 ⊗ In), (2.6)

where Xj0 is an n×kj0 matrix consisting of some columns of X, and Θj0 is a

kj0 × p unknown matrix of regression coefficients and Σj0 is a p× p unknown

covariance matrix of the true model. Then, the true model is defined as the

model Mj0 with given Θj0 and Σj0 . For simplicity, we write kj0 , Mj0 , Θj0 ,

Xj0 and Σj0 as k0, M0, Θ0, X0 and Σ0, respectively. Furthermore, we also

write the true model as M0 or j0, simply.

The bias properties of AIC, CAIC and MAIC have been studied under a

large-sample framework,

p and k are fixed, n → ∞, (2.7)

and the assumption

Ωj ≡ Σ
−1/2
0 (X0Θ0)

′(Pω −Pj)X0Θ0Σ
−1/2
0 = O(n). (2.8)

More precisely, the bias depends on Ω through the nonzero roots of Ω which

are the same as the roots of

Λj = nΣ0{nΣ0 + (X0Θ0)
′(Pω −Pj)X0Θ0}−1

= {Ip + (1/n)Σ−1
0 (X0Θ0)

′(Pω −Pj)X0Θ0}−1 (2.9)

The bias bA (see Fujikoshi and Satoh, 1997) was expanded as

bA = bAL +O(n−1), (2.10)

where

bAL =
2n

n− kj − p− 1

{
kjp+

1

2
p(p+ 1)

}
+ 2kjtr(Λj − Ip)− {tr(Λj − Ip)}2 − tr(Λj − Ip)

2.

(2.11)
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The results are summarized (see e.g., Fujikoshi and Satoh, 1997) as in the

Table 1. In the table, the overspecified model means the model which in-

cludes the true model and the underspecified model means the model which

is not the overspecified model. The terminologies “overspecified model” and

“underspecified model” are the same as in Fujikoshi and Satoh (1997).

Table 1: The orders of biases of AIC,CAIC,MAIC under (2.7)

Candidate model AIC CAIC MAIC
Underspecified O(1) O(1) O(n−1)
Overspecified O(n−1) 0 O(n−2)

Now we reevaluate the bias bA by the high-dimensional framework (1.5).

The standardized noncentrality matrix Ωj can be expressed as Ωj = Γ′
jΓj,

where Γj is a rj×p matrix and rj = k−kj. The bias depends on Ωj through

its characteristic roots which are the same as the ones of rj×rj matrix ΓjΓ
′
j.

So, we assume that

ΓjΓ
′
j = n∆j = Oh(n). (2.12)

where Oh(n
i) denotes the terms of i-th order with respect to n under (1.5).

Theorem 2.1. Suppose that the true model is included into the full model,

and is expressed as in (2.6). Then, under (1.5) and (2.12) the bias term bA

in (2.3) can be expanded as

bA = bAH +Oh(n
−1), (2.13)

bAH =
2n

n− kj − p− 1

{
kjp+

1

2
p(p+ 1)

}
− nrj(2kj + rj + 1)

n− kj − p− 1

+
n

n− kj − p− 1
{2(rj + kj + 1)ξ1 − ξ2} ,

(2.14)

where ξ1 = η1, ξ2 = η21 + η2, and

ηi = tr
(
Irj +∆j

)−i
= trΛi

j − (p− rj), i = 1, 2.
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Expanding bAH under a large-sample framework, and using that η1 =

tr(Λj − Ip) + rj and η2 = tr(Λj − Ip)
2 + 2tr(Λj − Ip) + rj, we have

bAH = bAL +O(n−1).

From this result it is expected that the high-dimensional approximation bAH

will work even in a large-sample situation.

For a practical use we need to find estimators for ξ1 and ξ2 under (1.5).

