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Abstract

The AIC and its modifications have been proposed for selecting

the degree in a polynomial growth curve model under a large-sample

framework when the sample size n is large, but the dimension p is

fixed. In this paper, first we propose high-dimensional AIC (denoted

by HAIC) which is an asymptotic unbiased estimator of the risk under

a high-dimensional framework such that p/n → c ∈ [0, 1). It is noted

that our new criterion does work in a wide range of p and n. Next

we derive asymptotic distributions of AIC and HAIC under the high-

dimensional frame work. A sufficient condition is given for that HAIC

selects more frequently the true model than AIC. Our results are

checked numerically by conducting a Mote Carlo simulation.
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1. Introduction

We consider the growth curve model introduced by Potthoff and Roy

(1964), which is given by

Y = AΘX+ E, (1.1)

where Y;n × p is an observation matrix, A;n × q is a design matrix across

individuals, X; q× p is a design matrix within individuals, Θ is an unknown

matrix, and each row of E is independent and identically distributed as a

p-dimensional normal distribution with mean 0 and an unknown covariance

matrix Σ. We assume that that n− p− q − 1 > 0, and rank(X) = k. If we

consider a polynomial regression of degree k − 1 on the time t and with q

groups, then

A =


1n1 0 · · · 0
0 1n2 · · · 0
...

...
. . .

...
0 0 · · · 1nq

 , X =


1 1 · · · 1
t1 t2 · · · tp
...

...
...

...
tk−1
1 tk−1

2 · · · tk−1
p

 .

It is important in a polynomial growth curve model to decide its degree.

One way is to treat the problem as the one of selecting models. Related to

such problems, consider a set of candidate models M1, . . . ,Mk where Mj is

defined by

Mj; Y = AΘjXj + E, j = 1, . . . , k, (1.2)

where Θj is the q × j submatrix of Θ, and Xj is the j × p submatrix of X

defined by

Θ = (Θj,Θ(j)), X =

(
Xj

X(j)

)
.

The AIC (Akaike, 1973) for Mj is given by

AIC = n log |Σ̂j|+ np(log 2π + 1) + 2

{
qj +

1

2
p(p+ 1)

}
, (1.3)
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where Σ̂j is the MLE of Σ under Mj, which is given by

Σ̂j =
1

n
(Y −AΘ̂jXj)

′(Y −AΘ̂jXj),

where Θ̂j = (A′A)−1A′YS−1X′
j(XjS

−1X′
j)

−1, S = Y′(In − PA)Y/(n − q),

and PA = A(A′A)−1A′. The constant {qj + p(p + 1)/2} is the number

of independent parameters under Mj. In addition to AIC, there are some

modifications (see Satoh, Kobayashi and Fujikoshi (1997)) which were pro-

posed as approximately unbiased estimators of AIC-type risk, based on a

large-sample theory. The modifications were studied assuming that the true

model is included into the largest candidate model Mk.

In general, the approximations based on a large-sample framework be-

come inaccurate as the dimension p increases while sample size n remains

fixed. On the other hand, in last years we encounter more and more prob-

lems in applications when p is comparable with n or even exceeds it. So, it

is important to examine behavior of AIC when the dimension is large, for

example, a high-dimensional framework such that

n → ∞, p → ∞,
p

n
→ c ∈ [0, 1). (1.4)

In this paper we first derive high-dimensional AIC denoted by HAIC

which is an asymptotic unbiased estimator of AIC-type risk under (1.4).

Note that these criteria are defined for all the subsets by changing the order

of the explanatory variables. Next, after we note that these criteria have no

consistency property, we obtain asymptotic distributions of AIC and HAIC

under (1.4). More precisely, let the values of AIC for model Mj by AICj

and HAICj, and the best subsets chosen by minimizing AIC and HAIC are

written as

ĵA = argmin
j

AICj, ĵHA = argmin
j

HAICj.

Then we shall obtain asymptotic distributions of ĵA and ĵHA. The results

include the large-sample asymptotic distributions as their special cases. A

sufficient condition is given for that HAIC selects more frequently the true

model than AIC. Through simulation experiments, we show that HAIC is
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better than AIC in the estimation of the risk as well as the probability of

selecting the true model.

2. Preliminaries

As is well known, the AIC was proposed as an approximately unbiased

estimator of the risk defined by the expected −2 log-predictive likelihood.

Let f(Y;Θj,Σj) be the density function of Y under Mj. Then the expected

log-predictive likelihood of Mj is defined by

RA = E∗
YE

∗
YF

[−2 log f(YF ; Θ̂j, Σ̂j)] (2.1)

where Σ̂j and Θ̂j are the maximum likelihood estimators of Σ and Θ under

Mj, respectively. Here YF ;n×p may be regarded as a future random matrix

that has the same distribution as Y and is independent of Y, and E∗ denotes

the expectation with respect to the true model. The risk is expressed as

RA = E∗
YE

∗
YF

[−2 log f(Y; Θ̂j, Σ̂j)] + bA, (2.2)

where

bA = E∗
YE

∗
YF

[−2 log f(YF ; Θ̂j, Σ̂j) + 2 log f(Y; Θ̂j, Σ̂j)]. (2.3)

The AIC and its modifications have been proposed by regarding bA as the

bias term when we estimate RA by

−2 log f(Y; Θ̂j, Σ̂j) = n log |Σ̂j|+ np(log 2π + 1),

and by evaluating the bias term bA.

