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Abstract

This paper concerns with high–dimensional approximations of a LR criterion in
canonical correlation analysis of p–variate random vector x and q–variate random
vector y. Let λ be the LR criterion for testing an additional information hypothesis
on a subvector of x and a subvector of y, based on a sample of size N = n + 1.
Using the fact that the null distribution of −(2/N) log λ can be expressed a prod-
uct of two independent Λ distributions, first we derive high–dimensional asymptotic
distributions of λ under a high–dimensional framework when the sample size and
the dimensions are large. Next we derive a high-dimensional asymptotic expansion.
Furthermore, we derive computable error bounds for the high-dimensional approx-
imations. Through numerical experiments it is noted that our error bounds are
useful in a wide range of p, q and n.
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1 Introduction

This paper concerns with high–dimensional approximations of the LR criterion in
canonical correlation analysis of p–variate random vector x and q–variate random
vector y. Let λ be the likelihood ratio criterion for testing additional information
on p2(= p − p1)–subvector x2 of x and q2(= q − q1)–subvector y2 of y, based on a
sample of size N = n+1. Then it is known (see Fujikoshi (1982)) that λ is expressed
as

−(2/N) log λ = − logL(1)L(2), (1.1)

where under the hypothesis, L(1) and L(2) are independently distributed as Λp2(q, n−
p1−q) and Λq2(p1, n−p1−q1), respectively. Here Λp(m,n) denotes the p–dimensional
lambda distribution with (m,n)–degrees freedom. The lambda distribution may be
defined as |A|/|A + B|, where A and B are independently distributed as Wishart
distributions Wp(n,Σ) and Wp(m,Σ), respectively.

Under a large sample framework such that p and q are fixed and n→ ∞, −2 log λ
tends to a chi-square distribution with p1q2 + p2q degrees of freedom. Note that the
λ belongs to Box class of likelihood ratio criteria. Therefore, based on Box (1949),
it is also possible to give an asymptotic expansion. However, such large-sample
approximations will not work well as the dimensions p and q are large. In order
to overcome this weakness, high-dimensional approximations have been studied.
For a statistic T = − log Λ, where Λ ∼ Λp(m,n), we have some approximations
under high-dimensional frameworks such that ”m; fix and p/n → c ∈ (0, 1)” or
”p/n → c ∈ (0, 1) and m/n → d ∈ (0, 1)”. For these results, see Mudholkar
(1980), Tonda and Fujikoshi (2004), Wakaki (2006), etc. Sakurai (2009) attempted
to extend the approximations due to Tonda and Fujikoshi (2004) and Wakaki (2006)
to L = L(1)L(2) without discussing rigorous validity of the extended approximations.

In this paper we derive high-dimensional approximations for the null distribution
of L = L(1)L(2) in (1.1). It is shown that our approximations are valid under a mild
high-dimensional framework such that

n− p− q → ∞ (1.2)

with the condition

(n− p)(n− q)(n− p1 − q1)

(n− p1)(n− q1)(n− p− q)
> c some constant c > 1. (1.3)

We note that the condition (1.3) means that p, q and p2 + q2 should tend to infinity
under the framework (1.2) because the left side of the inequality can be represented
as

(n− p)(n− q)(n− p1 − q1)

(n− p1)(n− q1)(n− p− q)
=
{
1 +

pq

n(n− p− q)

}{
1 +

p1q1
n(n− p1 − q1)

}−1

=
(
1 +

p2 + q2
n− p− q

) (n− p)(n− q)

(n− p1)(n− q1)
.

(1.4)

A simple high-dimensional approximation is also derived. Furthermore, we derive
a computable error bound for the high-dimensional approximations. This result is
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obtained by extending the error bounds (see Wakaki (2009), Akita, Jin and Wakaki
(2010)) for Λp(m,n) to a product of Lambda distributions. Through numerical
experiments it is noted that our error bounds are useful in a wide range of p, q and
n.

2 Test for additional information hypothesis

Let x and y be p–variate and q–variate random vectors, respectively. We denote
the mean vectors and the covariance matrices as follows.

