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Abstract

We proposed a test for assessing multivariate normality of the high-dimensional data which the di-

mension is larger than the sample size. The classical tests based on the sample measures of mul-

tivariate skewness and kurtosis defined by Mardia (1970) or Srivastava (1984) do not work for the

high-dimensional case. The proposed test does not require explicit conditions on the relationship be-

tween the data dimension and sample size. An application of the proposed test is assessing multivariate

normality of gene data, which we demonstrate as an numerical study.
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1. Introduction

Let x1, . . . ,xN be a random sample drown from a population. We assume these p-dimensional

observation vectors to the following models:

xi = µ+Σ1/2zi, i = 1, . . . , N, (1)

where z1, . . . ,zN are independently and identically distributed (i.i.d.) as a distribution F with mean

E[z] = 0 and covariance matrix Var(z) = Ip. The interest is whether F is multivariate normal

distribution Np(0, Ip) or not. If F = Np(0, Ip), multivariate analysis based on the normality gets

meaningful.
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In a seminal paper Mardia [5], he defined a multivariate skewness β1,p and a kurtosis β2,p as

β1,p = E
[(
(x− µ)′Σ−1(y − µ)

)3]
,

β2,p = E
[(
(x− µ)′Σ−1(x− µ)

)2]
,

where x and y are i.i.d. as a distribution with mean µ and covariance matrixΣ. When the multivariate

normality holds,

β1,p = 0 and β2,p = p(p+ 2).

Multivariate kurtosis is often defined as γ2,p = β2,p − p(p + 2) in order to be 0 for the case that the

distribution is multivariate normal. Srivastava [7] gave other definition of the multivariate skewness

and kurtosis. Mardia [5] proposed estimators of β1,p and β2,p as

b1,p =
1

N2

N∑
i=1

N∑
j=1

(
(xi − x̄)′S−1(xj − x̄)

)3
,

b2,p =
1

N

N∑
i=1

(
(xi − x̄)′S−1(xi − x̄)

)2
,

where x̄ and S are the sample mean and the unbiased estimator of Σ, respectively, which are defined

as follows:

x̄ =
N∑
i=1

xi/N, S =
N∑
i=1

(xi − x̄)(xi − x̄)′/n, n = N − 1.

As their applications, he introduced the test of assessing multivariate normality based on these es-

timators. Srivastava [7] also proposed the method for assessing multivariate normality based on his

estimators. For reviews of testing the multivariate normality, see e.g., Henze [3] or Mecklin and Mund-

from [6]. Koizumi et al. [4] proposed multivariate Jarque-Bera tests, which is an omnibus test using

estimators of Mardia’s, multivariate skewness and kurtosis, and also using Srivastava’s multivariate

skewness and kurtosis. Their proposed tests perform well when the sample size N is much larger than

the dimension p.

It is noted that b1,p and b2,p are defined for the case that n ≥ p. When p ≥ N , S becomes

singular, and so these estimators cannot be defined. In this paper, we define other measure γ
(h)
2,p like

the multivariate kurtosis, which is as follows.

γ
(h)
2,p = κ11,
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where

κij = E[z′Σizz′Σjz]− 2 trΣi+j − trΣi trΣj

for positive integers i, j and z ∼ F . When Σ = Ip and p = 1, γ
(h)
2,1 = γ2,1. When F = Np(0, Ip),

γ
(h)
2,p = γ2,p = 0. Himeno and Yamada [2] proposed the unbiased estimator of κ11 as

κ̂11 =
−1

(N − 2)(N − 3)
{2(N − 1)2 trS2 + (N − 1)2(trS)2 −N(N + 1)Q},

where

Q =
1

N − 1

N∑
i=1

{(xi − x̄)′(xi − x̄)}2.

Assume the following asymptotic framework A1 and assumptions A2 and A3:

A1 : p → ∞, n = N − 1 → ∞ and n/p → c0 ∈ (0,∞);

A2 : ai := trΣi/p → ai0 ∈ (0,∞) for i = 1,. . . ,6;

A3 : E[(y′Σz)4] = o(p4), κ22 = o(p4), y and z are i.i.d. as F.