For the justification of AIC, it was assumed that the candidate model

Mj include the true model. For the two bias-corrected AICs (see Satoh,

Kobayashi and Fujikoshi (1997)), it was assumed that the true model is

included in the full model Mk. This assumption is also assumed in this

paper. So, without loss of generality, we may assume that the minimum
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model including the true model is Mj0 , and then the true model is expressed

as

Mj0 : Y ∼ Nn×p(AΘ0Xj0 ,Σ0 ⊗ In), (2.4)

where Θ0 is a given q× j0 matrix, and Σ0 is a given positive definite matrix.

For simplicity, we write Xj0 as X0. The bias properties of AIC and its

modifications have been studied under a large-sample framework,

p and k are fixed, n → ∞. (2.5)

In the following we prepare a distributional reduction for the bias bA. By

considering the expectation of YF , it is easily seen that

bA = −np+ E∗
Y[tr(Σ

−1/2
0 Σ̂jΣ

−1/2
0 )−1

× {nIp + (Θ0X0Σ
−1/2
0 − Θ̂jXjΣ

−1/2
0 )′A′A(Θ0X0Σ

−1/2
0 − Θ̂jXjΣ

−1/2
0 )}].

Let H = (H1,H2); p× p be an orthogonal matrix such that

H1 = (XjΣ
−1/2
0 )′(XjΣ

−1
0 X′

j)
−1/2, H1; p× j, H2; p× (p− j).

Further, define W, Z, Z̃, B as follows.

W = H′Σ
−1/2
0 (n− q)SΣ−1/2

0 H =

(
W11 W12

W21 W22

)
,

Z = (A′A)−1/2A′(Y −AΘ0X0)Σ
−1/2
0 ,

Z̃ = Z+ (A′A)−1/2Θ0X0Σ
−1/2
0 = (A′A)−1/2A′YΣ

−1/2
0 ,

B = H′Z̃
′
Z̃H =

(
B11 B12

B21 B22

)
.

Then, W and B are independently distributed as Wp(n− q, Ip) and Wp(q, Ip;

H′(AΘ0X0Σ
−1/2
0 )′AΘ0X0Σ

−1/2
0 H). We can express Σ̂j and its inverse in
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the terms of W and B as

nΣ
−1/2
0 Σ̂jΣ

−1/2
0 = H

(
Ij W12W

−1
22

0 Ip−j

)(
W11·2 0
0 W22 + B22

)
×
(

Ij 0
W−1

22 W21 Ip−j

)
H′, (2.6)

(nΣ
−1/2
0 Σ̂jΣ

−1/2
0 )−1 = H

(
Ij 0

−W−1
22 W21 Ip−j

)(
W−1

11·2 0
0 (W22 + B22)

−1

)
×
(

Ij −W12W
−1
22

0 Ip−j

)
H′. (2.7)

Lemma 2.1. Suppose that the true model is given by (2.4). Then, the bias

bA for model Mj in (2.2) or (2.3) is expressed as follows:

bA = −np+
n(n+ q)(n− q − 1)j

(n− q − p− 1)(n− q − p+ j − 1)

+ E

[
n2tr(W22 + B22)

−1

(
I+

1

n
Ω̃

)]
. (2.8)

Here we may assume that W22 and B22 are independently distributed as

Wp−j(n − q, Ip−j) and Wp−j(q, Ip−j; Ω̃), respectively. The noncentrality ma-

trix is defined by

Ω̃ =

(
Ω 0
0 0

)
, (2.9)

where Ω = ΓΓ′ and Γ = (A′A)1/2Θ0X0Σ
−1/2
0 H2.

Proof. The result is a slight extension of Satoh, Kobayashi and Fujikoshi

(1997). From (2.6) and (2.7) we have

tr(nΣ
−1/2
0 Σ̂jΣ

−1/2
0 )−1 = trW−1

11·2(Ij +W12W
−2
22 W21) + tr(W22 + B22)

−1,

tr(nΣ
−1/2
0 Σ̂jΣ

−1/2
0 )−1

× (Θ0X0Σ
−1/2
0 − Θ̂jXjΣ

−1/2
0 )′A′A(Θ0X0Σ

−1/2
0 − Θ̂jXjΣ

−1/2
0 )

= trW−1
11·2(Ij,−W12W

−1
22 )(ZH)′ZH

(
Ij

−W−1
22 W21

)
+ tr(W22 + B22)

