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Abstract

This paper analyzes whether procedures for multiple comparison derived in Hyodo

et al. (2012) work for an unbalanced case and under non-normality. We focus on

pairwise multiple comparisons and comparison with a control among mean vectors, and

show that the asymptotic properties of these procedures remain valid in unbalanced

high-dimensional setting. We also numerically justify that the derived procedures are

robust under non-normality, i.e., the coverage probability of these procedures can be

controlled with or without the assumption of normality of the data.
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1 Introduction and motivation

In this paper, we consider multiple comparisons and comparisons with a control among

mean vectors in the unbalanced case, i.e., assuming unequal sample sizes. Let x
(i)
j

(j = 1, 2, . . . , Ni, i = 1, 2, . . . , k) be independently distributed as the p-dimensional

normal distribution with mean vector µ(i) and common covariance matrix Σ. Let the

i-th sample mean vector and the pooled sample covariance matrix be

x(i) =
1

Ni

Ni∑
j=1

x
(i)
j , S =

1

m

k∑
i=1

Ni∑
j=1

(x
(i)
j − x(i))(x

(i)
j − x(i))′,

respectively, where m =
∑k

i=1Ni − k.

In general, the simultaneous confidence intervals for pairwise multiple comparisons

among mean vectors with the confidence level 1− α are given by

a′(µ(i) − µ(j)) ∈
[
a′(x(i) − x(j))± tp

√
wija′Sa

]
,

∀a ∈ Rp − {0}, 1 ≤ i < j ≤ k,

where wij = 1/Ni+1/Nj, R
p−{0} is the set of any nonnull real p-dimensional vectors,

and t2p ≡ t2p(α) is the upper 100α percentile of the distribution of T 2
max ·p defined by

Pr{T 2
max ·p > t2p} = α,

where

T 2
max ·p = max

1≤i<j≤k
{T 2

ij},

T 2
ij = w−1

ij (y(i) − y(j))′S−1(y(i) − y(j)),

y(i) = x(i) − µ(i), i = 1, 2, . . . , k.

By analogy with above, in the case of comparisons with a control, letting the first

population be a control, the simultaneous confidence intervals are given by

a′(µ(1) − µ(j)) ∈
[
a′(x(1) − x(j))± tc

√
w1ja′Sa

]
,

∀a ∈ Rp − {0}, 2 ≤ j ≤ k,
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and the value tc (> 0) is chosen to satisfy

Pr{T 2
max ·c > tc} = α,

where

T 2
max ·c = max

2≤j≤k
{T 2

1j},

T 2
1j = w−1

1j (y
(1) − y(j))′S−1(y(1) − y(j)).

In order to construct simultaneous confidence intervals, it is required to obtain the

upper percentiles of T 2
max-type statistics, i.e., tp and tc. In general, it is difficult to obtain

them exactly even under normality. The use of Bonferroni’s inequality to obtaining

approximate upper percentiles are discussed by e.g., Seo (1995), Seo and Siotani (1992).

These results are derived for the standard asymptotic setting, i.e., assuming that p is

fixed and is much smaller than Ni.

However, recently, high-dimensional data have been increasingly encountered in

many applications of statistics and most prominently in biological and financial studies.

It is well known that when the dimension is larger than the total sample size, the sample

covariance matrix becomes singular, and hence it will be impossible to define Hotelling’s

T 2
max-type statistic. To tackle this problem efficiently, the Dempster trace criterion for

one and two sample can be used.

The technique considered in the current study develops results derived in Dempster

(1958, 1960). The similar approach for multivariate linear hypothesis has been also

discussed by Fujikoshi et al. (2004), Himeno (2007) and many other authors.

To adjust the high-dimensional setting to the unbalanced case, we consider the

following asymptotic framework:

A1 : m → ∞, p → ∞, p/m → γ ∈ (0,∞),

A2 : 0 < lim
p→∞

trΣi/p < ∞, i = 1, 2, . . . , 8.

