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Abstract

The AIC and its modifications have been proposed for selecting
the degree in a polynomial growth curve model under a large-sample
framework when the sample size n is large, but the dimension p is
fixed. In this paper, first we propose high-dimensional AIC (denoted
by HAIC) which is an asymptotic unbiased estimator of the risk under
a high-dimensional framework such that p/n — ¢ € [0,1). It is noted
that our new criterion does work in a wide range of p and n. Next
we derive asymptotic distributions of AIC and HAIC under the high-
dimensional frame work. A sufficient condition is given for that HAIC
selects more frequently the true model than AIC. Our results are

checked numerically by conducting a Mote Carlo simulation.
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1. Introduction

We consider the growth curve model introduced by Potthoff and Roy
(1964), which is given by
Y=A0X+E, (1.1)

where Y;n X p is an observation matrix, A;n X g is a design matrix across
individuals, X; ¢ X p is a design matrix within individuals, ® is an unknown
matrix, and each row of € is independent and identically distributed as a
p-dimensional normal distribution with mean 0 and an unknown covariance
matrix ¥. We assume that that n —p — ¢ — 1 > 0, and rank(X) = k. If we
consider a polynomial regression of degree k — 1 on the time ¢ and with ¢

groups, then

1,, O 0 11 1
A_ 0 17.12 (,) Cx- t1 by tp
0 0 1,, R TR

It is important in a polynomial growth curve model to decide its degree.
One way is to treat the problem as the one of selecting models. Related to
such problems, consider a set of candidate models M, ..., M; where M, is
defined by

M;; Y =A0,X; +€&, j=1,...,k, (1.2)

where ©; is the ¢ X j submatrix of ®, and X is the j x p submatrix of X
defined by

0=(0,04h), X= j).
(J (J)) (X(j)

The AIC (Akaike, 1973) for M, is given by

. 1
AIC = nlog|X;| + np(log2m + 1) + 2 {qj + §p(p + 1)} : (1.3)



where 2]- is the MLE of ¥ under M;, which is given by
1

n

5

(Y — A©®;X;)(Y — AO,X)),

where ©; = (A’A)'A'YST'X(X;S7'X))"L, S = Y/(I, — PA)Y/(n — q),
and P, = A(A’A)"'A’. The constant {qj + p(p + 1)/2} is the number
of independent parameters under M;. In addition to AIC, there are some
modifications (see Satoh, Kobayashi and Fujikoshi (1997)) which were pro-
posed as approximately unbiased estimators of AIC-type risk, based on a
large-sample theory. The modifications were studied assuming that the true
model is included into the largest candidate model M.

In general, the approximations based on a large-sample framework be-
come inaccurate as the dimension p increases while sample size n remains
fixed. On the other hand, in last years we encounter more and more prob-
lems in applications when p is comparable with n or even exceeds it. So, it
is important to examine behavior of AIC when the dimension is large, for

example, a high-dimensional framework such that
n— o0, p-— o0, LN cel0,1). (1.4)
n

In this paper we first derive high-dimensional AIC denoted by HAIC
which is an asymptotic unbiased estimator of AIC-type risk under (1.4).
Note that these criteria are defined for all the subsets by changing the order
of the explanatory variables. Next, after we note that these criteria have no
consistency property, we obtain asymptotic distributions of AIC and HAIC
under (1.4). More precisely, let the values of AIC for model M; by AIC;
and HAIC;, and the best subsets chosen by minimizing AIC and HAIC are
written as
Ja = arg mjin AIC;, Jra = arg mjin HAIC;.

Then we shall obtain asymptotic distributions of ja and jua. The results
include the large-sample asymptotic distributions as their special cases. A
sufficient condition is given for that HAIC selects more frequently the true

model than AIC. Through simulation experiments, we show that HAIC is
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better than AIC in the estimation of the risk as well as the probability of

selecting the true model.

