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Abstract

Multivariate generalized ridge (MGR) regression was proposed by Yanagihara, Nagai, and Satoh

(2009) in order to avoid the multicollinearity problem in multivariate linear regression models. The

MGR estimator is defined by using multiple nonnegative ridge parameters in an ordinary least-squares

(LS) estimator. In order to optimize these ridge parameters, Yanagihara, Nagai, and Satoh (2009) and

Nagai, Yanagihara, and Satoh (2012) proposed several optimization methods. We focus on the plug-

in optimization method, which is an estimation method for the principal optimal ridge parameters

that minimizes the predicted mean squared error. The plug-in optimization method is a repeating

method that uses the current ridge parameters estimate as input in order to obtain an improved

estimate. In the present paper, we propose two criteria for choosing the number of repetitions. We

conducted several numerical studies using the proposed information criterion to compare the LS and

MGR estimators with the optimized ridge parameters based on some ordinary plug-in optimization

methods, and those obtained by using the optimized multiple plug-in optimization method.

Key words: Generalized ridge regression; Multivariate linear regression model; Plug-in optimization

method; Shrinkage estimator.

1. Introduction

In the present paper, we consider a multivariate linear regression model with n observations of a

p-dimensional vector of response variables and a k-dimensional vector of regressors (for more detailed

information, see for example, Srivastava, 2002, Chapter 9; Timm, 2002, Chapter 4). Let Y , X, and

E be the n× p matrix of response variables, the n× k matrix of nonstochastic centered explanatory

variables (i.e., X ′1n = 0k) of rank(X) = k, and the n × p matrix of error variables, respectively,

where n is the sample size, 1n is an n-dimensional vector of ones, and 0k is a k-dimensional vector

of zeros. Suppose that n− k − p− 2 > 0 and E ∼ Nn×p(On×p,Σ⊗ In), where Σ is a p× p unknown

covariance matrix, rank(Σ) = p, and On×p is an n× p matrix of zeros. Then the matrix form of the
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multivariate linear regression model is expressed as

Y = 1nµ′ + XΞ + E , (1.1)

where µ is a p-dimensional unknown location vector and Ξ is a k × p unknown regression coefficient

matrix. We can also express the model (1.1) as Y ∼ Nn×p(1nµ
′ + XΞ,Σ ⊗ In).

The maximum-likelihood or least-squares (LS) estimators of µ and Ξ are given by µ̂ = Y ′1n/n

and Ξ̂ = (X ′X)−1X ′Y , respectively, because X ′1n = 0k. Since µ̂ and Ξ̂ are simple forms and

are unbiased estimators of µ and Ξ, they are widely used in actual data analysis, see, e.g., Dien et

al. (2006), Sârbu et al. (2008), Saxén and Sundell (2006), Skagerberg, Macgregor, and Kiparissides

(1992), and Yoshimoto, Yanagihara, and Ninomiya (2005). However, when multicollinearity occurs

in X, the estimator of Ξ becomes unstable. In order to avoid this problem, multivariate generalized

ridge (MGR) regression for the model in (1.1) was proposed by Yanagihara, Nagai, and Satoh (2009)

(the original generalized ridge regression when p = 1 in the model (1.1) was proposed by Hoerl and

Kennard (1970)). The MGR estimator is defined by using multiple ridge parameters θ = (θ1, . . . , θk)
′,

(θi ≥ 0, i = 1, . . . , k). Nagai, Yanagihara, and Satoh (2012) showed that the principal optimal θ that

minimizes the predicted mean squared error (PMSE) is obtained in closed form with the unknown

regression coefficient vector and covariance matrix.