Using conventional terminology, from now on we will refer to the assumption A1 as

(m, p)-asymptotics.
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In Hyodo et al. (2012), the balanced case is considered and the following Dmax-type

test statistic

Dmax ·p = max
1≤i<j≤k

{Dij},

Dij =
p

σ̂

{
Wij

trS
− 1

}
=

p

σ̂

{
(y(i) − y(j))′(y(i) − y(j))

wijtrS
− 1

}
(1)

is proposed for pairwise comparisons. Further, for comparisons with a control, the

following statistic

Dmax ·c = max
2≤j≤k

{D1j},

D1j =
p

σ̂

{
W1j

trS
− 1

}
=

p

σ̂

{
(y(1) − y(j))′(y(1) − y(j))

w1jtrS
− 1

}
(2)

is derived, where σ̂ =
√
2pĉ2/ĉ21 and ĉi’s are the unbiased and consistent estimators of

ci = trΣi/p. Further, the Bonferroni approximations for the upper percentiles of these

statistics are derived.

This study gives an extension of the results by Hyodo et al. (2012) to the unbalanced

case. We show that the consistency and asymptotic normality of Dij in (1) and D1j

in (2), remain valid for the unbalanced case. For the procedures derived in Hyodo et

al. (2012), the coverage probability can be controlled provided the assumption that

the data are normally distributed. However, so far no satisfactory test is available

to ascertain the multivariate normality of the data when Ni ≤ p. Hence, it would

be desirable to derive such multiple comparison procedures for which the coverage

probability can be controlled with or without the assumption of normality of the data,

that is procedures that robust under non-normality. Our objective in this study is to

numerically justify that the extended comparison procedures are robust for the model

described above.

The rest of the paper is organized as follows: In Section 2, the main asymptotic

properties are shown to be valid for the unbalanced case. Further, the Bonferroni

approximations of the upper 100α percentiles of Dmax-type statistics is derived for
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pairwise comparisons in Section 2, and for for comparisons with a control in Section

3, respectively. Section 4 provides numerical examination of the performance accuracy

of the extended procedures. To justify the robustness of these procedures, we compare

the power of Dmax-type statistics with that of the data generated from a number of

non-normal distributions. At last, we provide some concluding remarks. In Section 3,

the approximation is given for comparisons with a control.

2 Pairwise comparisons in high-dimensional framework – unbalanced case

Consider the following simultaneous confidence intervals for mean vectors:

a′(µ(i) − µ(j)) ∈
[
a′(x(i) − x(j))± dp

√
wij(trS)a′a

]
,

∀a ∈ Rp − {0}, 1 ≤ i < j ≤ k,

where d2p = 1+(σ̂/p)zp and zp ≡ zp(α) is the upper 100α percentile of Dmax ·p statistic.

In high-dimensional framework, it is difficult to give the exact value of zp. In this

study, we derive the approximation for zp using Bonferroni inequality.

By applying Bonfferoni’s inequality to Pr{Dmax ·p > zp}, we get

Pr{Dmax ·p > zp} <

k−1∑
i=1

k∑
j=i+1

Pr{Dij > zp}.

We then define the Bonferroni approximation for zp as such z1·p which satisfies

k−1∑
i=1

k∑
j=i+1

Pr{Dij > z1·p} = α

for a given α. It is well known that z1·p essentially overestimates the upper 100α

percentile of Dmax ·p. In order to get a corrected estimator of this percentile, we derive

the Cornish-Fisher asymptotic expansion of z1·p. For this expansion, we need two

auxiliary results, stated in Lemma 1 and Theorem 2 below.
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Lemma 1. Under the high-dimensional asymptotic framework A1 and assumption A2,

the unbiased and (m, p)-consistent estimators of ci’s (i = 1, 2, 3, 4) can be obtained as