2. Preliminaries

As is well known, the AIC was proposed as an approximately unbiased
estimator of the risk defined by the expected —2 log-predictive likelihood.
Let f(Y;©,,3,) be the density function of Y under M;. Then the expected
log-predictive likelihood of M is defined by

Ry = EYEy, [~2log f(YFr; 0, %))] (2.1)

where ﬁ]j and @j are the maximum likelihood estimators of 3 and ® under
M;, respectively. Here Y g;n X p may be regarded as a future random matrix
that has the same distribution as Y and is independent of Y, and E* denotes

the expectation with respect to the true model. The risk is expressed as
Ry = EyEy, [~2log f(Y;0,,%;)] + by, (2.2)
where
ba = BYEy, [-210g /(Y ©,.5,) + 2log f(Y: 0, 5. (23)

The AIC and its modifications have been proposed by regarding b4 as the

bias term when we estimate R4 by
—2log f(Y; (;)j, ﬁ]]) =nlog ]ﬁ]]\ + np(log 27 + 1),

and by evaluating the bias term b 4.

For the justification of AIC, it was assumed that the candidate model
M; include the true model. For the two bias-corrected AICs (see Satoh,
Kobayashi and Fujikoshi (1997)), it was assumed that the true model is
included in the full model Mj. This assumption is also assumed in this

paper. So, without loss of generality, we may assume that the minimum
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model including the true model is M, and then the true model is expressed

Jo>

as
Mjo (Y ~ Nnxp(AGOona 20 & In), (24)

where @ is a given ¢ X jo matrix, and ¥ is a given positive definite matrix.
For simplicity, we write X;, as X,. The bias properties of AIC and its

modifications have been studied under a large-sample framework,
p and k are fixed, n — oo. (2.5)

In the following we prepare a distributional reduction for the bias bs. By

considering the expectation of Y, it is easily seen that

ba = —np + B [tr(S, 7,5,
x {nL, + (0uX,2;? — ©,X, %, *YA'A (0, X2, — 0,X,%, ).

Let H = (H;, Hy); p X p be an orthogonal matrix such that
H, = (X;5, %) (X3, 'X)72, Hypxj, Hypx(p—j)
Further, define W, Z, Z, B as follows.

W — leal/?(ﬂ o q)5261/2H — ( Wll W12 > 7

W21 W22
Z — (A/A)—1/2A1<Y o A@0X0)251/2,
Z=Z+(AA)PO0X3, " = (A'A)TPAY S

e B, B
B=HZZH=( 21 2 > .
( B.; Bo

Then, W and B are independently distributed as W,(n —¢,I,) and W, (g, I,;
H'(A@OXOEEI/z)’A@UXOEalmH). We can express 3; and its inverse in



the terms of W and B as

W, W, W1 (9]
5 1/22 = /2 _ j 12 29 11-2
" o Wy, + By

(o
(o, O 2o
(w:

o wy o
E 1/22 2 1/2 —H ) < 11-2 )
(n W22 Wy, p ; O  (Wy +By)™!
 —WiWo) ) /
J 2 ) H. 2.7
( 0 Ip -J ( )

Lemma 2.1. Suppose that the true model is given by (2.4). Then, the bias
ba for model M; in (2.2) or (2.3) is expressed as follows:

nn+q)(n—q—1)j
n—qg—p-1n—-qgq-—p+j—1)

+E {n%r(wgg + Byy) ™! (I + %Q)} : (2.8)

by =—np+

Here we may assume that Wos and Boy are independently distributed as

W,_;(n —q,I,—;) and W,_;(q,1,_;; Q), respectively. The noncentrality ma-

triz is defined by
~ Q0
a-(29). o9

where @ =TT and T = (A’A)/20,X, 3, "/ *H,.

Proof. The result is a slight extension of Satoh, Kobayashi and Fujikoshi
(1997). From (2.6) and (2.7) we have

tr(nXg 72,85 ) = rWLL (L + Wi W52 Wy ) + tr(Wa + Byy) ™
tr(nZEl/Qf]anl/Q)_l
X (0XZ, ? — ©,X,;5,*VA'A (O X%, — ©,X,5, )

)

= tlVW111-2(IJ" _W12W221)(ZH)/ZH ( —Wz_jwm )

+ tr(Was + Byy) " H(AB X3, /2 H,) AG X3,/ Ha.