−1(AΘ0X0Σ
−1/2
0 H2)

′AΘ0X0Σ
−1/2
0 H2.
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Therefore, the bias can be computed as

bA = −np+ n2E[trW−1
11·2(Ij +W12W

−2
22 W21) + tr(W22 + B22)

−1]

+ nE[trW−1
11·2(Ij,−W12W

−1
22 )(ZH)′ZH

(
Ij

−W−1
22 W21

)
+ tr(W22 + B22)

−1(AΘ0X0Σ
−1/2
0 H2)

′AΘ0X0Σ
−1/2
0 H2]

= −np+ n2

{
(n− q − 1)j

(n− q − p− 1)(n− q − p+ j − 1)
+ E[tr(W22 + B22)

−1]

}
+ n

{
q(n− q − 1)j

(n− q − p− 1)(n− q − p+ j − 1)
+ tr(W22 + B22)

−1Γ′Γ

}
,

which implies

bA = −np+
n(n+ q)(n− q − 1)j

(n− q − p− 1)(n− q − p+ j − 1)

+ E

[
n2tr(W22 + B22)

−1

(
I+

1

n
Γ′Γ

)]
.

The final result is obtained by considering an orthogonal transformation

W22 → F′W22F, and B22 → F′B22F, where F = (F1 F2) and F1 =

Γ′(ΓΓ′)1/2.

3. High-dimensional AIC

First we consider to evaluate the bias bA given in Theorem 2.1 under the

high-dimensional framework (1.4). Note that W22 +B22 ∼ Wp−j(n, Ip−j; Ω̃).

The order of the noncentrality matrix Ω̃ is (p − j) × (p − j), and it tends

to infinity. However, the matrix is a sparse matrix. In fact, it is possible to

reduce evaluating the expectation with respect to a q × q random matrix.

For such a reduction we use the following Lemma due to Sakurai, Nakada

and Fujikoshi (2012), based on Kabe (1964).

Lemma 3.1. Let T ∼ Wp(n, Ip;Ω), and T and Ω be partitioned as

T =

(
T11 T12

T21 T22

)
, Ω =

(
Ω11 Ω12

Ω21 Ω22

)
,
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respectively, where Tij; pi × pj and Ωij; pi × pj. If Ω12, Ω21 and Ω22 are zero

matrices, then

E[trT−1A] =
m− p1 − 1

m− p− 1
E[trT−1

11 A11] +
1

m− p− 1
trA22,

where A is a p × p constant matrix partitioned in the same way as the par-

titions of T.

Using Lemma 3.1 we have

E

[
tr(W22 + B22)

−1

(
Ip−j +

1

n
Ω̃

)]
=

n− q − 1

n− (p− j)− 1
bA1 +

p− j − q

n− (p− j)− 1
,

where

bA1 = E

[
trT−1

(
Iq +

1

n
Ω

)]
, (3.1)

and T is the upper q× q submatrix of W22+B22. Note that T is distributed

as Wq(n, Iq;Ω). When Ω = 0, T ∼ Wq(n, Iq), and hence,(see Muirhead

(1982), Siotani, Hayakawa and Fujikoshi (1985), etc.)

bA1 = E[trT−1] =
q

n− q − 1
. (3.2)

In general, we assume that

Ω = n∆ = Oh(n), (3.3)

where Oh(n
i) denotes the terms of i-th order with respect to n under (1.4).

Then, the expectation can be expanded, by a result (see, e.g., Fujikoshi

(1985)) based a perturbation method, as follows:

bA1 =
q

n
+

1

n2
{2(q + 1)ξ1 − ξ2}+Oh(n

−3), (3.4)

where ξ1 = η1, ξ2 = η21 + η2 and ηi = tr (Iq +Ω/n)−i , i = 1, 2. Summarizing

the result, we have the following theorem.
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Theorem 3.1. Suppose that the true model is expressed as in (2.4). Then,

under (1.4) and (3.3) the bias term bA in (2.3) can be expressed as

bA = −np+
n(n+ q)(n− q − 1)j

(n− q − p− 1)(n− q − p+ j − 1)

+ n2

[
p− j − q

n− (p− j)− 1
+

n− q − 1

n− (p− j)− 1
bA1

]
, (3.5)

where bA1 is given by (3.4). When Ω = 0, the term bA1 is exactly expressed

as (3.2).

For a practical use we derive asymptotic unbiased estimators for ξ1 and

ξ2 under (1.4). We have seen that

tr(nΣ̂j)
−1(n− q)S = j + trW22(W22 + B22)

−1,

tr
{
(nΣ̂j)

−1{(n− q)S
}2

= j + tr
{
W22(W22 + B22)

−1
}2

.

For a reduction of the right-hand sides, we use the following Lemma.