In order to estimate the principal optimal θ, Nagai, Yanagihara, and Satoh (2012) proposed the

plug-in optimization method. By replacing the LS and unbiased estimators for Σ with unknown

values, the single plug-in optimized ridge parameters were derived. However, when multicollinearity

occurs, the optimized ridge parameters tend to be too small since the LS estimator tends to have

a large variance. Thus, to avoid under evaluation, Nagai, Yanagihara, and Satoh (2012) considered

using the MGR estimator based on the single plug-in optimized ridge parameters instead of using

the LS estimator. The double plug-in optimized ridge parameters were also derived. Repeating this

renewal method, we obtained the multiple plug-in optimized ridge parameters derived from the MGR

estimator based on the initial optimized ridge parameters. Let s (s = 1, 2, 3, . . .) be the number of

repetitions in the multiple plug-in optimization method. Note that the single plug-in optimized ridge

parameters are obtained when s = 1 and the double ones are obtained when s = 2. In the present

paper, we wish to find the value of s that minimizes the PMSE. In order to choose s, we propose

two information criteria.

The remainder of the present paper is organized as follows: In Section 2, we illustrate the MGR

estimator and a target PMSE. We also introduce the multiple plug-in optimization method. In

Section 3, we propose some criteria for choosing the number of repetitions in the multiple plug-in

optimization method. In Section 4, we compare the optimization methods by conducting numerical

studies.
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2. Preliminaries

In this section, we introduce the MGR estimator and the principal optimal θ that minimizes

the PMSE. Yanagihara, Nagai, and Satoh (2009) proposed the MGR estimator, which is defined as

follows:

Ξ̂„ = (X ′X + QΘQ′)−1X ′Y , (2.1)

where Θ = diag(θ) is a k × k diagonal matrix and Q is a k × k orthogonal matrix that diagonalizes

X ′X, i.e., Q satisfies Q′X ′XQ = D, where D = diag(d1, . . . , dk) and d1, . . . , dk are the eigenvalues

of X ′X. This estimator coincides with the LS estimator when θ = 0k, and it coincides with the

ridge estimator for the model (1.1) proposed by Yanagihara and Satoh (2010) when θ = λ1k for

λ ≥ 0.

Using the same orthogonal transform as was used by Nagai, Yanagihara, and Satoh (2012), the

model (1.1) can be rewritten as follows:

Z = L

(
Γ
µ′

)
+ V ,

where Γ = (γ1, . . . , γk)
′ = Q′Ξ, Z = (z1, . . . , zn)′ = P ′

1Y , V = (ν1, . . . , νn)′ = P ′
1E , L =

(diag(
√

d1, . . . ,
√

dk,
√

n),Ok+1,n−k−1)
′, and P1 is an n × n orthogonal matrix that diagonalizes

(X,1n)(X,1n)′, that is, P1 satisfies P ′
1(X,1n)(X,1n)′P1 = LL′. When p = 1, this transformation

was used in Goldstein and Smith (1974), and by others. Nagai, Yanagihara, and Satoh (2012) showed

that Z ∼ Nn×p(M,Σ ⊗ Ip), where M = (m1, . . . , mn)′ = L(Γ′, µ)′. The MGR estimator of Γ is

defined by Γ̂„ = Q′Ξ̂„, thus Γ̂„ = (D +Θ)−1C ′Z where C = (D1/2, Ok,n−k)
′, which is equivalent to

the estimator obtained by substituting D + Θ into D in the LS estimator of Γ, i.e., Γ̂ = D−1C ′Z.

Then the PMSE of Ẑ„ = L(Γ̂′
„, µ̂)′, which is the predictor of Z, is defined as follows:

PMSE[Ẑ„] = E[r(V , Ẑ„)], (2.2)

where V ∼ Nn×p(M,Σ⊗In), V ⊥⊥Z, and the function r(·, ·) is defined by the following discrepancy

function for measuring the distance between any n × p matrices A and B:

r(A,B) = tr{(A − B)Σ−1(A − B)′}. (2.3)

From some simple calculations, we obtain PMSE[Ẑ„] = np + E[r(Ẑ„, M)]. Nagai, Yanagi-

hara, and Satoh (2012) showed that θ∗ = (θ∗1, . . . , θ
∗
k)

′, the principal optimal θ with minimized

E[r(Ẑ„, M)], is derived as follows:

θ∗i =
p

γ ′
iΣ

−1γi

, (i = 1, . . . , k). (2.4)
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However, θ∗i , (i = 1, . . . , k) cannot be used for estimating Ξ since it includes the unknowns γi and

Σ.