Therefore, the bias can be computed as

bA = —np + HQE[tI'Wl_Ilg(Ij + W12W2_22W21) + tI‘(WQQ + BQQ)_I]
I )

—W3, Wo,

+ tr(Was + Bo) H(AO X2,/ *H,) AO X, 2, /*H,)]

W (0 -Wo W) 28 2

=—np+n’ (n—g—1)j . B
I {(”—q—p—l)(n—q—p+j_l)+E[t(W22+322) ]}
q(n_q_l)j —17v
+n{(n—q—p—1)(n—q_p+]~_1)+tr(W22+322) I‘I‘}7

which implies
n(n+q)(n—q—1)j
nm—gq-p—1)n—qg—p+j—1)

1
+ E |in2tl"(W22 + BQQ)il (I + —F,F>:| .
n

by =—np+

The final result is obtained by considering an orthogonal transformation
W22 — F/WQQF, and 822 — F/BQQF, where F = (F1 FQ) and F, =
(T2, O

3. High-dimensional AIC

First we consider to evaluate the bias b4 given in Theorem 2.1 under the
high-dimensional framework (1.4). Note that Way; + Bgy ~ W,_;(n,I,_;; Q).
The order of the noncentrality matrix Q is (p — j) x (p — j), and it tends
to infinity. However, the matrix is a sparse matrix. In fact, it is possible to
reduce evaluating the expectation with respect to a ¢ x ¢ random matrix.
For such a reduction we use the following Lemma due to Sakurai, Nakada

and Fujikoshi (2012), based on Kabe (1964).

Lemma 3.1. Let T ~ W, (n,1,;Q), and T and Q be partitioned as
Ty T Qn Qoo
T= Q=
( Ty Toa > ’ ( Qo1 Qo ) ’
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respectively, where Ti;;p; X p; and Q550 X pj. If Qia, Qa1 and oy are zero
matrices, then
1

E[trT A - trA
m—p—l [I‘ 11 11]+m_p_1r 22,

—p—1
E[trT'A] = m-pn- -

where A is a p X p constant matriz partitioned in the same way as the par-
titions of T.

Using Lemma 3.1 we have

n—q—1 P—J—q

where .
byt = E [trT_l (Iq N _n)] | (3.1)
n

and T is the upper ¢ x ¢ submatrix of Was 4+ Bay. Note that T is distributed
as Wy(n,I,;Q). When @ = O, T ~ W,(n,I,), and hence,(see Muirhead
(1982), Siotani, Hayakawa and Fujikoshi (1985), etc.)

q

bA1 = E[tI‘Tﬁl] = n——q—]_

(3.2)
In general, we assume that

Q =nA = 0p(n), (3.3)

where O, (n’) denotes the terms of i-th order with respect to n under (1.4).
Then, the expectation can be expanded, by a result (see, e.g., Fujikoshi
(1985)) based a perturbation method, as follows:

b =L+ 5 {2g+ )6 — &) + 0un™), (34)

where & =y, & =2+ 1y and m; = tr (I, + Q/n) ™", i = 1,2. Summarizing

the result, we have the following theorem.



Theorem 3.1. Suppose that the true model is expressed as in (2.4). Then,
under (1.4) and (3.3) the bias term b in (2.3) can be expressed as
n(n+q)(n—gqg—1)j
(n—q—p—1l)n—q—p+j—1)
2| P—J—4q n n—q—1
n—(p—j)—-1 n-(p—-j)—1

bA = —np—l—

+n bAl y (35)

where by is given by (3.4). When Q = O, the term by is exactly expressed
as (3.2).

For a practical use we derive asymptotic unbiased estimators for & and
& under (1.4). We have seen that

tr(nij)il(n —q)S = j + trWp(Wa, + B22)717
. 2
tr {(nE])_l{(n — q)S} = j + tr {WQQ(WQQ + BQQ)_1}2 .
For a reduction of the right-hand sides, we use the following Lemma.
Lemma 3.2. Let S, = X'X and S, be independently distributed as W ,(q,
I; M'M) and W,(n,1,), respectively. Here X is a ¢ X p random matriz

whose elements are independent normal variates with E(X) = M and the

common variance 1. Put
B=XX and V=BY*XS;!X)'BY%

Then:

(1) B and W are independently distributed as W,(p,I,; MM') and W,(n —
p+q,1,), respectively.