ĉ1 =
trS

p
,

ĉ2 =
m2

(m+ 2)(m− 1)p

{
trS2 − (trS)2

m

}
,

ĉ3 =
m4

(m+ 4)(m+ 2)(m− 1)(m− 2)p

{
trS3 − 3

m
trS2trS +

2

m2
(trS)3

}
,

ĉ4 =
1

p

{
b1trS

4 + b2trS
3trS + b3(trS

2)2 + b4trS
2(trS)2 + b5(trS)

4
}
,

where

b1 =
m5(m2 +m+ 2)

(m+ 6)(m+ 4)(m+ 2)(m+ 1)(m− 1)(m− 2)(m− 3)
,

b2 = − 4m4(m2 +m+ 2)

(m+ 6)(m+ 4)(m+ 2)(m+ 1)(m− 1)(m− 2)(m− 3)
,

b3 = − m4(2m2 + 3m− 6)

(m+ 6)(m+ 4)(m+ 2)(m+ 1)(m− 1)(m− 2)(m− 3)
,

b4 =
2m4(5m+ 6)

(m+ 6)(m+ 4)(m+ 2)(m+ 1)(m− 1)(m− 2)(m− 3)
,

b5 = − m3(5m+ 6)

(m+ 6)(m+ 4)(m+ 2)(m+ 1)(m− 1)(m− 2)(m− 3)
,

and

Var[ĉi] = O(m−2).

Proof. The proof follows from the results by Srivastava (2005) and Hyodo et al. (2012).

□

Theorem 2. Under the high-dimensional asymptotic framework A1 and assumption

A2, it holds that

Dij
d→ N(0, 1),

where “
d→” denotes convergence in distribution.

Proof. The proof follows by applying the technique by Fujikoshi et al. (2004) for Dij.

That is, letting q = 1 in Fujikoshi et al. (2004), Dij corresponds to T̃D/σ̂D. Therefore,

the desired result is obtained. □
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From the numerical results in Hyodo et al. (2012), it can be observed that the

approximation by using Theorem 2 is not conservative, i.e., z1·p ≤ zp. Therefore,

we next consider improving on the accuracy of the approximation using asymptotic

expansion. In the same way as Hyodo et al. (2012), the characteristic function C(t) =

E[exp(itDij)] is expanded as

C(t) = exp

{
(it)2

2

}{
1 +

1
√
p
d3(it)

3 +
1

p
{d4(it)4 + d6(it)

6}+ 1

m
d2(it)

2

}
+O(p−

3
2 ),

where i =
√
−1 and

d2 =
1

2
, d3 =

√
2c3

3
√

c32
, d4 =

c4
2c22

, d6 =
c23
9c32

.

Inverting C(t), we obtain

Pr{Dℓm ≤ z} = Φ(z)− ϕ(z)

{
1
√
p

(√
2c3

3
√

c32

)
h2(z) +

1

p

(
c4
2c22

h3(z) +
c23
9c32

h5(z)

)
+

1

2m
h1(z)

}
+O(p−

3
2 ),

where Φ(z) and ϕ(z) are the distribution function and the density function of the

standard normal distribution, respectively, and hi(z)’s are the Hermite polynomials

given by

h1(z) = z, h2(z) = z2 − 1, h3(z) = z3 − 3z, h5(z) = z5 − 10z3 + 15z.

Further, by applying Cornish-Fisher expansion to z1·p, we get the Bonferroni approxi-

mation as it is stated in the following theorem.

Theorem 3. Under the high-dimensional asymptotic framework A1 and assumption

A2, the Bonferroni approximation is given by

z1·p = zαp +
1
√
p

(√
2c3

3
√

c32

)
(z2αp

− 1) +
1

p

{
c4
2c22

zαp(z
2
αp

− 3)− 2c23
9c32

zαp(2z
2
αp

− 5)

}
+

1

2m
zαp +O(p−

3
2 ), (3)

where zα is the upper 100α percentile of the standard normal distribution, αp = α/K

and K = k(k − 1)/2.
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Proof. Similar to Hyodo et al. (2012), we can show the above theorem although the

sample sizes are unequal. □

Further, by replacing the unknown parameters in (3) with their unbiased and (m, p)-

consistent estimators given in Lemma 1, the following approximation of z1·p is obtained.