Naive estimators are given as

ξ̃1 = trΣ̂ωΣ̂
−1

j − (p− rj),

ξ̃2 =
{
trΣ̂ωΣ̂

−1

j − (p− rj)
}2

+ tr
(
Σ̂ωΣ̂

−1

j

)2

− (p− rj).
(2.15)

As one of the more preferable estimators we propose to use

ξ̂1 =
1

a1
ξ̃1, ξ̂2 =

1

a2
ξ̃2, (2.16)

where

a1 =
m− p

m
, m = n− k,

a2 =
a1[{m2 − (p− 1)m− 2}(rj + 1) + p]

(rj + 1)(m− 1)(m+ 2)
.

(2.17)

Let bAH be the one obtained from bAH by substituting ξ̂1 and ξ̂2 to ξ1 and ξ2,

respectively. Then, we propose HAIC by

HAIC = n log |Σ̂j|+ np(log 2π + 1) + b̂AH, (2.18)

which has the following property.

Theorem 2.2. Under assumption (1.5) the high-dimensional AIC, HAIC

defined by (2.18) satisfies the following properties:

(1) if Mj is an overspecified model, HAIC is an exact unbiased estimator of

RA,i.e.

E(HAIC) = RA.

(2) if Mj is an underspecified model,

E(HAIC) = RA +Oh(n
−1).
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3. Modifications of Cp

The Cp criterion was essentially proposed (for the univariate case, see

Mallows, 1973; for the multivariate case, see Sparks, Coutsourides and Troskie,

1983) as an approximately unbiased estimator of the mean squares of errors

of prediction. The risk of Mj may be defined by

RC = EYEYF
[trΣ−1

0 (YF − Ŷj)
′(YF − Ŷj)], (3.1)

where Ŷj is a predictor of Y under Mj given by Ŷj = XjΘ̂j = PjY. The

risk is expressed as

RC = EY[(n− k)trΣ̂
−1

ω Σ̂j] + bC, (3.2)

where

bC = EYEYF

[
trΣ−1

0 (YF − Ŷj)
′(YF − Ŷj)− (n− k)trΣ̂

−1

ω Σ̂j

]
. (3.3)

Similarly the Cp and its modification have been proposed by regarding bC as

the bias term when we estimate RC by a minimum values of standardized

residuals sum of squares as

(n− k)trΣ̂
−1

ω Σ̂j,

and by evaluating the bias term bC.

Assuming that the true model is included in the full model, and is given

by (2.6), Fujikoshi and Satoh (1997) showed that

bC = 2pkj −
p+ 1

n− p− k − 1
{(k − kj)p+ trΩj} . (3.4)

If Mj is an overspecified model, under a large-sample framework we have

bC = 2pkj +O(n−1),

and this leads to the usual Cp criterion. If Mj is an overspecified model, we

have

bC = 2pkj −
(k − kj)p(p+ 1)

n− p− k − 1
,
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and under a high-dimensional framework

bC
p

→ 2kj − (k − kj)
c

1− c
.

In general, we have an exact estimator for bC given by

b̂C = 2pkj − (p+ 1)trΣ̂
−1

ω (Σ̂j − Σ̂ω), (3.5)

which leads to a modified criterion

MCp = Cp − (p+ 1)trΣ̂
−1

ω (Σ̂j − Σ̂ω). (3.6)

Changing (3.6) to the same expression as in Yanagihara and Satoh (2010)

yields

MCp =

(
1− p+ 1

n− k

)
Cp + p(p+ 1)

(
2kj
n− k

+ 1

)
. (3.7)

It is expected that MCp does work well even in a high-dimensional case, since

it is an exact unbiased estimator.

4. Consistency of AIC and Its Modifications

In this section we show that the asymptotic probabilities of selecting

the true model by AIC and its modifications go to 1 as the sample size and

the dimension of response variables approaching to ∞ as in (1.5), under the

several assumptions. Let F be a set of candidate models, which is denoted by

F = {j1, . . . , jm}, and separate F into two sets, one is a set of overspecified

models, i.e., F+ = {j ∈ F | j0 ⊆ j} and the other is a set of underspecified

models, i.e., F− = Fc
+ ∩ F. Thus, the true model j0 can be regarded as

the smallest overspecified model. We denote the value of AIC for model Mj

by AIC(j). The same notations as the described above are used for other

criteria.