(2) The nonzero characteristic roots of S,S.' are the same as those of
BW'. In particular

SI W
‘Se‘i_sh‘ |W+B|’

trS;,S, ! = trBW ™!,
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and

trSe(Se +Sn) ™ — (p— ) = tW(W + B) ",
tr{Sc(S. +84) 7'} — (p— ) = tr {W(W +B)'}”

Lemma 3.2 was essentially obtained in Wakaki, Fujikoshi and Ulyanov
(2002) and Fujikoshi, Ulyanov and Shimizu (2010). Lemma 3.2 implies that

trWoo(Way +Boy) ' =p—j — ¢+ trV(V +U) ™,
tr { Was (W + 322)_1}2 =p—j—q+tr{V(V+ U)_1}2 ;

where V.~ W (n — (p — 5),1,) and U ~ W, (p — 5,1,;Q). Let V and U be
defined by

1 1 _
— V=1, + ———V,
n—(p—7j) n—(p—17)

1 1 -

 U=IL+ A+ 0.

p—J b= b=

Then V and U are asymptotically normal, and E[V] = 0, E[U] = 0. There-

fore
4 n=(p—J) _
V(V+U) 1—>T(Iq+A> L

We define

where

~

= {tr(nEj)‘l(n —q)S—(p— q)} :

i = (%) {o{mS) - a)8Y - -0}

n—(p—3j

Then, & and & are asymptotically unbiased estimators of & and &, respec-

tively. Now we modify these estimators so that they are exact estimators
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when @ = 0. Put Q = V(V + U)~'. Then, when © = 0, Q is distributed
as a multivariate beta distribution (,(a/2,b/2) with a = n — (p — j) and
b= p — j. Therefore, we have (see, e.g. Fujikoshi and Satoh (1997))

E[trQ] = n—w-j q,

EKuQF+¢ﬂYy:ﬁ:%%:Q”q,{ﬂn—urQQ;QXq+2
+2<n—<p—3111><q—1>},

Since & is an unbiased estimator of &, we modify & and & as
él = 51 and 52 = de,
so that & is an unbiased estimator of & when € = 0. For this, from (3.2),

(3.4) and (3.5) we may determine d as

q+1
n(n —q— 1)
since ¢/(n —q—1) = q/n+q(¢+1)/{n(n — ¢ —1)}. This implies that
n=2¢-2 3{n—-(-J)}

1
{%q+1q—dE&
TL

d= 1) -
(g+1) p—— "
20q+2){n—(p—j)+2 —D{n—(p—j)—-1}1"
o [2lat2){n—(p—j)+ }_+(q Hn—(—j) -1} (3.6)
n+2 n—1
Now we define HAIC for M, as
HAIC; = nlog |%,| + np(log 27 + 1) + by, (3.7)

where

R —qg—1)7

b — —np+ n(n+q)(n—g—1)j

(n—gq—p—1Ln—qg—p+j—1)
P—J—q n n—q—1
n—p-j)—1 n—-(p—j)—1

(L farva-e))| e

11
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Then we separate a set of candidate models, one of which is a set of
overspecified models, candidate models that include the true model, and the
other is a set of underspecified models that are not the overspecified models.
Note that if M; is an overspecified model, then 2 = O.

Theorem 3.2. Under assumption (1.4) the high-dimensional AIC, HAIC
defined by (3.7) satisfies the following properties:
(1) if M; is an overspecified model, HAIC is an eract unbiased estimator of
Ra,ie.

E(HAIC) = R4.

(2) if M; is an underspecified model,
E(HAIC) = R4 + On(n™").

Note that these HAIC is defined for all the subsets by changing the order

of the explanatory variables.

4. Asymptotic distributions of AIC and HAIC

Recently it is known (see Fujikoshi, Sakurai and Yanagihara (2012),
Yanagihara, Wakaki and Fujikoshi (2012)) that AIC and its modifications for
some multivariate models have consistency property under a high-dimensional
asymptotic framework. First we examine whether AIC and HAIC have a con-

sistency property under the high-dimensional framework (1.4). Note that
1y, _n—@p@—Jj) 1

V= - Vo (1-0L,
A e M
1 -7 1
“u="Y . U, +a,
n noop—j
This implies that
=—aS| _ ), Waf _ V]
= = g = —1og
‘n2J| ’W22 + BQQ‘ |V + U‘
1—o¢)1
— —log 1 = oL, = —log(1 — )" +log |I, + Al

(1= oI+l + 4]
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Therefore we have
1
- (AIC; — AIC,,))

[(n —a)S| log ((n—9)SI) | 24U = Jo)
n3;] 3| "

= —log

O’ .2 .7
%1og|1q+Ajy:{ >09 j‘7<°]_0.