ẑ1·p = zαp +
1
√
p

(√
2ĉ3

3
√

ĉ32

)
(z2αp

− 1) +
1

p

{
ĉ4
2ĉ22

zαp(z
2
αp

− 3)− 2ĉ23
9ĉ32

zαp(2z
2
αp

− 5)

}
+

1

2m
zαp .

3 Approximation for comparisons with a control

The simultaneous confidence intervals for comparisons with a control are given by

a′(µ(1) − µ(j)) ∈
[
a′(x(1) − x(j))± dc

√
w1j(trS)a′a

]
,

∀a ∈ Rp − {0}, 2 ≤ j ≤ k,

where d2c = 1+ (σ̂/p)zc and zc ≡ zc(α) is the upper 100α percentile of Dmax ·c statistic.

In a similar manner to Dmax ·p, we obtain the following theorem on the Bonferroni

approximation for zc.

Theorem 4. Under the high-dimensional and asymptotic frameworks A1 and A2, the

Bonferroni approximation is given by

z1·c = zαc +
1
√
p

(√
2c3

3
√

c32

)
(z2αc

− 1) +
1

p

{
c4
2c22

zαc(z
2
αc

− 3)− 2c23
9c32

zαc(2zαc − 5)

}
+

1

2m
zαc +O(p−

3
2 ),

where αc = α/(k − 1).

Proof. Using the similar technique as in Theorem 3, we can show the above theorem.

□
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4 Numerical examinations

4.1 Accuracy of approximations

We conduct Monte Carlo simulation with ℓ = 100000 replications. The selected

parameter values are α = 0.05 and p = 30, 60, 90, 120, 150, 200. The sample sizes

are set as (N1, N2, N3) = (20, 20, 20), (30, 20, 10), (40, 10, 10) when k = 3. Also let

N12 ≡ N1 = N2, N34 ≡ N3 = N4 and N56 ≡ N5 = N6 when k = 6, then the sample

sizes are set as (N12, N34, N56) = (10, 10, 10), (15, 10, 5), (20, 5, 5). The covariance struc-

tures are as follows: Σ1 = Ip, Σ2 = (0.2|i−j|) and Σ3 = (0.5|i−j|). Attained confidence

level (i.e., empirical coverage probability) of Dmax-type statistics can be numerically

evaluated as

Qp(x) =
♯{Dmax ·p < x}

ℓ
,

Qc(x) =
♯{Dmax ·c < x}

ℓ
.

Tables 1 and 2 list the simulated value z∗p and the attained confidence level Qp(x) for

pairwise comparisons. It should be noted that Qp(ẑ1·p) ≥ 1−α. ẑ1·p has a tendency to

be more conservative as the number of populations increases. z∗p larger for is balanced

case and Qp(ẑ1·p) turns out to be more conservative for the unbalanced case.

Tables 3 and 4 list the simulated value z∗c and the attained confidence level Qc(x)

for comparisons with a control. In contrast with pairwise comparisons, the balanced

case is more conservative than the unbalanced cases.

4.2 Robustness of the proposed procedures under non-normality

Firstly, the robustness for the distribution is investigated by Monte Carlo simulation.

We compare with the following five distributions:

D1: the multivariate normal distribution,

D2: the multivariate t distribution with 7 degrees of freedom,
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D3: the ε-contaminated normal distribution (κ = 1.78),

D4: the ε-contaminated normal distribution (κ = 3.24),

D5: the multivariate skew-normal distribution (δ = δj = 0.5, j = 1, 2, . . . , p).

It should be noted that D1–D4 belong to the class of elliptical distributions and sym-

metric distributions, whereas D5 represents the case of asymmetric distribution. Pa-

rameters are the same in the setup in Subsection 4.1.