Himeno and Yamada [2] has shown that if all elements of z ∼ F are i.i.d. and the eighth moment of the

element is finite, then κ11 = O(p) under A1 and A2. The consistency of the unbiased estimator κ̂11/p

has also been shown under A1, A2 and A3. We deal with the testing problem for the null hypothesis

H0 : F = Np(0, Ip)

against the alternative hypothesis that F is not Np(0, Ip). The multivariate normality is assessed by

evaluating the value of γ
(h)
2,p = κ11, i.e., the null hypothesis H0 is rejected by verifying κ11 6= 0. We

will propose the testing statistic based on the estimator κ̂11/p.
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2. Asymptotic null distribution

We derive the limiting null distribution of κ̂11/p. From model (1) it can be expressed that

κ̂11 =
1

N

N∑
i=1

(z′
iΣzi)

2 − 2

N(N − 1)

N∑
i,j=1
i 6=j

(z′
iΣzj)

2 − 1

N(N − 1)

N∑
i,j=1
i 6=j

z′
iΣziz

′
jΣzj

−

 4

N(N − 1)

N∑
i,j=1
i 6=j

z′
iΣziz

′
iΣzj −

4

N(N − 1)(N − 2)

N∑
i,j,k=1

i 6=j,j 6=k,k 6=i

z′
iΣziz

′
jΣzk


+

8

N(N − 1)(N − 2)

N∑
i,j,k=1

i 6=j,j 6=k,k 6=i

z′
iΣzjz

′
iΣzk

− 6

N(N − 1)(N − 2)(N − 3)

N∑
i,j,k,`=1

i 6=j 6=k 6=`,k 6=i 6=` 6=j

z′
iΣzjz

′
kΣz`.

From the assumption of H0 : F = Np(0,Σ), the expression in the curly brace and the last two

summations converge in probability to 0, respectively, under the asymptotic framework A1 and the

assumption A2, and so we have

N1/2

p
κ̂11 =

1

pN1/2

N∑
i=1

(z′
iΣzi)

2 − 2

pN1/2(N − 1)

N∑
i6=j

(z′
iΣzj)

2

− 1

pN1/2(N − 1)

N∑
i 6=j

z′
iΣziz

′
jΣzj + op(1)

under A1 and A2, where we abbreviate the notation ΣN
i,j=1
i 6=j

as
∑N

i 6=j , simply. By subtracting the mean,

it can be expressed as

N1/2

p
κ̂11 =

1

pN1/2

N∑
i=1

{(z′
iΣzi)

2 − 2 trΣ2 − (trΣ)2} − 2a1
N1/2

N∑
i=1

(z′
iΣzi − trΣ)

− 1

pN1/2(N − 1)

N∑
i 6=j

(z′
iΣzi − trΣ)(z′

jΣzj − trΣ)

− 2

pN1/2(N − 1)

N∑
i 6=j

{(z′
iΣzj)

2 − trΣ2}+ op(1). (2)
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For the third and fourth terms, the following convergences hold under A1 and A2:

1

p2N(N − 1)2
Var

 N∑
i 6=j

(z′
iΣzi − trΣ)(z′

jΣzj − trΣ)

 =
8a22

(N − 1)
→ 0,

4

p2N(N − 1)2
Var

 N∑
i 6=j

{(z′
iΣzj)

2 − trΣ2}

 =
16

(N − 1)

{
a22 +

(2N − 1)a4
p

}
→ 0.

From Chebyshev’s inequality, the third and the fourth terms of the right-hand side of the equation (2)

converge to 0 in probability, respectively. Thus it is found that

√
N

p
κ̂11 =

1√
N

N∑
i=1

ηi + op(1),

where

ηi =
1

p
{(z′

iΣzi)
2 − 2 trΣ2 − (trΣ)2} − 2a1(z

′
iΣzi − trΣ).