µx = E[x], µy = E[y],

Σxx = Cov[x], Σyy = Cov[y], Σxy = Cov[x,y].

We assume without loss of generality that p ≤ q. Let ρ2j , j = 1, 2, . . . , r be the jth
largest root of the equation

det(ΣxyΣ
−1
yy Σyx − ρ2Σxx) = 0,

where r = rank(Σxy). Then ρj is called as the jth canonical correlation coefficient
of x and y.

Suppose that x and y are partitioned as

x =

(
x1

x2

)
, y =

(
y1

y2

)
,

where x1 and y1 are p1 and q1 dimensional subvectors, respectively. Along the above
partition, we partition Σxx, Σxy and Σyy as

Σxx =

(
Σx1x1 Σx1x2

Σx2x1 Σx2x2

)
, Σxy =

(
Σx1y1 Σx1y2

Σx2y1 Σx2y2

)
, Σyy =

(
Σy1y1 Σy1y2

Σy2y1 Σy2y2

)
.

In this section we summarize an additional information hypothesis (or redun-
dancy hypothesis) of p2(= p− p1)–subvector on x and q2(= q − q1)–subvector y2 of
y and its likelihood ratio criterion, based on Fujikoshi (1983) and Fujikoshi et al.
(2010). A natural measure δ2(x,y) of the association between x and y is the sum
of squares of canonical correlations:

δ2(x,y) ≡
r∑

j=1

ρ2j = tr(Σ−1
xxΣxyΣ

−1
yy Σyx).

So a redundancy hypothesis of x2 and y2 can be formulated as

δ2(x,y) = δ2(x1,y1),

which is equivalent to

H0 : Σx2y2·x1x3 = O, Σx2y1·x1 = O, Σx1y2·y1 = O, (2.1)
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where

Σx2y2·x1y1 = Σx2y2 − (Σx2x1 Σx2y1)

(
Σx1x1 Σx1y1

Σy1x1 Σy1y1

)−1(
Σx1y2

Σy1y2

)
,

Σx2y1·x1 = Σx2y1 − Σx2x1Σ
−1
x1x1

Σx1y1 , Σx1y2·y1 = Σx1y2 − Σx1y1Σ
−1
y1y1

Σy1y2 .

Suppose that (x′
1,y

′
1)

′, . . . , (x′
N ,y

′
N)

′ be a sample of sizeN = n+1 fromNp+q(µ,Σ),
where

µ =

(
µx

µy

)
, Σ =

(
Σxx Σxy

Σyx Σyy

)
.

Let

S =

(
Sxx Sxy

Syx Syy

)
=

1

n

N∑
i=1

(
xi − x̄
yi − ȳ

)(
xi − x̄
yi − ȳ

)′

,

where x̄ = 1
N

∑N
i=1 xi, and ȳ = 1

N

∑N
i=1 yi. We partition Sxx, Sxy and Syy similarly

as the partitions of Σxx,Σxy and Σyy.
Then the LR criterion λ for testing H0 is given by

λ2/N = L =
|Sx2x2·x1y|
|Sx2x2·x1 |

· |Sy2y2·x1y1 |
|Sy2y2·y1 |

= L(1) · L(2) (say), (2.2)

where

Sx2x2·x1 = Sx2x2 − Sx2x1S
−1
x1x1

Sx1x2 , Sy2y2·y1 = Sy2y2 − Sy2y1S
−1
y1y1

Sy1y2 ,

Sx2y2·x1y = Sx2y2 − (Sx2x1 Sx2y1 Sx2y2)

Sx1x1 Sx1y1 Sx1y2

Sy1x1 Sy1y1 Sy1y2

Sy2x1 Sy2y1 Sy2y2

−1Sx1y2

Sy1y2

Sy2y2

 ,

Sy2y2·x1y1 = Sy2y2 − (Sy2x1 Sy2y1)

(
Sx1x1 Sx1y1

Sy1x1 Sy1y1

)−1(
Sx1y2

Sy1y2

)
.