Table 5 lists the attained confidence level for pairwise comparisons. When the

sample sizes are balanced, all values are greater than or equal to 0.95. The values of D2–

D4 is large comparing that of D1. When (N1, N2, N3) = (30, 20, 10), it can be observed

the same tendency as the balanced case. However, the degree of conservativeness of

D2–D4 is smaller than that of D1. Also when (N1, N2, N3) = (40, 10, 10), D1, D3

and D5 are greater than or equal to 0.95, however, D2 and D3 are less than 0.95.

Further, D1 and D5 are just slightly effected by whether the sample sizes are balanced

or unbalanced, in contrast to D2–D4 which are strongly influenced by the sample sizes.

In particular, D2 can be expected to be very sensitive to high-dimensions due to heavy

tail of the multivariate t distribution with low degrees of freedom.

Table 6 lists the attained confidence level for comparisons with a control. Almost all

the values are greater than or equal to 0.95 when (N1, N2, N3) = (20, 20, 20), (30, 20, 10),

in contrast, almost all the values are less than or equal to 0.95 when (N1, N2, N3) =

(40, 10, 10).

From both Table 5 and Table 6, we see that the variability of the power results and

attained confidence level is most pronounced for D2. Therefore, our procedures could

be sensitive to large p when the distribution underlying the data has heavy tails.

Further, we numerically evaluate the power of the test. We re-express simultaneous

confidence intervals as the following hypotheses testing problem:

Hij : µ
(i) = µ(j) vs. Aij : µ

(i) ̸= µ(j), i < j.
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Then the performance property of Dmax-type statistics is studied using a series of

power simulations. Let α = 0.05, k = 3, and mean vectors and covariance matrix are

as follows: µ(1) = (θ1′
p1
,0′)′ and µ(2) = µ(3) = 0, θ = 0.1, 0.3, 0.5, 0.7, 0.9, r = p1/p =

0.25, 0.50, 0.75, 1.00, and Σ = Ip. We set p = 60 and vary sample sizes as above and

calculate the empirical power as

β̂p =
♯{D12 > ẑ1·p, D13 > ẑ1·p, D23 < ẑ1·p under A12, A13, H23}

ℓ
,

β̂c =
♯{D12 > ẑ1·c, D13 > ẑ1·c under A12, A13}

ℓ
,

with β̂p and β̂c denoting the power of pairwise comparisons and that of comparisons

with a control, respectively.

Table 7 lists the power for pairwise comparisons. The power of the test becomes

greater as both r and θ increase. Further, it can be observed that the balanced case is

the most powerful for all choices of θ and r.

Table 8 lists the power for comparisons with a control, showing the same tendency

as in the pairwise case.

5 Concluding remarks and recommendations

The paper provides an extension of the results by Hyodo et al. (2012) and investigation

of the robustness of the extended multiple comparison procedures under non-normality.

Like that of Hyodo et al. (2012) our procedures are built in upon the Dempster trace

criterion and focus on high-dimensional case that allow Ni > p. Unlike Hyodo et al.

(2012), we look on the unbalanced case and show that consistency and asymptotic

normality hold in the adjusted high-dimensional asymptotic framework. We suspect

the asymptotic distribution of terms like Dij in (1) and D1j in (2) to be difficult to

derive under the non-normality assumption and leave this question for the future work.

However, our simulations indicate that the extended procedures in (1) and (2), appear

to perform well for a number of non-normal distributions, and hence are robust under
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non-normality.

We thereby can recommend the use of Dmax-type statistics for both pairwise com-

parisons and comparisons with a control for the unbalanced case with very small sample

sizes and very high-dimensionality. The best performance is achieved when the distri-

bution underling the data is not heavy tailed one.
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Table 1: The attained confidence level for pairwise comparisons when k = 3.