The random variables η1, . . . , ηN are i.i.d. with the mean 0 and the variance 8a22 + (48/p)a4. Since

the variance does not include n, from the central limit theorem, N1/2(1/N)
∑N

i=1 ηi converges in

distribution to the normal distribution with mean 0 and variance 8a220 as n, p tend to infinity together

along the asymptotic framework A1 under the assumption A2. Himeno and Yamada [2] proposed the

unbiased and the consistent estimator â2 under A1, A2 and A3, which is as follows.

â2 =
N − 1

pN(N − 2)(N − 3)
{(N − 1)(N − 2) trS2 + (trS)2 −NQ}.

From Slutsky’s theorem of convergence in distribution, we obtain the asymptotic null distribution of

κ̂11/p, which is given as the following theorem.

Theorem 1. Assume that the null hypothesis H0 : F = Np(0,Σ) is true. Under the asymptotic

framework A1 and the assumptions A2, (N1/2κ̂11/p)/(8
1/2â2) converges in distribution to the standard

normal distribution.

3. Numerical studies

The simulation experiments were carried out to see the precision of the approximation for the case

that N, p = 60, 80, 120, 200. We calculated the actual error probability of the first kind when the

nominal is 0.05. We did Monte Carlo simulation based on 100,000 iteration. Generate the data based

on the model (1). As a covariance matrix, we consider two cases. One is the identity matrix, i.e.,
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Σ1 = Ip, and the other is an positive definite matrix Σ2 as

Σ2 =



σ1

σ2

. . .

σp





0.1|1−1| 0.1|1−2| · · · 0.1|1−p|

0.1|2−1| 0.1|2−2| · · · 0.1|2−p|

...
...

. . .
...

0.1|p−1| 0.1|p−2| · · · 0.1|p−p|





σ1

σ2

. . .

σp


for σi = 5 + (−1)i−1(p − i + 1)/p. We can see from Table 1 that the actual error probability of the

first kind is almost monotone decreasing for N and p, and larger than 0.05. It should be noted that

our approximation method underestimates the percentile points. We also calculated the power for the

case that the nominal is 0.05. The distributions of z = (z1, . . . , zp)
′ ∼ F under alternative hypothesis

are considered as follows.

Case 1: F is the scaled multivariate t distribution with 500 degrees of freedom,

the mean 0 and the covariance matrix Ip;

Case 2: For w1, . . . , wp are i.i.d. as the chi-squared distribution with 10 degrees of freedom,

zi =
√
10(wi/10− 1)/

√
2, i = 1, . . . , p.

Tables 2-3 indicate values of powers, which are corresponding to Case 1-2, based on Monte Carlo

simulation with 100,000 repetition when the nominal is 0.05. We can see from Table 2 that the power

is almost monotone increasing for N and p. The reason why it occurs is that the discrepancy from

the standard normal distribution gets large as p becomes large when the degrees of freedom of the

multivariate t distribution is fixed. It can be found from Table 3 that the power is almost monotone

increasing for N and is not affected by the value of p.

Table 1: Actual error probability of the first kind when the nominal level is 0.05.

N p Σ = Σ1 = Ip Σ = Σ2 N p Σ = Σ1 = Ip Σ = Σ2

60

60 0.064 0.067

120

60 0.058 0.061
80 0.063 0.064 80 0.057 0.058
120 0.062 0.065 120 0.058 0.058
200 0.061 0.064 200 0.056 0.057

80

60 0.061 0.064

200

60 0.057 0.058
80 0.058 0.063 80 0.057 0.057
120 0.058 0.061 120 0.055 0.056
200 0.058 0.060 200 0.054 0.056

We apply our test to two dataset:

Colon data 2000(p) genes expression levels are available on 22 (N1) normal colon tissues and 40 (N2)

tumor colon tissues, which these data are publically available at “http://genomcs-pubs.princeton.
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Table 2: Power for the multivariate T distribution when the nominal is 0.05