3 The cumulants of −(2/N) log λ

It is known that under the hypothesisH0, L(1) and L(2) are independently distributed
as Λp2(q, n− p1 − q) and Λq2(p1, n− p1 − q1), respectively (see, e.g., Theorem 11.5.2
in Fujikoshi et al., 2010).

The moments and the distributional results on the lambda distribution Λp(m,n)
can be found in Anderson (2003, chapter 8), Muirhead (1982, chapter 10) and Siotani
et al. (1985, chapter 7). If Λ ∼ Λp(m,n),

E[Λh] =

p∏
j=1

Γ[1
2
(n− p+ j) + h]Γ[1

2
(m+ n− p+ j)]

Γ[1
2
(n− p+ j)]Γ[1

2
(m+ n− p+ j) + h]

,

and hence the characteristic function of − log Λ is given by

chp(t;m,n) ≡ E[eit(− log Λ) = E[Λ−it]

=

p∏
j=1

Γ[1
2
(n− p+ j)− it]Γ[1

2
(m+ n− p+ j)]

Γ[1
2
(n− p+ j)]Γ[1

2
(m+ n− p+ j)− it]

. (3.1)
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Since the gamma function is analytic except at the non–positive integers, using
(3.1) the cumulant generating function of− log Λ can be expanded in a neighborhood
of t = 0 as

log chp(t;m,n) =
∞∑
s=1

(−it)s

s!

{
ψ(s−1)
p

(n
2

)
− ψ(s−1)

p

(n+m

2

)}
,

where

ψ(s)
p (a) =

p∑
j=1

ψ(s)
(2a− p+ j

2

)
and ψ(s)(a) is the polygamma function defined as

ψ(s)(a) =
( d
da

)s+1
log Γ[a] =


−C +

∞∑
k=0

( 1

1 + k
− 1

k + a

)
(s = 0),

∞∑
k=0

(−1)s+1s!

(k + a)s+1
(s = 1, 2, · · · ).

(3.2)

Here C is the Euler’s constant.
Hence the characteristic function and the s–th cumulant of the null distribution

of −(2/N) log λ are given by

ϕλ(t) = chp2(t; q, n− p1 − q)chq2(t; p1, n− p1 − q1)

and

κ
(s)
λ = (−1)s

{
ψ(s−1)
p2

(n− p1 − q

2

)
− ψ(s−1)

p2

(n− p1
2

)
+ ψ(s−1)

q2

(n− p1 − q1
2

)
− ψ(s−1)

q2

(n− q1
2

)}
.

(3.3)

Let

T =
− 2

N
log λ− κ

(1)
λ√

κ
(2)
λ

, (3.4)

and denote the standardized cumulants as

κ(s) =
κ
(s)
λ

(κ
(2)
λ )s/2

(s = 3, 4, . . .).

Then, E[T ] = 0, Var[T ] = 1, and the s (s ≥ 3)–th cumulant of T is κ(s). Therefore,
writing the characteristic function of T as φ(t) we have

logφ(t) = −1

2
t2 +

∞∑
s=3

κ(s)

s!
(it)s. (3.5)

Using (3.5) we can obtain formally the Edgeworth expansion of the null distribu-
tion of standardized test statistic T . The purpose of this paper is to give a sufficient
condition for the validity of the Edgeworth expansion and to give a computable error
bound for the approximated distribution function by using the asymptotic expansion
of it.
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4 Edgeworth expansion

Bounds for the cumulants
From (3.3), the s–th cumulant of −(2/N) log λ is given by

κ
(s)
λ =

∞∑
k=0

{p−p1∑
j=1

( (s− 1)!

(k + n−p−q+j
2

)s
− (s− 1)!

(k + n−p+j
2

)s

)
+

q−q1∑
j=1

( (s− 1)!

(k + n−p1−q+j
2

)s
− (s− 1)!

(k + n−q+j
2

)s

)}
> 0.