Σ1 Σ2 Σ3

N1 N2 N3 p z∗p Qp(zαp) Qp(ẑ1·p) z∗p Qp(zαp) Qp(ẑ1·p) z∗p Qp(zαp) Qp(ẑ1·p)

20 20 20 30 2.414 0.920 0.952 2.440 0.918 0.952 2.599 0.905 0.952
60 2.342 0.928 0.951 2.362 0.925 0.951 2.474 0.916 0.952
90 2.295 0.932 0.952 2.320 0.929 0.952 2.400 0.922 0.953
120 2.291 0.932 0.950 2.285 0.933 0.953 2.370 0.924 0.953
150 2.259 0.936 0.952 2.264 0.935 0.953 2.353 0.926 0.952
200 2.237 0.938 0.952 2.242 0.937 0.953 2.321 0.929 0.952

30 20 10 30 2.398 0.923 0.953 2.443 0.919 0.952 2.597 0.907 0.952
60 2.319 0.930 0.953 2.339 0.928 0.954 2.456 0.918 0.953
90 2.288 0.933 0.953 2.298 0.932 0.953 2.403 0.922 0.953
120 2.259 0.936 0.953 2.290 0.932 0.952 2.354 0.926 0.954
150 2.230 0.938 0.955 2.256 0.936 0.954 2.340 0.928 0.953
200 2.233 0.939 0.953 2.234 0.938 0.954 2.311 0.930 0.953

40 10 10 30 2.393 0.923 0.954 2.441 0.918 0.952 2.599 0.908 0.952
60 2.315 0.929 0.953 2.343 0.928 0.953 2.450 0.920 0.953
90 2.278 0.934 0.954 2.284 0.932 0.954 2.399 0.923 0.953
120 2.255 0.936 0.954 2.278 0.934 0.953 2.352 0.927 0.954
150 2.253 0.937 0.953 2.256 0.936 0.954 2.325 0.929 0.954
200 2.229 0.939 0.953 2.239 0.938 0.953 2.298 0.932 0.954

Table 2: The attained confidence level for pairwise comparisons when k = 6.

Σ1 Σ2 Σ3

N12 N34 N56 p z∗p Qp(zαp)Qp(ẑ1·p) z∗p Qp(zαp)Qp(ẑ1·p) z∗p Qp(zαp)Qp(ẑ1·p)

10 10 10 30 3.250 0.876 0.952 3.318 0.868 0.952 3.635 0.834 0.953
60 3.093 0.897 0.953 3.145 0.890 0.952 3.384 0.861 0.951
90 3.013 0.907 0.954 3.062 0.901 0.953 3.247 0.878 0.953
120 2.961 0.915 0.955 3.013 0.908 0.953 3.177 0.885 0.953
150 2.945 0.918 0.954 2.976 0.912 0.954 3.134 0.892 0.952
200 2.909 0.922 0.954 2.950 0.917 0.952 3.062 0.901 0.954

15 10 5 30 3.224 0.882 0.955 3.303 0.871 0.954 3.609 0.838 0.955
60 3.071 0.900 0.955 3.112 0.896 0.955 3.351 0.867 0.954
90 2.997 0.911 0.956 3.038 0.905 0.955 3.227 0.881 0.955
120 2.961 0.916 0.955 2.989 0.913 0.955 3.161 0.890 0.954
150 2.935 0.919 0.955 2.953 0.916 0.956 3.111 0.897 0.954
200 2.902 0.924 0.955 2.911 0.921 0.956 3.058 0.903 0.954

20 5 5 30 3.207 0.884 0.956 3.290 0.876 0.955 3.609 0.842 0.955
60 3.053 0.905 0.956 3.110 0.896 0.956 3.337 0.871 0.956
90 2.990 0.913 0.956 3.033 0.907 0.955 3.213 0.885 0.956
120 2.945 0.918 0.956 2.997 0.913 0.955 3.150 0.893 0.955
150 2.923 0.922 0.956 2.946 0.918 0.956 3.101 0.899 0.956
200 2.891 0.927 0.956 2.905 0.925 0.957 3.044 0.906 0.956
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Table 3: The attained confidence level for comparisons with a control when k = 3.