Nagai, Yanagihara, and Satoh (2012) proposed the single plug-in optimization method by sub-

stituting γ̂i = zi/
√

di, (i = 1, . . . , k), which is the ith row of Γ̂, for γi, (i = 1, . . . , k); and

S =
∑n

i=k+2 ziz
′
i/(n − k − 1), which is an unbiased estimator for Σ, for Σ in θ̂∗i , (i = 1, . . . , k)

which is in equation (2.4). Then the estimator for θ∗i , (i = 1, . . . , k) from the single plug-in optimiza-

tion method is derived as follows:

θ̂
[1]
i =

p

γ̂ ′
iS

−1γ̂i

=
dip

ti
, (i = 1, . . . , k), (2.5)

where ti = z′
iS

−1zi, (i = 1, . . . , k).

When multicollinearity occurs, we consider using the MGR estimator. However, in that case, θ̂
[1]
i ,

(i = 1, . . . , k) tends to be too small since it depends heavily on γ̂i, and the variance of γ̂i becomes

large. In order to avoid this problem, we can use the MGR estimator based on the single plug-in

optimization method instead of using the LS estimator because the variance of the MGR estimator

is smaller than that of the LS estimator. We then derive the double plug-in optimization method as

θ̂
[2]
i =

p

γ̂
[1]′

i S−1γ̂
[1]
i

=

(
1 +

θ̂
[1]
i

di

)2

θ̂
[1]
i =

(
1 +

p

ti

)2
dip

ti
, (i = 1, . . . , k), (2.6)

where γ̂
[1]
i =

√
dizi/(di + θ̂

[1]
i ) is the ith row of Γ̂„̂[1] obtained by substituting θ̂[1] = (θ̂

[1]
1 , . . . , θ̂

[1]
k )′ for

θ in Γ̂„. When we iterate this method, that is, we obtain new plug-in optimized ridge parameters

by using the MGR estimator based on the current optimized ridge parameters, the multiple plug-in

optimization method is derived. This was also proposed by Nagai, Yanagihara, and Satoh (2012), as

follows:

θ̂
[s]
i =

p

γ̂
[s−1]′

i S−1γ̂
[s−1]
i

=

(
1 +

θ̂
[s−1]
i

di

)2

θ̂
[1]
i , (s = 1, 2, 3, . . . ; i = 1, . . . , k), (2.7)

where θ̂
[0]
i = 0 and γ̂

[s−1]
i is the ith row of Γ̂„̂[s−1] ; note that γ̂

[0]
i = γ̂i, (i = 1, . . . , k). In the case of

p = 1, θ̂
[1]
i and θ̂

[2]
i correspond with the optimization methods in Hoerl and Kennard (1970), and θ̂

[s]
i

coincides with the optimization method in Hemmerle (1975). Numerical studies in previous papers

have compared only the single or double optimized ridge parameters. However, θ̂[s] = (θ̂
[s]
1 , . . . , θ̂

[s]
k )′

is derived by using θ̂[s−1] and (2.7) for any natural number s, and there is no method for choosing s.

Hence we consider determining the value of s that reduces the PMSE of Ẑ„̂[s] = L(Γ̂′
„̂[s] , µ̂)′, which

is the predictor of Z based on the multiple plug-in optimization method.