The best subsets of ω chosen by minimizing AIC, CAIC, MAIC and HAIC

are written as

ĵA = argmin
j∈F

AIC(j),

ĵMA = argmin
j∈F

MAIC(j),

ĵCA = argmin
j∈F

CAIC(j),

ĵHA = argmin
j∈F

HAIC(j).
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Here we list our main assumptions:

A1 (The true model): j0 ∈ F.

A2 (The asymptotic framework): p → ∞, n → ∞, p/n → c ∈ (0, 1).

A3 (The noncentrality matrix):

For j ∈ F−, ΓjΓ
′
j = n∆j = Oh(n) and lim

p/n→c
∆j = ∆∗

j .

Theorem 4.1. Suppose that the assumptions A1, A2 and A3 are satisfied.

(1) Let ca (≈ 0.797) be the constant satisfying log(1− ca)+2ca = 0. Further,

assume that c ∈ (0, ca), and

A4: For any j ∈ F− with k0 − kj ≥ 0,

log |Irj +∆∗
j | > (k0 − kj){2c+ log(1− c)}.

Then, the asymptotic probability of selecting the true model j0 by AIC

tends to 1, i.e.

lim
p/n→c

P (ĵA = j0) = 1.

(2) Suppose that the following assumption A5 is satisfied.

A5: For any j ∈ F− with k0 − kj ≥ 0,

log |Irj +∆∗
j | > (k0 − kj)

{
c

1− c
+

c

(1− c)2
+ log(1− c)

}
.

Then, the asymptotic probability of selecting the true model j0 by CAIC,

MAIC and HAIC tends to 1, i.e.

lim
p/n→c

P (ĵTA = j0) = 1,

where TA = CA,MA or HA.
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Yanagihara, Wakaki and Fujikoshi (2012) have shown a consistency of

AIC and CAIC. They assumed ΓjΓ
′
j = Oh(pn) instead of A3, but without

A4 and A5. We note that when ΓjΓ
′
j = Oh(pn), the assumptions 4 and 5

are satisfied.

5. Consistency of Cp and MCp

In this section we show that the selection-probabilities of selecting the

true model by Cp and MCp go to 1 as the sample size and the dimension of

response variables approaching to ∞ as in (1.5), under some assumptions.

Similar notations as in Section 3.1 are used.

The best subsets of ω chosen by minimizing Cp and MCp are written as

ĵC = argmin
j∈F

Cp(j), ĵMC = argmin
j∈F

MCp(j)

Theorem 5.1. Suppose that the assumptions A1, A2 and A3 are satisfied.

(1) Suppose that 0 < c < 1/2, and

A6: For any j ∈ F− with k0 − kj > 0,

tr∆∗
j > (k0 − kj)c(1− 2c).

Then, the asymptotic probability of selecting the true model j0 by Cp tends

to 1, i.e.

lim
p/n→c

P (ĵC = j0) = 1.

(2) Suppose that

A7: For any j ∈ F− with k0 − kj > 0,

tr∆∗
j > (k0 − kj)c.
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Then, the asymptotic probability of selecting the true model j0 by MCp

tends to 1, i.e.

lim
p/n→c

P (ĵMC = j0) = 1.

For a consistency of Cp we need to assume 0 < c < 1/2 and A6 for the

constant c. On the other hand, for a consistency of MCp we need to assume

A7 only for the constant c.

6. Simulation study

In this section, we numerically examine the validity of our claim. The

five candidate models jα = {1, . . . , α} (α = 1, . . . , 5), with several different

values of n and p = cn, were prepared for Monte Carlo simulations, where n =

20, 50, 100, 500 and c = 0.1, 0.2, 0.4. We generated z1, . . . zn ∼ i.i.d. U(−1, 1).

Using z1, . . . zn, we constructed a n × 5 matrix of explanatory variables X

where the (a, b)th element was defined by zb−1
a (a = 1, . . . , n; b = 1, . . . , 5).