Σ1 Σ2 Σ3

N1 N2 N3 p z∗c Qc(zαc) Qc(ẑ1·c) z∗c Qc(zαc) Qc(ẑ1·c) z∗c Qc(zαc) Qc(ẑ1·c)
20 20 20 30 2.197 0.927 0.951 2.221 0.926 0.951 2.330 0.918 0.952

60 2.123 0.933 0.952 2.152 0.931 0.951 2.241 0.924 0.951
90 2.095 0.936 0.952 2.133 0.933 0.950 2.203 0.927 0.950
120 2.094 0.936 0.950 2.091 0.936 0.952 2.148 0.931 0.952
150 2.062 0.939 0.952 2.076 0.938 0.952 2.131 0.933 0.952
200 2.056 0.940 0.951 2.065 0.938 0.952 2.112 0.935 0.952

30 20 10 30 2.223 0.924 0.949 2.243 0.923 0.949 2.367 0.914 0.949
60 2.138 0.931 0.950 2.168 0.928 0.949 2.279 0.920 0.948
90 2.110 0.934 0.950 2.132 0.932 0.950 2.202 0.926 0.950
120 2.094 0.936 0.950 2.115 0.934 0.949 2.176 0.927 0.950
150 2.079 0.937 0.950 2.096 0.935 0.950 2.166 0.929 0.949
200 2.063 0.938 0.951 2.066 0.938 0.951 2.136 0.932 0.950

40 10 10 30 2.236 0.922 0.947 2.254 0.921 0.948 2.379 0.913 0.948
60 2.146 0.931 0.950 2.149 0.930 0.951 2.253 0.921 0.950
90 2.127 0.932 0.949 2.136 0.931 0.949 2.218 0.924 0.949
120 2.090 0.936 0.950 2.119 0.934 0.949 2.183 0.927 0.949
150 2.078 0.937 0.951 2.102 0.934 0.950 2.160 0.929 0.949
200 2.070 0.938 0.950 2.082 0.937 0.950 2.122 0.933 0.951

Table 4: The attained confidence level for comparisons with a control when k = 6.

Σ1 Σ2 Σ3

N12 N34 N56 p z∗c Qc(zαc) Qc(ẑ1·c) z∗c Qc(zαc) Qc(ẑ1·c) z∗c Qc(zαc) Qc(ẑ1·c)
10 10 10 30 2.716 0.904 0.950 2.730 0.905 0.952 2.934 0.888 0.953

60 2.565 0.922 0.954 2.620 0.918 0.952 2.768 0.902 0.952
90 2.512 0.928 0.955 2.562 0.923 0.952 2.674 0.912 0.953
120 2.499 0.929 0.953 2.524 0.927 0.953 2.636 0.916 0.953
150 2.493 0.930 0.952 2.493 0.930 0.954 2.610 0.918 0.952
200 2.452 0.935 0.954 2.468 0.933 0.954 2.555 0.923 0.954

15 10 5 30 2.716 0.904 0.950 2.759 0.899 0.950 2.957 0.882 0.951
60 2.589 0.917 0.952 2.624 0.915 0.951 2.795 0.896 0.950
90 2.554 0.922 0.951 2.584 0.919 0.951 2.712 0.905 0.950
120 2.519 0.925 0.952 2.550 0.922 0.951 2.650 0.910 0.951
150 2.503 0.928 0.951 2.517 0.925 0.952 2.622 0.914 0.951
200 2.487 0.930 0.951 2.497 0.929 0.951 2.581 0.919 0.951

20 5 5 30 2.723 0.903 0.949 2.775 0.897 0.949 2.986 0.875 0.949
60 2.613 0.915 0.950 2.638 0.910 0.950 2.808 0.892 0.949
90 2.574 0.919 0.949 2.579 0.919 0.951 2.724 0.903 0.949
120 2.529 0.924 0.950 2.537 0.923 0.952 2.669 0.908 0.950
150 2.509 0.927 0.951 2.531 0.924 0.950 2.646 0.911 0.949
200 2.484 0.930 0.951 2.506 0.928 0.950 2.591 0.917 0.950
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Table 5: The robustness for pairwise comparisons.