Here, AIC; and AICj, is AIC under M; and M;

jo» respectively. This shows

that AIC has no consistency property. Similarly HAIC has no consistency
property since (b; — bj,)/n — 0 (see Section 4.2). Further, it holds that for
C=1,...5o—1,

lim P(jy = ¢) =0, and lim P(juas = ¢) = 0. (4.1)

4.1 Asymptotic distribution of AIC

We have defined an orthogonal matrix (H; Hs) for each M;(j = 1,...,k),
which is denoted by (H,; Hy;) , where Hy; = (X2, /) (XoXy X)) Y2 px
j and Hy; is any matrix such that (Hy;)'Hy; = I,_;, and (Hy;)'Hy; = O. In
order to treat AIC;, AIC,, ..., AIC, simultaneously, we define an orthogonal

matrix

H: (hl,...,hk;*>,
satisfying hl & fR[Hll], (hb hg) € CR[H12], ety (hl, ey hk) - :R[Hlkz]) and

the remainder p — k£ columns are any ones such that H is an orthogonal

matrix. We partition H as
H= (H HY), H:p < j

Using the new orthogonal matrix H, we consider the random matrices in

Section 2 by using the same notations. For example,

W =H'S,?(n - ¢)Sx,/*H, B=HZZH.
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Let us denote the last (p — j) x (p — j) submatrices of W and B by W, and
B(j), respectively, that is

* * * %k
W = . B= .
(* W(j)) (* B(j))

W) ~ W, i(n—q,1,;), By~ W, (¢, I,_;TiTy),

Then

where T'; = (A’A)20,X,X,"/*HY. Further, from Lemma 3.2 it is possible

to express as

(n—q@)S| _ Wyl Vg
InS,| (W@ + Byl Vg + U

where V(;) and U;) are independently distributed as Wy(n — (p —j),1;) and
Wq(p - j, Iq, Qj), and Qj = I‘]I‘;

Lemma 4.1. Suppose that the true model is expressed as (2.4). Then, under

(1.4), AIC; — AIC;, is asymptotically distributed as

1
_1—0[

{Ri—2(1—¢c)g}+ - +{Rj_j, —2(1 = )q}], 1=Jo+1,....k,
where Ry, ..., Ry_j, are independently distributed as Xz.

Proof. For j = 50+ 1,...,k, we have

AIC; — AIC,
(n—q)8| ( \(n—q>5|> o
= —nlog =——=-— — | —nlog =——==— | +2(j — jo)g
\nEJ] ’nEJ'O’
= —nlog Ay +nlog Ay + 2(j — jo)g,

where

A ~ A

o= —ian—a» J=7TJo,Jo+1,... k.
(4 |W(j)+B(j)| p—j.an—q> J = J05J0
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Therefore
AIC, — AIC,,
= n{(log Ago) —log Agjot1)) + (log Agip1) — log Agp42))

4+t (log A(j—l) — log A(j))} + 2(] - jO)q

J—Jjo
= Z nlog Aore-1)j0+0) + 2(J — Jo)g;
=1
where A¢joroe—1jjo+e) = Mgore—1)/AGotre), £ =1,...,7—jo. It is shown (see Fu-

jikoshi, Ulyanov and Shimizu (2010), p.61 ~ 63) that Ag,—1jj0), AGoljo+1)s - - - 5
A(j—1jj) are independent, and for £ =1,...,75 — jo

X (p—jo—1) X; -
Ao+t-11jo+0) = 2 q2 = = (1 + 2—q> .
Xg T Xn—g—(p—jo—0) Xn—q—(p—j;—0)

Therefore, —(n — p)log A¢jo+e—1]jo+¢) is asymptotically distributed as XZ. Us-
ing this property we can get the required result. O]