The true model was determined by Θ0 = 13θ
′
0 and Σ0 = Ψ

1/2
0 {(0.2)Ip +

(0.8)1p1
′
p}Ψ

1/2
0 , where 1p is the p-dimensional vector of ones, and

θ0 = 2(1, (−0.9), . . . , (−0.9)p−1)′, Ψ0 = 2Ip − diag(0, 1/p, . . . , (p− 1)/p).

Thus, j1 and j2 were underspecified models, and j3, j4 and j5 were over-

specified models. Moreover, j3 was the true model. In the above simulation

model, convergent values in the conditions for consistency were calculated as

log |I4 −∆∗
j1
| ≈ 3.145, tr∆∗

j1
≈ 22.222,

log |I3 −∆∗
j2
| ≈ 1.737, tr∆∗

j2
≈ 4.678.

Hence, in the simulated data, all the criteria were consistent in variable

selection as p/n → c.

First, we studied performances of AIC, CAIC, MAIC and HAIC as esti-

mators of RA. For each of j1, . . . , j5, we computed the average of RA, AIC,
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Table 2: Risks and biases of AIC, CAIC, MAIC and HAIC when n = 20, 50

k RA AIC CAIC MAIC HAIC RA AIC CAIC MAIC HAIC
(n, p) = (20, 2) (n, p) = (20, 4)

1 168.1 -1.97 -4.47 -1.10 -0.80 272.9 6.92 -5.08 -1.74 -0.65
2 141.9 0.18 -4.49 -1.33 -0.58 249.6 13.08 -6.31 -2.69 -0.69
3 130.5 7.58 -0.13 -0.06 -0.13 239.9 28.99 -0.34 -0.15 -0.34
4 135.9 11.70 -0.15 -0.11 -0.15 255.5 42.37 -0.18 -0.09 -0.20
5 142.5 17.13 -0.21 -0.21 -0.21 274.5 59.57 -0.43 -0.43 -0.43

(n, p) = (20, 8) (n, p) = (50, 5)
1 517.9 80.25 -7.75 -4.49 -1.36 733.7 1.35 -5.16 -1.77 -1.19
2 524.5 116.18 -10.93 -7.44 -1.89 673.2 3.75 -5.77 -1.85 -0.95
3 556.7 178.96 -1.04 -0.44 -1.01 613.8 12.55 -0.62 -0.59 -0.62
4 631.2 251.39 -1.19 -0.87 -1.15 622.4 16.97 -0.53 -0.51 -0.54
5 734.7 354.10 -0.57 -0.57 -0.57 631.5 21.91 -0.65 -0.65 -0.65

(n, p) = (50, 10) (n, p) = (50, 20)
1 1260.6 35.98 -5.07 -1.84 -0.46 2552.2 355.76 -5.67 -2.64 0.66
2 1209.5 46.33 -6.37 -2.47 -0.42 2557.8 418.50 -7.42 -4.01 0.88
3 1152.1 66.14 0.03 0.14 0.02 2564.9 500.87 2.41 2.82 2.43
4 1175.1 81.44 0.01 0.06 0.00 2658.5 582.97 2.97 3.18 2.98
5 1199.7 98.61 -0.21 -0.21 -0.21 2760.4 674.34 2.68 2.68 2.68

CAIC, MAIC and HAIC by Monte Carlo simulations with 10,000 replica-

tions. Table 2 shows the risk RA and biases of AIC, CAIC, MAIC and HAIC

to RA, defined by RA−(the expectation of the information criterion). In the

table, the bold face denotes the true model. Since the tendencies of results

were almost the same, we omit the result in the case n = 100 and 500 to

save the space. From the table, we can see that the biases of the HAIC were

the smallest in most cases. Especially, the desirable characteristic of HAIC

appeared prominently in the underspecified models. Moreover, in the over-

specified, performances of CAIC, MAIC and HAIC were almost the same. In

the all criteria, the more increased dimension was, the larger bias appeared.