N1 N2 N3 p D1 D2 D3 D4 D5
20 20 20 30 0.952 0.972 0.958 0.965 0.953

60 0.951 0.982 0.960 0.965 0.952
90 0.952 0.987 0.959 0.964 0.953
120 0.950 0.991 0.959 0.965 0.952
150 0.952 0.993 0.960 0.964 0.951
200 0.952 0.996 0.961 0.965 0.952

30 20 10 30 0.953 0.959 0.955 0.956 0.953
60 0.954 0.963 0.956 0.957 0.953
90 0.953 0.965 0.955 0.957 0.952
120 0.953 0.968 0.955 0.956 0.953
150 0.954 0.969 0.955 0.957 0.954
200 0.954 0.970 0.956 0.957 0.953

40 10 10 30 0.954 0.947 0.950 0.948 0.953
60 0.953 0.944 0.950 0.949 0.954
90 0.954 0.943 0.951 0.948 0.955
120 0.954 0.942 0.951 0.949 0.953
150 0.953 0.940 0.951 0.947 0.954
200 0.953 0.940 0.950 0.948 0.954

Table 6: The robustness for comparisons with a control.

N1 N2 N3 p D1 D2 D3 D4 D5
20 20 20 30 0.951 0.969 0.958 0.961 0.949

60 0.952 0.978 0.958 0.963 0.950
90 0.952 0.984 0.957 0.962 0.951
120 0.950 0.988 0.958 0.962 0.953
150 0.952 0.991 0.957 0.962 0.951
200 0.951 0.994 0.958 0.962 0.951

30 20 10 30 0.949 0.956 0.952 0.953 0.951
60 0.950 0.958 0.953 0.955 0.950
90 0.950 0.960 0.953 0.955 0.950
120 0.950 0.962 0.951 0.953 0.950
150 0.950 0.963 0.953 0.953 0.951
200 0.951 0.964 0.953 0.955 0.951

40 10 10 30 0.947 0.938 0.945 0.941 0.950
60 0.950 0.931 0.945 0.940 0.949
90 0.949 0.927 0.944 0.941 0.951
120 0.950 0.925 0.945 0.941 0.950
150 0.951 0.923 0.946 0.943 0.949
200 0.950 0.919 0.945 0.942 0.950
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Table 7: The power for pairwise comparisons.

N1 N2 N3 θ r = 0.25 r = 0.50 r = 0.75 r = 1.00
20 20 20 0.1 0.002 0.004 0.006 0.010

0.3 0.056 0.310 0.669 0.887
0.5 0.594 0.975 0.983 0.982
0.7 0.973 0.983 0.983 0.982
0.9 0.982 0.983 0.983 0.983

30 20 10 0.1 0.001 0.002 0.003 0.006
0.3 0.036 0.235 0.539 0.777
0.5 0.472 0.940 0.982 0.983
0.7 0.936 0.983 0.982 0.982
0.9 0.983 0.983 0.983 0.982

40 10 10 0.1 0.001 0.001 0.002 0.003
0.3 0.018 0.144 0.422 0.707
0.5 0.352 0.929 0.981 0.983
0.7 0.922 0.983 0.983 0.982
0.9 0.982 0.983 0.983 0.983

Table 8: The power for comparisons with a control.

N1 N2 N3 θ r = 0.25 r = 0.50 r = 0.75 r = 1.00
20 20 20 0.1 0.005 0.007 0.012 0.017

0.3 0.084 0.387 0.740 0.927
0.5 0.674 0.995 1.000 1.000
0.7 0.994 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000

30 20 10 0.1 0.002 0.004 0.007 0.010
0.3 0.058 0.305 0.620 0.837
0.5 0.551 0.969 0.999 1.000
0.7 0.966 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000

40 10 10 0.1 0.002 0.002 0.004 0.007
0.3 0.033 0.202 0.507 0.778
0.5 0.434 0.962 0.999 1.000
0.7 0.955 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000
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