Theorem 4.1. Suppose that the true model is expressed as (2.4). Let Ry, .. .,
Ry, be independent Xg variables, and put

Zy=Ry—2(1—c)q, £ =1,....k— jo. (4.2)
Then, under (1.4) it holds that

lim P(jA = j) = P(Ljfjo — Ly > 0,..., Lj*jo — Lj,j0,1 > 0)
X P(LjJrl*jo — Lj*jo <0,... 7kajo — Lj*jo < O), (43)

where Ly = 0, L;—;, = Z;]lo Zo,t = Jo+ 1,..., k. Further, the probability

(4.3) can be expressed as

lim P(ja = 7) = aj_jobe_jo, (4.4)

15



where ag = by = 1, a; = P(L; > 0), and

w- S w-S{TE(52)) ws

i i1 m] Li=1

Here the summation Z[m} extends over all m-tuples (ri,r9,...,Tm) of non-

negative integers with the property ri + 2ry 4 - -+ +mr,, = m.

Proof. Note that
lim P(jy = j) = lim P(min AIC, = AIC;)
= lim P(AICJ - AICjO S AICg - AICjO, (= jo,jo + 1, ceey k‘)

Using Lemma 4.1 and noting that {Ry,..., R;_; } and {Rj11_j,,- .-, Ri—jo }
are independent, we can write the probability as (4.3). Further, it is easy to
see that

P(Lj—jo —Log>0,... 7Lj—j0 - Lj—jg—l > O)

J—Jo J—Jo J—Jo
:P<ZZi>O,ZZZ->O,..., Yz >0),
i=1 i=2 i=j—jo—1

P(Lj1jo = Lj—jo <0, Li—jy — Lj—jo <0)
J—Jjo+1 k—jo
—r((X z<o.. 3 z<o).
i=j—jo+1 i=j—jo+1
Applying Spitzer (1956) and Shibata (1976) to the above expressions, we
obtain the second result (4.4). O

We note that Theorem 4.1 with ¢ = 0 gives asymptotic distribution of AIC
under large-sample framework, which was considered by Satoh, Kobayashi

and Fujikoshi (1997).
Especially the probability of selecting the true model by AIC is expressed

)Ti
9

as

k—jo
fim PG = o) = by = 3 [] (

[k—jo] =1
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where o; = P(L; > 0).
For numerical computations of the asymptotic probabilities, we can use

simplified expressions of a,, and b,,. For example, consider

= {1 ()}

m] i1

Then, the a,,’s for m =1 ~ 5 are expressed as follows.

a; = g,
L,
g — 5 (()él+062),
1
as = 6 (Oé? + 3@20[1 + 2043) s
1
ay = 21 (0/11 + 604204% + 8z + 3043 + 6044) ,
1
as = 20 (a‘;’ + 10a08 + 20aza? + 15050

+300&40{1 + 200[20(3 + 240&5) .

4.2 Asymptotic Distribution of HAIC

The main part of HAIC is the same as the one of AIC. So, it is enough to
examine asymptotic behaviors of Bj and Bjo, where Bj is given by (3.8). Note
that él and 52 converge to & and &5, respectively. After much computation,

we get
3

n i i an
=P +1{2—(J +Jo)}m}

(- 1— o) [2q+ f2- () m)}] T on(1),
Therefore

1
HAIC] — HAICjO — — 1——6{R1 + -+ Rj*jo}

FG—)(1— g {2q fef2—(j +jo>}]

1

— Ry R - 0,

17



where

g =1 =0)2¢+ {2 — (j + jo)}]- (4.6)
This shows that an asymptotic result of HAIC can be obtained from the one
of AIC by changing Z, = Ry — 2(1 — ¢)q to Z, = Ry — g;. We have the

following theorem.

Theorem 4.2. Suppose that the true model is expressed as (2.4). Let Ry, ..

)

Ri—j, be independent x. variables, and put
Zg:R[—gj,gzl,...,k—jo. (47)

where g; is given by (4.6). Then, under (1.4) it holds that lim P(jua = j) is
given by (4.3) or (4.4) with Z, in (4.7).