Lemma 3.2. Let Sh = X′X and Se be independently distributed as Wp(q,

Ip;M
′M) and Wp(n, Ip), respectively. Here X is a q × p random matrix

whose elements are independent normal variates with E(X) = M and the

common variance 1. Put

B = XX′ and V = B1/2(XS−1
e X′)−1B1/2.

Then:

(1) B and W are independently distributed as Wq(p, Iq;MM′) and Wq(n−
p+ q, Iq), respectively.

(2) The nonzero characteristic roots of ShS
−1
e are the same as those of

BW−1. In particular

|Se|
|Se + Sh|

=
|W|

|W + B|
, trShS

−1
e = trBW−1,
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and

trSe(Se + Sh)
−1 − (p− q) = trW(W + B)−1,

tr
{
Se(Se + Sh)

−1
}2 − (p− q) = tr

{
W(W + B)−1

}2
.

Lemma 3.2 was essentially obtained in Wakaki, Fujikoshi and Ulyanov

(2002) and Fujikoshi, Ulyanov and Shimizu (2010). Lemma 3.2 implies that

trW22(W22 + B22)
−1 = p− j − q + trV(V +U)−1,

tr
{
W22(W22 + B22)

−1
}2

= p− j − q + tr
{
V(V +U)−1

}2
,

where V ∼ Wq(n − (p − j), Iq) and U ∼ Wq(p − j, Iq;Ω). Let Ṽ and Ũ be

defined by

1

n− (p− j)
V = Iq +

1√
n− (p− j)

Ṽ,

1

p− j
U = Iq +

n

p− j
∆+

1√
p− j

Ũ.

Then Ṽ and Ũ are asymptotically normal, and E[Ṽ] = 0, E[Ũ] = 0. There-

fore

V(V +U)−1 → n− (p− j)

n
(Iq +∆)−1.

We define

ξ̃1 = η̃1, ξ̃2 = η̃21 + η̃2.

where

η̃1 =
n

n− (p− j)

{
tr(nΣ̂j)

−1(n− q)S− (p− q)
}
,

η̃2 =

(
n

n− (p− j)

)2 {
tr{(nΣ̂j)

−1(n− q)S}2 − (p− q)
}
.

Then, ξ̃1 and ξ̃2 are asymptotically unbiased estimators of ξ1 and ξ2, respec-

tively. Now we modify these estimators so that they are exact estimators
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when Ω = 0. Put Q = V(V + U)−1. Then, when Ω = 0, Q is distributed

as a multivariate beta distribution βq(a/2, b/2) with a = n − (p − j) and

b = p− j. Therefore, we have (see, e.g. Fujikoshi and Satoh (1997))

E[trQ] =
n− (p− j)

n
· q,

E[(trQ)2 + trQ2] =
n− (p− j)

6n
· q ·

{
4(n− (p− j) + 2)(q + 2)

n+ 2

+
2(n− (p− j)− 1)(q − 1)

n− 1

}
.

Since ξ̃1 is an unbiased estimator of ξ1, we modify ξ̃1 and ξ̃2 as

ξ̂1 = ξ̃1 and ξ̂2 = dξ̃2,

so that ξ̂2 is an unbiased estimator of ξ2 when Ω = 0. For this, from (3.2),

(3.4) and (3.5) we may determine d as

1

n2

{
2(q + 1)q − dE[ξ̃2]

}
=

q(q + 1)

n(n− q − 1)
,

since q/(n− q − 1) = q/n+ q(q + 1)/{n(n− q − 1)}. This implies that

d = (q + 1) · n− 2q − 2

n− q − 1
· 3{n− (p− j)}

n

×
[
2(q + 2){n− (p− j) + 2}

n+ 2
+

(q − 1){n− (p− j)− 1}
n− 1

]−1

. (3.6)

Now we define HAIC for Mj as

HAICj = n log |Σ̂j|+ np(log 2π + 1) + b̂j, (3.7)

where

b̂j = −np+
n(n+ q)(n− q − 1)j

(n− q − p− 1)(n− q − p+ j − 1)

+ n2

[
p− j − q

n− (p− j)− 1
+

n− q − 1

n− (p− j)− 1

×
(
q

n
+

1

n2

{
2(q + 1)ξ̂1 − ξ̂2

})]
. (3.8)
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Then we separate a set of candidate models, one of which is a set of

overspecified models, candidate models that include the true model, and the

other is a set of underspecified models that are not the overspecified models.

Note that if Mj is an overspecified model, then Ω = 0.

Theorem 3.2. Under assumption (1.4) the high-dimensional AIC, HAIC

defined by (3.7) satisfies the following properties:

(1) if Mj is an overspecified model, HAIC is an exact unbiased estimator of

RA,i.e.

E(HAIC) = RA.

(2) if Mj is an underspecified model,

E(HAIC) = RA +Oh(n
−1).

Note that these HAIC is defined for all the subsets by changing the order

of the explanatory variables.