Next, we studied the probabilities of selecting the model by the AIC,

CAIC, MAIC, HAIC, Cp and MCp, which were evaluated by Monte Carlo

simulations with 10,000 iterations. Table 3 shows the probability of selecting
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the underspecified models, the true model and the overspecified models by

each criterion. In the table, columns in F−, j0 and F+ express the probability

of selecting the underspecified models, the true model and the overspecified

models, respectively. From the table, we can see that all the criteria were

consistent in variable selection as p/n → c. However, selection probabilities

using Cp were slower to converge to 1 than other criteria. Under finite sample

and dimension, when c was small, the performances of CAIC, MAIC and

HAIC were better than those of AIC,Cp and MCp. On the other hand, when

c was large, the performances of MCp were better than those of AIC CAIC,

MAIC, HAIC and Cp.
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Appendix

A. Preliminary Lemmas

We give three Lemmas which are used in the proofs of Theorems 1 ∼
4. The following Lemma has been essentially used in Sakurai, Nakata and

Fujikoshi (2012).

Lemma A.1. Let T ∼ Wp(n, Ip;Ω), and T and Ω be partitioned as

T =

(
T11 T12

T21 T22

)
, Ω =

(
Ω11 Ω12

Ω21 Ω22

)
,

respectively, where Tij : pi × pj and Ωij : pi × pj. If Ω12, Ω21 and Ω22 are

zero matrices, then

E[trT−1A] =
m− p1 − 1

m− p− 1
E[trT−1

11 A11] +
1

m− p− 1
trA22,

where A is a p × p constant matrix partitioned in the same way as the par-

titions of T.

The following Lemma was given in Fujikoshi (1985).

Lemma A.2. Suppose that T ∼ Wr(n − k, Ir;n∆), and let A; r × r be a

constant matrix. If r, k and ∆ are fixed and n tends to infinity, then

E[trT−1A] =
1

n
trAΨ+

1

n2

{
(r + k + 2)trAΨ2

+trΨtrAΨ− trAΨ3 − trΨtrAΨ2
}
+O(n−3),

where Ψ = (Ir +∆)−1.

Lemma A.3. Let Sh = X′X and Se be independently distributed as Wp(q,

Ip;M
′M) and Wp(n, Ip), respectively. Here X is a q×p random matrix whose
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elements are independent normal variables with E(X) = M and the common

variance 1. Put

B = XX′ and W = B1/2(XS−1
e X′)−1B1/2.

Then:

(1) B and W are independently distributed as Wq(p, Iq;MM′) and Wq(n−
p+ q, Iq), respectively.

(2) The nonzero characteristic roots of ShS
−1
e are the same as those of

BW−1. In particular

|Se|
|Se + Sh|

=
|W|

|W + B|
, trShS

−1
e = trBW−1,

and

trSe(Se + Sh)
−1 − (p− q) = trW(W + B)−1,

tr
{
Se(Se + Sh)

−1
}2 − (p− q) = tr

{
W(W + B)−1

}2
.

Lemma A.3 was essentially obtained in Wakaki, Fujikoshi and Ulyanov

(2002) and Fujikoshi, Ulyanov and Fujikoshi (2010).

B. Proof of Theorem

B.1. Proof of Theorem 2.1

We can write the bias term bA in (2.3) as

bA = E∗
YE

∗
YF
[trΣ̂

−1

j (YF −XjΘ̂j)
′(YF −XjΘ̂j)]− np

= E∗
Y[trΣ̂

−1

j {nΣ0 + (X0Θ0 −XjΘ̂j)
′(X0Θ0 −XjΘ̂j)}]− np.

Noting that Σ̂j and XjΘ̂j are independent, we can see that

bA = nE[trT−1{(n+ kj)Ip +Ωj}]− np, (B.1)
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where T ∼ Wp(n− kj, Ip;Ωj). The noncentrality matrix can be expressed as

Γ′
jΓj, where Γj is a rj × p matrix. We may consider the case p > rj since p

tends to infinity. Then we may regard Ωj as

Ωj =

(
Ω11,j O
O O

)
, Ω11,j = ΓjΓ

′
j.

This is shown by considering an orthogonal transformation T → H′TH.

Putting A = (n+ kj)Ip +Ωj, and using Lemma A.1, we can reduce bA as

bA = n

[
n− kj − rj − 1

n− kj − p− 1
E[trT−1

11 A11] +
(p− rj)(n+ kj)

n− kj − p− 1

]
− np.