Especially the probability of selecting the true model by HAIC is ex-

pressed a

k—jo ;
1—04Z !
fm PGios = o) = b = 30 [ ( )

[k—jo] i=1
Now we examine which of AIC and HAIC has the more high probability

of selecting the true model. For this, let us consider the condition such that
lim P(ja = jo) < lim P(jua = jo)-

A sufficient condition is given in the following theorem.

Theorem 4.3. Under the same assumptions as in Theorems 4.1 and 4.2 it
holds that

(1) ifgi=(1-c)?2¢+c{2—=(j+2jo)}] > 2(1 —c)q, 5 =jo+1,....k, then
lim P(ja = jo) < lim P(jua = jo)-
(2) if g+ 1 >k, then

gi=1—0)2¢+c{2— (i +250)}] >2(1—¢)q, j=1+3jo,...,k
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Proof. From Theorem 4.1 the asymptotic probability of selecting the true
model by AIC is expressed as
lim P(ja = jo) = P(L1 < 0,Ly < 0,..., Li_j, <0)
= P(Sl < Sq, SQ < S9,..., Skfjo < Skfjo),
where L;_j, = S {R; —2(1—¢)q}, j = jo+1,...,k,and Ry, ..., Ry_j, are
independent x? variables. Here S;_j, = I Ry and s;_j, = 2(j—jo)(1—¢)q.
Similarly, the asymptotic probability of selectmg the true model by HAIC is
expressed as
lim P(jua = jo) = P(L1 < 0,1y < 0,..., L_j, < 0)
= P(Sl < §1, S2 < 52, cee Sk—jo < §k_j0>,
where LJ —jo ZJ ]O{R gj},j = j() + 1, .. .,]{7. Here gj—jo = (] — jo)g]
Suppose that for j = 1+jo, ..., k, g; > 2(1—c)q. Then we have §;_j, > s,_j,.
Therefore
lim P(ja = jo) = P(S1 < 51,5 < 8, Sk_jo < 8k_jo)
> P(Sl < 81, SQ < S9,... ,Sk,jo < Skfjo) = hmP(ﬁA = jo),

which shows the first result. For j = jo+ 1,..., k, we have

9 =21 —c)g=(1—)?[2g+ {2 — (i + 2jo)}] — 2(1 — c)g

(1 =) ?2¢{1 = (1 — )’} + {2 = (j + o)}

> (1= ¢)7?2¢{1 = (1 = ¢)°} + {2 — 2k}]

2¢(1 — ¢)?[q(c* — 3¢+ 3) + 1 — k.

Here we used that 1 + jo < 7 < k and 1 < jy < k. Further, noting that

l<c?-3c+3<3since0<c<1,q(®—3c+3)+1—k>q+1—k. So, if
qg+1—k>0,g; >2(1—c)g. This proves the second result. O

Through numerical experiments, we have seen (see Section 5) that HAIC
selects the true model more often than AIC. So, it is expected that the

sufficient condition is relaxed.
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5. Simulation study

In this section, we numerically examine the validity of our claim. The
five candidate models My, ..., M5, with several different values of ¢, n =
> % . n; and p = cn, were prepared for Monte Carlo simulations, where
qg =2, n = nyg = 50,100 and ¢ = 0.1,0.2,0.4. We constructed a 5 x p
matrix X of explanatory variables with ¢; = 1 + i/p. The true model was
determined by @y = 1315 and ¥, whose (i, 7)th element was defined by
(0.2)i=9 (i =1,...,p;5=1,...,p). Here 1, was the p-dimensional vector of
ones.

First, we studied performances of AIC and HAIC as estimators of Ry.
For each of My, ..., M5, we computed the averages of R4, AIC and HAIC by
Monte Carlo simulations with 10* replications. Table 1 shows the risk R4 and
the biases of AIC and HAIC to R4, defined by “R 4 — (the expectation of the
information criterion)”. In the table, j means the model M; and the bold
face denotes the true model. From the table, we can see that the biases of
the HAIC were smaller than the ones of AIC. In general, there is a tendency
that the biases are large as p increases. But the tendency of HAIC is very

weak in the comparison with AIC.