4. Asymptotic distributions of AIC and HAIC

Recently it is known (see Fujikoshi, Sakurai and Yanagihara (2012),

Yanagihara, Wakaki and Fujikoshi (2012)) that AIC and its modifications for

some multivariate models have consistency property under a high-dimensional

asymptotic framework. First we examine whether AIC and HAIC have a con-

sistency property under the high-dimensional framework (1.4). Note that

1

n
V =

n− (p− j)

n
· 1

n− (p− j)
V → (1− c)Iq,

1

n
U =

p− j

n
· 1

p− j
U → cIq +∆j.

This implies that

− log
|(n− q)S|
|nΣ̂j|

= − log
|W22|

|W22 + B22|
= − log

|V|
|V +U|

→ − log
|(1− c)Iq|

|(1− c)Iq + cIq +∆j|
= − log(1− c)q + log |Iq +∆j|.
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Therefore we have

1

n
(AICj − AICj0)

= − log
|(n− q)S|
|nΣ̂j|

−

(
− log

|(n− q)S|
|nΣ̂0|

)
+

2q(j − j0)

n

→ log |Iq +∆j| =
{

0, j ≥ j0,
> 0, j < j0.

Here, AICj and AICj0 is AIC under Mj and Mj0 , respectively. This shows

that AIC has no consistency property. Similarly HAIC has no consistency

property since (b̂j − b̂j0)/n → 0 (see Section 4.2). Further, it holds that for

ℓ = 1, . . . , j0 − 1,

limP (ĵA = ℓ) = 0, and limP (ĵHA = ℓ) = 0. (4.1)

4.1 Asymptotic distribution of AIC

We have defined an orthogonal matrix (H1 H2) for each Mj(j = 1, . . . , k),

which is denoted by (H1j H2j) , whereH1j = (X0Σ
−1/2
0 )′(X0Σ

−1
0 X′

0)
−1/2; p×

j and H2j is any matrix such that (H2j)
′H2j = Ip−j, and (H2j)

′H1j = 0. In

order to treat AIC1,AIC2, . . . ,AICk simultaneously, we define an orthogonal

matrix

H = (h1, . . . ,hk; ∗),

satisfying h1 ∈ R[H11], (h1,h2) ∈ R[H12], · · · , (h1, . . . ,hk) ∈ R[H1k], and

the remainder p − k columns are any ones such that H is an orthogonal

matrix. We partition H as

H = (H
(j)
1 H

(j)
2 ), H

(j)
1 ; p× j.

Using the new orthogonal matrix H, we consider the random matrices in

Section 2 by using the same notations. For example,

W = H′Σ
−1/2
0 (n− q)SΣ−1/2

0 H, B = H′Z̃
′
Z̃H.
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Let us denote the last (p− j)× (p− j) submatrices of W and B by W(j) and

B(j), respectively, that is

W =

(
∗ ∗
∗ W(j)

)
, B =

(
∗ ∗
∗ B(j)

)
.

Then

W(j) ∼ Wp−j(n− q, Ip−j), B(j) ∼ Wp−j(q, Ip−j;Γ
′
jΓj),

where Γj = (A′A)1/2Θ0X0Σ
−1/2
0 H

(j)
2 . Further, from Lemma 3.2 it is possible

to express as

|(n− q)S|
|nΣ̂j|

=
|W(j)|

|W(j) + B(j)|
=

|V(j)|
|V(j) +U(j)|

,

where V(j) and U(j) are independently distributed as Wq(n− (p− j), Iq) and

Wq(p− j, Iq;Ωj), and Ωj = ΓjΓ
′
j.

Lemma 4.1. Suppose that the true model is expressed as (2.4). Then, under

(1.4), AICj − AICj0 is asymptotically distributed as

− 1

1− c

[
{R1 − 2(1− c)q}+ · · ·+ {Rj−j0 − 2(1− c)q}

]
, j = j0 + 1, . . . , k,

where R1, . . . , Rk−j0 are independently distributed as χ2
q.

Proof. For j = j0 + 1, . . . , k, we have

AICj − AICj0

= −n log
|(n− q)S|
|nΣ̂j|

−

(
−n log

|(n− q)S|
|nΣ̂j0 |

)
+ 2(j − j0)q

= −n log Λ(j) + n log Λ(j0) + 2(j − j0)q,

where

Λ(j) =
|W(j)|

|W(j) + B(j)|
∼ Λp−j,q,n−q, j = j0, j0 + 1, . . . , k.
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Therefore

AICj − AICj0

= n

{
(log Λ(j0) − log Λ(j0+1)) + (log Λ(j0+1) − log Λ(j0+2))

+ · · ·+ (log Λ(j−1) − log Λ(j))

}
+ 2(j − j0)q

=

j−j0∑
ℓ=1

n log Λ(j0+ℓ−1|j0+ℓ) + 2(j − j0)q,

where Λ(j0+ℓ−1|j0+ℓ) = Λ(j0+ℓ−1)/Λ(j0+ℓ), ℓ = 1, . . . , j−j0. It is shown (see Fu-

jikoshi, Ulyanov and Shimizu (2010), p.61 ∼ 63) that Λ(j0−1|j0),Λ(j0|j0+1), . . . ,

Λ(j−1|j) are independent, and for ℓ = 1, . . . , j − j0

Λ(j0+ℓ−1|j0+ℓ) =
χ2
n−q−(p−j0−ℓ)

χ2
q + χ2

n−q−(p−j0−ℓ)

=

(
1 +

χ2
q

χ2
n−q−(p−jj−ℓ)

)−1

.