3. Method for Choosing s

In this section, we consider a method for choosing s, which was defined in (2.7) as the number

of repetitions in the multiple plug-in optimization method. In order to choose s, our proposed
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information criteria is to reduce the PMSE[Ẑ„̂[s] ]. Note that θ̂
[s]
i depends on ti. In order to get

right this dependence, we express θ̂
[s]
i as θ̂

[s]
i (ti), (s = 1, 2, . . . ; i = 1 . . . , k). Letting w[s](ti) =

di/(di + θ̂
[s]
i (ti)) for i = 1, . . . , k, the ith row of Γ̂„̂[s] is obtained by γ̂

[s]
i = w[s](ti)γ̂i. The s that

minimizes PMSE[Ẑ„̂[s] ] is regarded as the optimal s, and we now consider how to estimate it. Hence

we consider evaluating Ẑ„̂[s] , which is obtained by using θ̂[s] = (θ̂
[s]
1 (t1), . . . , θ̂

[s]
k (tk))

′, by stating the

PMSE as follows:

PMSE[Ẑ„̂[s] ] = E[r(V , Ẑ„̂[s])].

The predicted value Ẑ„̂[s] can be expressed as Ẑ„̂[s] = (ẑ1(θ̂
[s]
1 (t1)), . . . , ẑk(θ̂

[s]
k (tk)), ẑk+1, . . . , ẑn)′

since the ith row vector of Ẑ„̂[s] depends on θ̂
[s]
i (ti) for i = 1, . . . , k, and it does not depend on θ̂[s] for

i = k + 1, . . . , n. Additionally, it should be kept in mind that ẑi(θ̂
[s]
i (ti)) = w[s](ti)zi, (i = 1, . . . , k),

ẑk+1 = zk+1, ẑi = 0p, (i = k + 2, . . . , n), and zi
i.i.d.∼ Np(mi,Σ) where mi is the ith row of

M = L(Γ′, µ)′. From a simple calculation, we obtain

PMSE[Ẑ„̂[s] ] = E[r(Z, Ẑ„̂[s])] + 2E[tr{(Ẑ„̂[s] − M)′(Z − M)Σ−1}]. (3.1)

Then we can see that

E[tr{(Ẑ„̂[s] − M)′(Z − M)Σ−1}]

=
k∑

i=1

E
[(

w[s](ti)zi − mi

)′
Σ−1(zi − mi)

]
+ E[(zk+1 − mk+1)

′Σ−1(zk+1 − mk+1)]

+
n∑

i=k+2

E[m′
iΣ

−1(zi − mi)]

=
k∑

i=1

E[w[s](ti)z
′
iΣ

−1(zi − mi)] + p,

because E[(zk+1 − mk+1)
′Σ−1(zk+1 − mk+1)] = tr(Σ−1Σ) = p and E[m′

iΣ
−1(zi − mi)] = 0. If we

let ui = (ui1, . . . , uip)
′ = Σ−1/2(zi − mi), where Σ1/2 satisfies Σ = Σ1/2Σ1/2, then ui

i.i.d.∼ Np(0p, Ip)

and the following result is derived:

E[tr{(Ẑ„̂[s] − M)′(Z − M)Σ−1}] =
k∑

i=1

E[w[s](ti)(ui + Σ−1/2mi)
′ui] + p

=
k∑

i=1

p∑
j=1

E[w[s](ti)(uij + m′
iΣ

−1/2ep·j)uij] + p,

where ep·j is a p-dimensional vector in which only the jth element is equal to one and the other
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elements are zeros. Using the formula in Stein (1981) (see, e.g., Efron (2004)), we obtain

E[w[s](ti)(uij + m′
iΣ

−1/2ep·j)uij] = E

[
∂ {w[s](ti)(uij + m′

iΣ
−1/2ep·j)}

∂uij

]
= E

[
∂w[s](ti)

∂uij

(uij + m′
iΣ

−1/2ep·j) + w[s](ti)

]
= E

[
e′

p·j
∂w[s](ti)

∂ui

e′
n·i(U + MΣ−1/2)ep·j + w[s](ti)

]
,

where U = (u1, . . . , un)′. Since U +MΣ−1/2 = ZΣ−1/2 and ti depends on ui, the following equation

is derived:

E[w[s](ti)(uij + m′
iΣ

−1/2ep·j)uij] = E

[
e′

p·j
∂ti
∂ui

∂w[s](ti)

∂ti
z′

iΣ
−1/2ep·j + w[s](ti)

]
,

for i = 1, . . . , k and j = 1, . . . , p. Note that ti = z′
iS

−1zi = (Σ1/2ui + mi)
′S−1(Σ1/2ui + mi) and

that S−1 does not depend on ui, (i = 1, . . . , k) since S does not depend on zi, (i = 1, . . . , k + 1) and

ui is obtained from zi . Thus we obtain the following differential result:

∂ti
∂ui

= 2Σ1/2S−1zi.

Hence we calculate (3.1) as follows:

PMSE[Ẑ„̂[s] ] = E[r(Z, Ẑ„̂[s])] + 2p + 2
k∑

i=1

E

[
z′

iΣ
−1/2 ∂ti

∂ui

∂w[s](ti)

∂ti
+ pw[s](ti)

]

= E[r(Z, Ẑ„̂[s])] + 2p + 2
k∑

i=1

E

[
2ti

∂w[s](ti)

∂ti
+ pw[s](ti)

]
.

From this result, the unbiased estimator of (3.1) can be defined as follows:

C∗
p = r(Z, Ẑ„̂[s]) + 2p + 2

k∑
i=1

(
2ti

∂w[s](ti)

∂ti
+ pw[s](ti)

)
. (3.2)

However, we cannot use this criterion since r(Z, Ẑ„̂[s]) requires the unknown covariance matrix Σ.

In (3.2), we will consider estimating C∗
p by using the idea for the Cp and MCp criteria that was

put forth in Yanagihara, Nagai, and Satoh (2009). We thus estimate the C∗
p criterion as follows:

Definition 1. The criteria for choosing s are defined by

C#
p = r̂(Z, Ẑ„̂[s]) + 2p + 2

k∑
i=1

(
2ti

∂w[s](ti)

∂ti
+ pw[s](ti)

)
, (3.3)

MC#
p = cMr̂(Z, Ẑ„̂[s]) + 2p + 2

k∑
i=1

(
2ti

∂w[s](ti)

∂ti
+ pw[s](ti)

)
+ p(p + 1), (3.4)

where cM = 1− (p+1)/(n− k− 1), and r̂(Z, Ẑ„̂[s]) is obtained by substituting S for Σ in r(Z, Ẑ„̂[s]).
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Minimizing each criterion, we can obtain several estimators for the optimal s. Let s∗C and s∗M

be obtained by minimizing the C#
p and MC#

p criteria, respectively. From (2.7), we can obtain

θ̂[s∗C] = (θ̂
[s∗C]
1 , . . . , θ̂

[s∗C]

k )′ and θ̂[s∗M] = (θ̂
[s∗M]
1 , . . . , θ̂

[s∗M]

k )′ in closed forms, respectively. Then, we can

obtain Ξ̂
„̂

[s∗
C

] and Ξ̂
„̂

[s∗
M

] by substituting θ̂[s∗C] and θ̂[s∗M] into (2.1), respectively.

4. Numerical Studies

By conducting numerical studies, we compared the PMSEs of the predictors of Y consisting

of the ridge regression estimators with the optimized ridge parameters by using each method. Let

Rq = diag(
√

1, . . . ,
√

q), which is a q × q diagonal matrix, and let ∆q(ρ) be a q × q matrix whose

(i, j)th element is ρ|i−j|. Then the explanatory matrix is X = WΨ1/2, where Ψ = Rk∆k(ρx)Rk, and