Further, noting that Ω11,j = n∆j, T11 ∼ Wrj(n − kj, Irj ;n∆j), and using

Lemma A.2, we obtain

E[trT−1
11 A11] = rj +

1

n
{2(rj + kj + 2)trΨj − (trΨj)

2 − trΨ2
j}+O(n−2),

where Ψj = (Irj +∆j)
−1. From these we obtain (2.13).

B.2. Proof of Theorem 2.2

When we consider the distribution of the naive estimators in (2.15), we

may express as

ξ̃1 = trQ, ξ̃2 = (trQ)2 + trQ2,

where Q = W(W + B)−1. Here W and B are independently distributed as

Wrj(m− p, Irj) and Wrj(p, Irj ;n∆j), respectively.

First consider the case when Mj is an overspecified model, then ∆j = O.

Then Q is distributed as a multivariate beta distribution Brj(m− p, p). Fur-

thermore, we have the following moments from Fujikoshi and Satoh (1997).

E[trQ] = a1rj, E[(trQ)2 + trQ2] = a2rj(rj + 1).

Therefore

E[b̂AH] =
2n

n− kj − p− 1

{
kjp+

1

2
p(p+ 1)

}
− nrj(2kj + rj + 1)

n− kj − p− 1

+
n

n− kj − p− 1

{
2(rj + kj + 1)rj − r2j − rj

}
=

2n

n− kj − p− 1

{
kjp+

1

2
p(p+ 1)

}
,
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which shows Theorem 2.2 (1).

Next consider the proof of Theorem 2.2 (2). Let U and V be defined by

1

p
B = Irj +

n

p
∆j +

1
√
p
U,

1

m− p
W = Irj +

1√
m− p

V.

Then W−1B is expanded as

W−1B =
p

m− p

(
Irj +

1√
m− p

V

)−1(
Irj +

n

p
∆j +

1
√
p
U

)
=

p

m− p

[
Irj +

n

p
∆j +

{
1
√
p
U− 1√

m− p
V(Irj +

n

p
∆j)

}]
+Oh(n

−1),

by using (
Irj +

1√
m− p

V

)−1

= Irj −
1√

m− p
V +Oh(n

−1).

This implies the following:

ξ̂1 = ξ1 + b1 +Oh(n
−1),

ξ̂2 = ξ2 + b2 +Oh(n
−1),

where b1 and b2 are homogeneous expressions of degree 1 with respect to the

elements of U and V. From these we can see that E[ξ̂1] = ξ1 +Oh(n
−1), and

E[ξ̂2] = ξ2 +Oh(n
−1). This implies Theorem 2.2 (2).

B.3. Proof of Theorem 4.1

First we consider behavior of |Σ̂ω|/|Σ̂j| for a candidate model j ∈ F. It

is easy to see that
|Σ̂ω|
|Σ̂j|

=
|Se|

|Se + (Sj − Se)|
,

where Se and Sj − Se are independently distributed as Wp(n − k, Ip) and

Wp(rj, Ip;Ωj), respectively. Using Lemma A.3, we obtain an expression in

terms of rj × rj matrices given by

|Σ̂ω|
|Σ̂j|

=
|W|

|W + B|
, (B.2)
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where W and B are independently distributed as Wrj(n − k − p + rj, Irj)

and Wrj(p, Irj ;ΓjΓ
′
j), respectively. Using A3 and rj = k − kj, the distri-

butions of W and B are the same as the ones of Wrj(n − kj − p, Irj) and

Wrj(p, Irj ;n∆j), respectively. Based on a well-known asymptotic method on

Wishart distributions, we can see that under A2

1

n
B

p→ cIrj +∆∗
j ,

1

n
W

p→ (1− c)Irj , (B.3)

which implies
|Σ̂ω|
|Σ̂j|

p→ (1− c)rj

|Irj +∆∗
j |
,

where
p→ denotes the convergence in probability. Therefore, we have

1

n
{AIC(j)− AIC(j0)} = − log

|Σ̂ω|
|Σ̂j|

+ log
|Σ̂ω|
|Σ̂0|

+ 2(kj − k0)
p

n
p→ (kj − k0){2c+ log(1− c)}+ log |Irj +∆∗

j | ≡ dA(j). (B.4)

Here we used ∆∗
j = O when j ∈ F+. Note that if 0 < c < c0, 2c+log(1−c) >

0.