Therefore, −(n− p) log Λ(j0+ℓ−1|j0+ℓ) is asymptotically distributed as χ2
q. Us-

ing this property we can get the required result.

Theorem 4.1. Suppose that the true model is expressed as (2.4). Let R1, . . . ,

Rk−j0 be independent χ2
q variables, and put

Zℓ = Rℓ − 2(1− c)q, ℓ = 1, . . . , k − j0. (4.2)

Then, under (1.4) it holds that

limP (ĵA = j) = P (Lj−j0 − L0 > 0, . . . , Lj−j0 − Lj−j0−1 > 0)

× P (Lj+1−j0 − Lj−j0 < 0, . . . , Lk−j0 − Lj−j0 < 0), (4.3)

where L0 = 0, Li−j0 =
∑i−j0

ℓ=1 Zℓ, i = j0 + 1, . . . , k. Further, the probability

(4.3) can be expressed as

limP (ĵA = j) = aj−j0bk−j0 , (4.4)

15



where a0 = b0 = 1, αi = P (Li ≥ 0), and

am =
∑
[m]

{
m∏
i=1

1

ri!

(αi

i

)ri}
, bm =

∑
[m]

{
m∏
i=1

1

ri!

(
1− αi

i

)ri
}
. (4.5)

Here the summation
∑

[m] extends over all m-tuples (r1, r2, . . . , rm) of non-

negative integers with the property r1 + 2r2 + · · ·+mrm = m.

Proof. Note that

limP (ĵA = j) = limP (min
ℓ

AICℓ = AICj)

= limP (AICj − AICj0 ≤ AICℓ − AICj0 , ℓ = j0, j0 + 1, . . . , k).

Using Lemma 4.1 and noting that {R1, . . . , Rj−j0} and {Rj+1−j0 , . . . , Rk−j0}
are independent, we can write the probability as (4.3). Further, it is easy to

see that

P (Lj−j0 − L0 > 0, . . . , Lj−j0 − Lj−j0−1 > 0)

= P

(j−j0∑
i=1

Zi > 0,

j−j0∑
i=2

Zi > 0, . . . ,

j−j0∑
i=j−j0−1

Zi > 0

)
,

P (Lj+1−j0 − Lj−j0 < 0, . . . , Lk−j0 − Lj−j0 < 0)

= P

( j−j0+1∑
i=j−j0+1

Zi < 0, . . . ,

k−j0∑
i=j−j0+1

Zi < 0

)
.

Applying Spitzer (1956) and Shibata (1976) to the above expressions, we

obtain the second result (4.4).

We note that Theorem 4.1 with c = 0 gives asymptotic distribution of AIC

under large-sample framework, which was considered by Satoh, Kobayashi

and Fujikoshi (1997).

Especially the probability of selecting the true model by AIC is expressed

as

limP (ĵA = j0) = bk−j0 =
∑
[k−j0]

k−j0∏
i=1

1

ri!

(
1− αi

i

)ri

,
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where αi = P (Li ≥ 0).

For numerical computations of the asymptotic probabilities, we can use

simplified expressions of am and bm. For example, consider

am =
∑
[m]

{ m∏
i=1

1

ri!

(αi

i

)ri}
.

Then, the am’s for m = 1 ∼ 5 are expressed as follows.

a1 = α1,

a2 =
1

2

(
α2
1 + α2

)
,

a3 =
1

6

(
α3
1 + 3α2α1 + 2α3

)
,

a4 =
1

24

(
α4
1 + 6α2α

2
1 + 8α3α1 + 3α2

2 + 6α4

)
,

a5 =
1

120

(
α5
1 + 10α2α

3
1 + 20α3α

2
1 + 15α2

2α1

+30α4α1 + 20α2α3 + 24α5) .

4.2 Asymptotic Distribution of HAIC

The main part of HAIC is the same as the one of AIC. So, it is enough to

examine asymptotic behaviors of b̂j and b̂j0 , where b̂j is given by (3.8). Note

that ξ̂1 and ξ̂2 converge to ξ1 and ξ2, respectively. After much computation,

we get

b̂j − b̂j0 = (j − j0)

[
2q

n3

(n− p)3
+ {2− (j + j0)}

pn2

(n− p)3

]
= (j − j0)(1− c)−3

[
2q + c{2− (j + j0)}

]
+ oh(1).