(4.1)

First we give a lower bound for the variance. Consider a function defined by

f(a) =
1

a2
−
∫ 1

0

{∫ 0

−1

1

(a+ y + x
2
)2
dx

}
dy

=
1

a2
+ 2 log

a+ 1

a
+ 2 log

a− 1/2

a+ 1/2
.

It is easily seen that f(a) is a decreasing and positive function of a in (1+
√
13

6
,∞).

This implies that

1

(k + n−p−q+j
2

)2
− 1

(k + n−p+j
2

)2

≥
∫ 1

0

{∫ 0

−1

(
1

(k + y + n−p−q+j+x
2

)2
− 1

(k + y + n−p+j+x
2

)2

)
dx

}
dy,

1

(k + n−p1−q+j
2

)2
− 1

(k + n−q+j
2

)2

≥
∫ 1

0

{∫ 0

−1

(
1

(k + y + n−p1−q+j+x
2

)2
− 1

(k + y + n−q+j+x
2

)2

)
dx

}
dy

for all k ≥ 0 and j ≥ 1 if n − p − q ≥ 1. All through this paper, we assume that
n− p− q ≥ 1. Then we have

κ
(2)
λ ≥

∫ ∞

0

{∫ p−p1

0

( 1

(y + n−p−q+x
2

)2
− 1

(y + n−p+x
2

)2

)
dx

+

∫ q−q1

0

( 1

(y + n−p1−q+x
2

)2
− 1

(y + n−q+x
2

)2

)
dx

}
dy

= 2 log
(n− p)(n− q)(n− p1 − q1)

(n− p1)(n− q1)(n− p− q)
.

(4.2)

From the above lower bound we can see that the limit (or the limitinf) of κ
(2)
λ under

(1.2) is positive if the condition (1.3) is satisfied.
Next we give an upper bound for the s–th cumulant for s ≥ 3. Consider a

function

f(x, y) =
1

(y + a+x
2
)s

− 1

(y + b+x
2
)s
.
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Since f(x, y) is convex in [0,∞)× [0,∞) for 0 < a < b, we have the inequality

f(k, j) ≤
∫ k+1/2

k−1/2

{∫ j+1/2

j−1/2

f(x, y)dx

}
dy

for any nonnegative integer k and any positive integer j when a > 1/2. Hence

κ
(s)
λ ≤

∫ ∞

−1/2

{∫ p−p1+1/2

1/2

( (s− 1)!

(y + n−p−q+x
2

)s
− (s− 1)!

(y + n−p+x
2

)s

)
dx

+

∫ q−q1+1/2

1/2

( (s− 1)!

(y + n−p1−q+x
2

)s
− (s− 1)!

(y + n−q+x
2

)s

)
dx

}
dy

=
(s− 3)!2s−1

(n− p− q − 1
2
)s−2

− (s− 3)!2s−1

(n− p− 1
2
)s−2

− (s− 3)!2s−1

(n− q − 1
2
)s−2

− (s− 3)!2s−1

(n− p1 − q1 − 1
2
)s−2

+
(s− 3)!2s−1

(n− p1 − 1
2
)s−2

+
(s− 3)!2s−1

(n− q1 − 1
2
)s−2

.

The inequality can be expressed as

κ(s)

s!
<

{
n− p− q − 1

2

2
(κ

(2)
λ )1/2

}−(s−2)
2

κ
(2)
λ (s− 2)(s− 1)s

·
{
1−

(n− p− q − 1
2

n− p− 1
2

)s−2

−
(n− p− q − 1

2

n− q − 1
2

)s−2

−
( n− p− q − 1

2

n− p1 − q1 − 1
2

)s−2

+
(n− p− q − 1

2

n− p1 − 1
2

)s−2

+
(n− p− q − 1

2

n− q1 − 1
2

)s−2
}

=M−(s−2)bs−3,

(4.3)

where

M =
n− p− q − 1

2

2
(κ

(2)
λ )1/2,

bs =
2

κ
(2)
λ (s+ 1)(s+ 2)(s+ 3)

{
1−

(n− p− q − 1
2

n− p− 1
2

)s+1

−
(n− p− q − 1

2

n− q − 1
2

)s+1

−
( n− p− q − 1

2

n− p1 − q1 − 1
2

)s+1

+
(n− p− q − 1

2

n− p1 − 1
2

)s+1

+
(n− p− q − 1

2

n− q1 − 1
2

)s+1
}
.