If j ∈ F+ and j ̸= j0, (kj − k0) > 0, ∆∗
j = O, and

dA(j) = (kj − k0){2c+ log(1− c)} > 0 for 0 < c < c0.

On the other hand, if j ∈ F−, dA(j) > 0 when (kj − k0) > 0. Therefore, if

A4 holds, dA(j) > 0 except for j = j0. This implies Theorem 4.1 (1).

Next we consider the case of CAIC. From (2.4),

1

n
{CAIC(j)− CAIC(j0)} =

1

n
{AIC(j)− AIC(j0)}+ AD(j),

where

AD(j) =
2(kj + p+ 1)

n(n− kj − p− 1)

{
kjp+

1

2
p(p+ 1)

}
− 2(k0 + p+ 1)

n(n− k0 − p− 1)

{
k0p+

1

2
p(p+ 1)

}
.

20



It is easy to see that

lim
p/n→c

AD(j) = (kj − k0)

{
2c2

1− c
+

c2

(1− c)2

}
.

Therefore,
1

n
{CAIC(j)− CAIC(j0)}

p→ dCA(j), (B.5)

where

dCA(j) = (kj − k0)

{
c

1− c
+

c

(1− c)2
+ log(1− c)

}
+ log |Irj +∆∗

j |.

By the same discussion as in the consistency ot AIC based on dCA(j) we can

show Theorem 4.1 (2) in the case of CAIC.

For the case of MAIC and HAIC, we can see that the additional parts to

CAIC converge to zero. For example,

1

n
{2kjtr(Lj − Ip)− {tr(Lj − Ip)}2 − tr(Lj − Ip)

2} p→ 0.

These complete the proof of Theorem 4.1.

B.4. Proof of Theorem 5.1

We use the same notation as in the proof of Theorem 4.1. For a candidate

model j ∈ F, we have

trΣ̂
−1

ω Σ̂j = trS−1
e {Se + (Sj − Se)}

= p+ tr(Sj − Se)S
−1
e = p+ trBW−1.

Therefore

Cp(j)− Cp(j0) = (n− k)
(
trBW−1 − trB0W

−1
)
+ 2p(kj − k0),

where B0 ∼ Wp(k − k0, Ip). Using (B.3),

trBW−1 p→ 1

1− c

(
crj + tr∆∗

j

)
, trB0W

−1 p→ c(k − k0)

1− c
,

and hence
1

n
{Cp(j)− Cp(j0)}

p→ dC(j), (B.6)
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where

dC(j) = (kj − k0)c

(
1− 2c

1− c

)
+

1

1− c
tr∆∗

j .

If j ∈ F+ and j ̸= j0, (kj − k0) > 0, ∆∗
j = O, and

dC(j) =
(kj − k0)c(1− 2c)

1− c
> 0 for 0 < c < 1/2.

On the other hand, if j ∈ F−, dC(j) > 0 when (kj − k0) > 0 and c > 0.

Therefore, if A6 holds, dC(j) > 0 except for j = j0. This implies Theorem

5.1 (1).

For the proof of (2), it follows from (3.7) that

1

n
{MCp(j)−MCp(j0)} =

(
1− p+ 1

n− k

)
1

n
{Cp(j)− Cp(j0)}

+
2p(p+ 1)

n(n− k)
(kj − k0).

Note that limp/n→c(p+1)/(n−k) = 1−c and limp/n→c 2p(p+1)/{n(n−k)} =

2c2. Therefore we have

1

n
{MCp(j)−MCp(j0)}

p→ c(kj − k0) + tr∆∗
j ≡ dMC(j). (B.7)

By the same discussion as in the proof of (1), we can show (2).
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