Therefore

HAICj − HAICj0 →− 1

1− c
{R1 + · · ·+Rj−j0}

+ (j − j0)(1− c)−3

[
2q + c{2− (j + j0)}

]
= − 1

1− c

[
{R1 − gj}+ · · ·+ {Rj−j0 − gj}

]
,

17



where

gj = (1− c)−2[2q + c{2− (j + j0)}]. (4.6)

This shows that an asymptotic result of HAIC can be obtained from the one

of AIC by changing Zℓ = Rℓ − 2(1 − c)q to Zℓ = Rℓ − gj. We have the

following theorem.

Theorem 4.2. Suppose that the true model is expressed as (2.4). Let R1, . . . ,

Rk−j0 be independent χ2
q variables, and put

Zℓ = Rℓ − gj, ℓ = 1, . . . , k − j0. (4.7)

where gj is given by (4.6). Then, under (1.4) it holds that limP (ĵHA = j) is

given by (4.3) or (4.4) with Zℓ in (4.7).

Especially the probability of selecting the true model by HAIC is ex-

pressed a

limP (ĵHA = j0) = b̃k−j0 =
∑
[k−j0]

k−j0∏
i=1

1

ri!

(
1− α̃i

i

)ri

,

where α̃i = P (L̃i ≥ 0).

Now we examine which of AIC and HAIC has the more high probability

of selecting the true model. For this, let us consider the condition such that

limP (ĵA = j0) ≤ limP (ĵHA = j0).

A sufficient condition is given in the following theorem.

Theorem 4.3. Under the same assumptions as in Theorems 4.1 and 4.2 it

holds that

(1) if gj = (1− c)−2[2q+ c{2− (j+2j0)}] ≥ 2(1− c)q, j = j0+1, . . . , k, then

limP (ĵA = j0) ≤ limP (ĵHA = j0).

(2) if q + 1 ≥ k, then

gj = (1− c)−2[2q + c{2− (i+ 2j0)}] ≥ 2(1− c)q, j = 1 + j0, . . . , k.
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Proof. From Theorem 4.1 the asymptotic probability of selecting the true

model by AIC is expressed as

limP (ĵA = j0) = P (L1 < 0, L2 < 0, . . . , Lk−j0 < 0)

= P (S1 < s1, S2 < s2, . . . , Sk−j0 < sk−j0),

where Lj−j0 =
∑j−j0

i=1 {Ri−2(1−c)q}, j = j0+1, . . . , k, and R1, . . . , Rk−j0 are

independent χ2
q variables. Here Sj−j0 =

∑j−j0
i=1 Ri and sj−j0 = 2(j−j0)(1−c)q.

Similarly, the asymptotic probability of selecting the true model by HAIC is

expressed as

limP (ĵHA = j0) = P (L̃1 < 0, L̃2 < 0, . . . , L̃k−j0 < 0)

= P (S1 < s̃1, S2 < s̃2, . . . , Sk−j0 < s̃k−j0),

where L̃j−j0 =
∑j−j0

i=1 {Ri − gj}, j = j0 + 1, . . . , k. Here s̃j−j0 = (j − j0)gj.

Suppose that for j = 1+j0, . . . , k, gj ≥ 2(1−c)q. Then we have s̃j−j0 ≥ sj−j0 .

Therefore

limP (ĵA = j0) = P (S1 < s̃1, S2 < s̃2, . . . , Sk−j0 < s̃k−j0)

≥ P (S1 < s1, S2 < s2, . . . , Sk−j0 < sk−j0) = limP (ĵA = j0),

which shows the first result. For j = j0 + 1, . . . , k, we have

gj − 2(1− c)q = (1− c)−2[2q + c{2− (i+ 2j0)}]− 2(1− c)q

= (1− c)−2[2q{1− (1− c)3}+ c{2− (j + j0)}]

≥ (1− c)−2[2q{1− (1− c)3}+ c{2− 2k}]

= 2c(1− c)−2[q(c2 − 3c+ 3) + 1− k].

Here we used that 1 + j0 ≤ j ≤ k and 1 ≤ j0 ≤ k. Further, noting that

1 < c2 − 3c+ 3 < 3 since 0 < c < 1, q(c2 − 3c+ 3)+ 1− k > q+ 1− k. So, if

q + 1− k ≥ 0, gj ≥ 2(1− c)q. This proves the second result.

Through numerical experiments, we have seen (see Section 5) that HAIC

selects the true model more often than AIC. So, it is expected that the

sufficient condition is relaxed.
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5. Simulation study

In this section, we numerically examine the validity of our claim. The

five candidate models M1, . . . ,M5, with several different values of q, n =∑q
i=1 ni and p = cn, were prepared for Monte Carlo simulations, where

q = 2, n1 = n2 = 50, 100 and c = 0.1, 0.2, 0.4. We constructed a 5 × p

matrix X of explanatory variables with ti = 1 + i/p. The true model was

determined by Θ0 = 131
′
3 and Σ0 whose (i, j)th element was defined by

(0.2)|i−j| (i = 1, . . . , p; j = 1, . . . , p). Here 1p was the p-dimensional vector of

ones.