N p Σ = Σ1 = Ip Σ = Σ2 N p Σ = Σ1 = Ip Σ = Σ2

60

60 0.151 0.145

120

60 0.199 0.187
80 0.199 0.188 80 0.278 0.258
120 0.307 0.285 120 0.463 0.424
200 0.547 0.509 200 0.787 0.746

80

60 0.168 0.158

200

60 0.264 0.240
80 0.227 0.207 80 0.386 0.356
120 0.362 0.333 120 0.637 0.591
200 0.645 0.600 200 0.933 0.906

Table 3: Power for the independent case when the nominal is 0.05

N p Σ = Σ1 = Ip Σ = Σ2 N p Σ = Σ1 = Ip Σ = Σ2

60

60 0.756 0.730

120

60 0.941 0.929
80 0.753 0.738 80 0.945 0.937
120 0.761 0.748 120 0.950 0.942
200 0.768 0.755 200 0.953 0.947

80

60 0.841 0.821

200

60 0.993 0.990
80 0.845 0.833 80 0.994 0.992
120 0.854 0.844 120 0.995 0.994
200 0.861 0.851 200 0.995 0.995

edu/oncology/affydata/index.html”. We preprocessed the data by applying 10 logarithmic trans-

formation.

Leukemia data 3571(p) gene expressions are available on 47 patients suffering from acute lym-

phoblastic leukemia (ALL,47 cases) and 25 patients suffering from acute myeloid leukemia (AML,25

cases), which these data are publically available at “http://www.broadinstitute.org/cgi-bin /can-

cer/datasets.cgi”. The dataset are preprocessed by following protocol written in Dudoit et al.

[1].

For the colon data, the p-value of our test is 0.237 for normal colon tissues and 0.063 for tumor

colon tissues. This indicates that the multivariate normality assumption on both sets of data cannot

be rejected at the usual significance level 5%. For the leukemia data, the p-value of our test is 0.663

for ALL and is 0.838 for AML. It is not suspected for the conclusion of multivariate analysis for the

leukemia data derived under multivariate normal distribution.
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4. Concluding and remarks

For the case that the sample size N is larger than the dimension p, it has been reported some

tests for assessing multivariate normality based on multivariate skewness and kurtosis. However, when

p > N , all these tests cannot be defined. In this paper, we proposed a testing statistic for assessing

multivariate normality which is available for the high-dimensional case. Simulation results revealed

that our proposed test has good precision for the percentile point approximation for large N and p. In

addition, power is almost monotone increasing for N . We applied two dataset of microarray data.

Acknowledgement

The first author was supported by grant from Japan Society for the Promotion of Science (JSPS),

Grant-in-Aid for Scientific Research, Young Scientists (B), #23740085, 2011-2012.

References

[1] S. Dudoit, J. Fridlyand, T.P. Speed, Comparison of discrimination methods for the classification

of tumors using gene expression data, J. Amer. Statist. Accoc. 97 (2002) 77–87.

[2] T. Himeno, T. Yamada, Estimations for some functions of covariance matrix in high dimension

under non-normality, TR No.12-11. Statistical Research Group, Hiroshima University.

[3] N. Henze, Invariant tests for multivariate normality: a critical review, Stat. Papers 43 (2002)

467–506.

[4] K. Koizumi, N. Okamoto, T. Seo, On Jarque-Bera tests for assessing multivariate normality, J.

Stat., Adv. Theory Appl. 1 (2009) 207–220.

[5] K. V. Mardia, Measures of multivariate skewness and kurtosis with applications, Biometrika 57

(1970) 519–530.

[6] C.J. Mecklin, D.J. Mundfrom, An appraisal and bibliography of tests for multivariate normality,

Internat. Statist. Rev. 72 (2004) 123–138.

[7] M.S. Srivastava, A measure of skewness and kurtosis and a graphical method for assessing multi-

variate normality, Statist. Probab. Lett. 2 (1984) 263–267.

8