W is an n × k matrix whose elements were generated independently from the uniform distribution

on (−1, 1). The k × p unknown regression coefficient matrix Ξ is defined by Ξ = δFΠ, where δ is

a constant term, F is defined as F = diag(1κ,0k−κ), which is a k × k diagonal matrix, and Π is

defined by 1′
p/3 ⊗ Π1 when k = 10 and by 1′

p/3 ⊗ Π2 when k = 15. Here, Π1 and Π2 are given by

Π1 =



0.8501 0.6571 0.2159
−0.2753 −0.2432 −0.1187
−0.3193 −0.2926 −0.1671

0.2754 0.2608 0.1766
0.2693 0.2164 0.2066

−0.0676 −0.0663 −0.0561
0.2239 0.2197 0.1880

−0.0352 −0.0346 −0.0305
0.3240 0.3199 0.2868

−0.3747 −0.3727 −0.3554


, Π2 =



1.3794 0.0645 0.0330
−0.0766 −0.0241 −0.0143
−0.2618 −0.1396 −0.0951
−0.4619 −0.2589 −0.1798

0.2381 0.1488 0.1082
0.2140 0.1463 0.1112
0.3002 0.2364 0.1950
0.1155 0.0953 0.0812

−0.2774 −0.2395 −0.2091
0.3392 0.3072 0.2807
0.0016 0.0107 0.0100
0.0438 0.0408 0.0381

−0.3187 −0.3039 −0.2904
0.0529 0.0510 0.0493
0.2505 0.2451 0.2399



.

Here, δ controls the scale of the regression coefficient matrix, and F controls the number of nonzero

regression coefficients via κ. The values of the elements of Π1 and Π2, which are an essential

regression coefficient matrix, are the same as in Lawless (1981). The simulated data Y were generated

iteratively from Nn×p(XΞ,Σ ⊗ In) under several selections of n, k, κ, δ, ρy, and ρx, where Σ =

Rp∆p(ρy)Rp, and the number of iterations was 10, 000. At each iteration, we evaluated r(XΞ, Ŷ„̂)

where Ŷ„̂ = 1nµ̂′+XΞ̂„̂, which is the predicted value of Y obtained from each method. The average

of np + r(XΞ, Ŷ„̂) across 10, 000 iterations was regarded as the PMSE of Ŷ„̂. In the simulation, a

standardized X was used to estimate the regression coefficients.

We obtained the optimized ridge parameter θ̂ = (θ̂1, . . . , θ̂k)
′ from the following two methods:
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Method 1 : θ̂ = θ̂[s∗C] where s∗C = arg mins∈S C#
p and C#

p is defined in (3.3).

Method 2 : θ̂ = θ̂[s∗M] where s∗M = arg mins∈S MC#
p and MC#

p is defined in (3.4).

In this paper, we set S = {1, 2, 3, 4, 5, 10, 15, 20, 50} and let χ(i) = i for i = 1, . . . , 5, χ(i) = 5(i − 4)

for i = 6, 7, 8, and χ(9) = 50, and we let ♯(S) be the number of elements in the set S. To reduce

the number of computations, we applied the selection method proposed by Ruppert (2002) to select

s ∈ S, as follows:

1. Set i to 1.

2. Calculate several information criteria (IC) for χ(i) and χ(i + 1), and denote these IC values as

IC(i) and IC(i + 1), respectively.

3. If IC(i + 1) > 0.98 × IC(i), stop iterating and go to Step 5.

4. If i + 1 ≤ ♯(S), update i as i + 1 and go to Step 2. Otherwise, if i + 1 > ♯(S), do not update i

and go to Step 5.

5. When IC(i + 1) < IC(i), let i∗ = i + 1; otherwise, let i∗ = i.

6. Obtain the optimized s as χ(i∗).

By using this selection method, we can reduce the number of computations for selecting s since it

stops when there is little improvement in the information criteria when i is large, i.e., when s becomes

large. When we use the C#
p criterion to obtain s, we calculate (3.3) to obtain IC(i). As was done for

C#
p , MC#

p in (3.4) is calculated for each s ∈ S. For the purpose of comparison with the proposed

methods, we prepared the two conventional optimization methods, as follows:

Method 3 : θ̂ = θ̂[1] = (θ̂
[1]
1 , . . . , θ̂

[1]
k )′, which is the single plug-in optimization method in (2.5).