First, we studied performances of AIC and HAIC as estimators of RA.

For each of M1, . . . ,M5, we computed the averages of RA, AIC and HAIC by

Monte Carlo simulations with 104 replications. Table 1 shows the risk RA and

the biases of AIC and HAIC to RA, defined by “RA− (the expectation of the

information criterion)”. In the table, j means the model Mj and the bold

face denotes the true model. From the table, we can see that the biases of

the HAIC were smaller than the ones of AIC. In general, there is a tendency

that the biases are large as p increases. But the tendency of HAIC is very

weak in the comparison with AIC.

Table 1. Risks and biases of AIC and HAIC

j RA AIC HAIC RA AIC HAIC RA AIC HAIC

(n, p) = (100, 10) (n, p) = (100, 20) (n, p) = (100, 40)

1 3131.9 13.8 0.5 6218.9 113.8 0.4 13390.0 1148.1 -4.0
2 2881.1 16.8 0.2 5924.4 119.4 -0.1 13056.0 1167.7 -2.1
3 2877.7 18.1 0.2 5919.9 122.9 -0.1 13053.8 1180.7 -2.9
4 2880.6 19.2 0.2 5924.7 126.2 0.0 13067.3 1193.4 -3.1
5 2883.4 20.2 0.2 5929.3 129.2 0.0 13080.1 1205.4 -3.2

(n, p) = (200, 20) (n, p) = (200, 40) (n, p) = (200, 80)

1 12070.9 50.5 1.7 24305.7 421.1 -3.4 52735.0 4416.4 -6.1
2 11474.5 54.5 2.2 23607.0 427.0 -3.5 51943.4 4434.2 -6.0
3 11458.4 56.1 2.4 23580.1 430.8 -3.5 51902.5 4448.6 -5.9
4 11461.6 57.5 2.5 23585.1 434.1 -3.7 51916.9 4462.3 -5.9
5 11464.6 58.7 2.5 23590.0 437.5 -3.7 51931.0 4475.5 -5.9
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Next, we studied the probabilities of selecting the model by AIC and

HAIC. Table 2 shows the selection probability by AIC based on Monte

Carlo simulations with 104 iterations and the asymptotic selection proba-

bilities under a large-sample framework and a high-dimensional framework.

In the table, AIC1 and AIC2 denote the selection probabilities by Monte

Carlo simulations for n = 100 and n = 200, respectively. The columns of LS

and HD express the asymptotic selection probabilities under a large-sample

framework and a high-dimensional framework, respectively. Here, we calcu-

lated LS and HD as c = 0.0 and c = p/n, respectively. In the table, the true

model is M3. Similarly, Table 3 shows the selection probabilities of HAIC.

From Tables 2 and 3 we can see that the selection probabilities of AIC

and HAIC were closer to HD than LS. Moreover, these selection probabilities

approached more to HD as p increases. Both of the probabilities of selecting

the true model increase when n increases, but p is fixed. However, the prob-

ability of selecting the true model by AIC decreases as p increases, but n is

fixed. On the other hand, the probability of selecting the true model by HAIC

increases when n and p increases. Especially, the probability approaches to 1.

We have shown in Theorem 4.3 that if q+1 > k, the probability of selecting

the true model by HAIC is higher than the one by AIC. Moreover, Tables 2

and 3 show that the fact holds in all the cases except for (n, p) = (100, 10).

This means that it is expected that a more weak sufficient condition shall be

derived.

Table 2. Selection probabilities of AIC (%)
j c = 0.1 c = 0.2 c = 0.4

LS HD AIC1 AIC2 HD AIC1 AIC2 HD AIC1 AIC2

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 17.9 0.5 0.0 8.1 0.0 0.0 1.9 0.0
3 82.8 78.6 63.0 78.4 73.3 66.7 74.6 59.0 59.2 59.8
4 11.7 13.8 12.5 14.0 16.1 15.3 15.4 21.0 20.4 21.2
5 5.5 7.7 6.6 7.2 10.6 9.8 10.1 20.0 18.5 19.0
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Table 3. Selection probabilities of HAIC (%)
j c = 0.1 c = 0.2 c = 0.4

LS HD HAIC1 HAIC2 HD HAIC1 HAIC2 HD HAIC1 HAIC2

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 28.6 1.3 0.0 28.1 0.1 0.0 49.0 0.2
3 82.8 88.0 61.2 87.6 92.6 66.7 94.5 98.6 50.8 99.5
4 11.7 8.7 7.2 8.4 5.6 4.1 4.5 1.2 0.2 0.3
5 5.5 3.3 3.1 2.8 1.7 1.1 0.9 0.2 0.0 0.0
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