Table 1. Risks and biases of AIC and HAIC

j Ra | AIC HAIC R4 | AIC HAIC Ra| AIC HAIC
(n,p) = (100, 10) (n,p) = (100, 20) (n,p) = (100, 40)

1] 3131.9[138 05| 6218.9[113.8 0.4 13390.0 | 11481  -4.0

2| 2881.1|16.8 0.2 59244 |119.4  -0.1 | 13056.0 | 1167.7  -2.1

3| 2877.7| 181 0.2 | 5919.9 | 1229  -0.1 | 13053.8 | 1180.7  -2.9

4| 2880.6 | 19.2 0.2 | 5924.7 [ 1262 0.0 || 13067.3 | 11934  -3.1

5| 28834202 02| 592931292 0.0 || 13080.1 | 1205.4  -3.2

(n,p) = (200, 20) (n,p) = (200, 40) (n,p) = (200, 80)

12070.9 | 50.5 1.7 || 24305.7 | 421.1 -3.4 || 52735.0 | 4416.4 -6.1
11474.5 | 54.5 2.2 ]| 23607.0 | 427.0 -3.5 || 51943.4 | 4434.2 -6.0
11458.4 | 56.1 2.4 || 23580.1 | 430.8 -3.5 || 51902.5 | 4448.6 -5.9
11461.6 | 57.5 2.5 || 23585.1 | 434.1 -3.7 || 51916.9 | 4462.3 -5.9
11464.6 | 58.7 2.5 || 23590.0 | 437.5 -3.7 1| 51931.0 | 4475.5 -5.9

U W N
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Next, we studied the probabilities of selecting the model by AIC and
HAIC. Table 2 shows the selection probability by AIC based on Monte
Carlo simulations with 10* iterations and the asymptotic selection proba-
bilities under a large-sample framework and a high-dimensional framework.
In the table, AIC; and AIC, denote the selection probabilities by Monte
Carlo simulations for n = 100 and n = 200, respectively. The columns of LS
and HD express the asymptotic selection probabilities under a large-sample
framework and a high-dimensional framework, respectively. Here, we calcu-
lated LS and HD as ¢ = 0.0 and ¢ = p/n, respectively. In the table, the true
model is M3. Similarly, Table 3 shows the selection probabilities of HAIC.

From Tables 2 and 3 we can see that the selection probabilities of AIC
and HAIC were closer to HD than LS. Moreover, these selection probabilities
approached more to HD as p increases. Both of the probabilities of selecting
the true model increase when n increases, but p is fixed. However, the prob-
ability of selecting the true model by AIC decreases as p increases, but n is
fixed. On the other hand, the probability of selecting the true model by HAIC
increases when n and p increases. Especially, the probability approaches to 1.
We have shown in Theorem 4.3 that if ¢ +1 > k, the probability of selecting
the true model by HAIC is higher than the one by AIC. Moreover, Tables 2
and 3 show that the fact holds in all the cases except for (n,p) = (100, 10).
This means that it is expected that a more weak sufficient condition shall be
derived.

Table 2. Selection probabilities of AIC (%)
J c=0.1 c=0.2 c=04
LS || HD | AIC; AIC, | HD | AIC; AIC, | HD | AIC; AIC,
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 00| 179 0.5 0.0 8.1 0.0 0.0 1.9 0.0
82.8 || 7186 | 63.0 784 || 73.3 | 66.7 746 | 59.0 | 59.2 598

11.7 | 13.8 | 12,5 140 || 16.1 | 153 154 21.0 | 204 21.2
9.5 7.7 6.6 7.2 || 10.6 9.8 10.1 | 20.0 | 185 19.0

U W N
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Table 3. Selection probabilities of HAIC (%)

J c=0.1 c=0.2 c=04

LS | HD | HAIC,; HAIC, | HD | HAIC, HAIC, | HD | HAIC; HAIC,
1] 00 00 0.0 0.0 || 0.0 0.0 0.0 || 0.0 0.0 0.0
21 00| 00| 286 1.3 00| 281 01 00| 49.0 0.2
3] 82880 612 876 926| 667 945 986| 508 995
4117 87 7.2 84 || 5.6 41 45 || 1.2 0.2 0.3
50 55| 33 3.1 28 | 1.7 1.1 09 || 0.2 0.0 0.0
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