Method 4 : θ̂ = θ̂[2] = (θ̂
[2]
1 , . . . , θ̂

[2]
k )′, which is the double plug-in optimization method in (2.6).

Table 1 shows the simulation results for PMSE[Ŷ„̂]/{p(n + k + 1)} × 100 for the cases in which

(k, n) = (10, 30) and (10, 50), and Table 2 shows the results for the cases in which (15, 30) and

(15, 50). In both tables, p = 6, where p(n + k + 1) is the theoretical value of the PMSE for the

predictor of Y based on the LS estimators.

We can see that all of the methods improved the PMSEs of the LS estimators in all cases since

none of the values in the tables exceed 100. When k = 10, Method 2 is almost always the best

method for small δ and n. Methods 1 and 2 resulted in a greater improvement than did Method 3

in almost all cases when k = 10 and n = 30. Methods 1 and 2 resulted in a greater improvement

than did Method 3 in almost all cases when k = 10, n = 50, and δ was small. When k = 15,
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Table 1. The results when k = 10

n = 30 n = 50
Method Method

κ δ ρy ρx 1 2 3 4 1 2 3 4

0 0 0.2 0.2 79.71 78.25 85.46 80.92 85.28 84.82 89.30 86.10
0.95 79.75 78.29 85.50 80.96 85.31 84.85 89.32 86.12

0.95 0.2 79.76 78.31 85.50 80.97 85.33 84.86 89.34 86.13
0.95 79.73 78.28 85.49 80.94 85.35 84.88 89.36 86.16

5 1 0.2 0.2 86.47 86.32 88.98 86.46 91.45 91.54 92.73 91.39
0.95 82.28 81.16 86.88 83.02 87.50 87.09 90.58 87.93

0.95 0.2 90.29 90.63 91.62 90.21 94.20 94.29 94.81 94.19
0.95 83.35 82.24 87.58 83.97 88.72 88.39 91.27 88.94

3 0.2 0.2 93.63 93.90 94.31 93.59 97.33 97.24 97.13 97.23
0.95 85.44 84.72 88.69 85.68 90.62 90.52 92.36 90.60

0.95 0.2 96.20 96.20 96.36 96.08 98.23 98.24 98.09 98.12
0.95 89.00 89.04 90.88 88.95 92.93 93.00 94.00 92.90

10 1 0.2 0.2 87.12 86.67 89.75 87.21 94.19 94.29 94.67 94.17
0.95 83.75 82.77 87.69 84.22 88.83 88.51 91.29 89.01

0.95 0.2 91.09 91.43 92.25 91.03 96.47 96.45 96.30 96.44
0.95 84.65 83.76 88.27 85.02 89.68 89.46 91.79 89.75

3 0.2 0.2 93.53 93.95 94.14 93.49 98.76 98.87 98.72 98.96
0.95 89.76 89.91 91.37 89.69 93.26 93.35 94.21 93.23

0.95 0.2 98.12 98.09 97.74 98.05 99.51 99.51 99.51 99.67
0.95 91.94 92.36 92.88 91.89 94.78 94.84 95.29 94.77

Average 87.28 86.81 90.07 87.62 91.88 91.75 93.50 92.09

Method 2 is always the best method for small δ and large ρx. Methods 1 and 2 resulted in a greater

improvement than did Method 3 in almost cases when k = 15. Methods 1 and 2 also resulted in

a greater improvement than did Method 4 in all cases when δ was small and ρx was large. When

δ was small and ρx was large, Method 2 also resulted in a greater improvement than did Method

1 in almost all cases. Methods 1 and 2 resulted in the greatest improvement when k became large

and ρy was small. In almost all cases, there was greater improvement when κ was smaller . When

n or δ became small, each method was improved. On average, Method 2 was the best method, and

Method 1 was the second best. Hence, we recommend using the MC#
p criterion in (3.4) to choose

the number of repetitions in the multiple plug-in optimization method.
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