(4.4)

The following theorem gives a sufficient condition of the asymptotic normality
of the standardized test statistic T .

Theorem 4.1 Under the asymptotic framework (1.2) with the condition (1.3), it
holds that under H0

T
d→ N(0, 1).
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Proof First we note that κ
(s)
λ > 0 (see (4.1)), and the limit of κ

(2)
λ is positive. Since∑∞

s=0 bsv
s is finite for |v| < 1, using (4.3) we have for any fixed t∣∣∣∣ ∞∑

s=3

κ(s)

s!
ts
∣∣∣∣ ≤

∞∑
s=0

κ(s+3)

(s+ 3)!
|t|s+3

≤ |t|3

M

∞∑
s=0

bsv
s → 0 (M → ∞),

if |t|/M < v < 1. Hence the cumulant generating function of T converges to
−t2/2 (M → ∞), which shows the asymptotic normality of T . □

Corollary 4.1 Let

T̃ =
− 2

N
log λ− κ̃

(1)
λ√

κ̃
(2)
λ

,

where

κ̃
(1)
λ =

(
n− p− q − 1

2

)
log(n− p− q + 1)−

(
n− q − 1

2

)
log(n− q + 1)

+
(
n− p1 −

1

2

)
log(n− p1 + 1)−

(
n− p− 1

2

)
log(n− p+ 1)

+
(
n− q1 −

1

2

)
log(n− q1 + 1)−

(
n− q1 − p1 −

1

2

)
log(n− q1 − p1 + 1),

κ̃
(2)
λ = 2 log

(n− p− 1
2
)(n− q − 1

2
)(n− p1 − q1 − 1

2
)

(n− p1 − 1
2
)(n− q1 − 1

2
)(n− p− q − 1

2
)
.

Then under the same assumption as in Theorem 4.1 it holds that under H0

T̃
d→ N(0, 1).

Proof Applying Lemma A.1 in Appendix to (4.1) we can see

κ
(1)
λ = κ̃

(1)
λ +O((n− p− q)−1),

κ
(2)
λ = κ̃

(2)
λ +O((n− p− q)−2).

Therefore we have T̃ = T +O((n− p− q)−1), which implies the required result. □

Edgeworth expansion
Let φ(t) be the characteristic function of T given by (3.4). Then we can expand
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φ(t) as follows:

φ(t) = exp

{
−t

2

2
+

∞∑
s=3

κ(s)

s!
(it)s

}
= exp

(
−t

2

2

){
1 +

∞∑
k=1

(it)3k

k!

( ∞∑
s=0

κ(s+3)

(s+ 3)!
(it)s

)k}
= exp

(
−t

2

2

){
1 +

∞∑
k=1

(it)3k

k!

∞∑
j=0

γk,j(it)
j

}
,

(4.5)

where

γk,j =
∑

s1+···+sk=j

κ(s1+3) · · ·κ(sk+3)

(s1 + 3)! · · · (sk + 3)!
. (4.6)

Under the asymptotic framework (1.2) with the condition (1.3) M → ∞. From
(4.3) we can see that γk,j = O(M−(j+k)). Let

φs(t) = exp
(
−t

2

2

){
1 +

s∑
k=1

(it)3k

k!

s−k∑
j=0

γk,j(it)
j

}
. (4.7)

Define B[v] and Rk,l[v] by

B[v] =
∞∑
s=0

bsv
s,

Rk,l[v] = v−l

{
(B[v])k −

l−1∑
j=0

( ∑
s1+···+sk=j

bs1 · · · bsk
)
vj
}

=
∞∑
j=l

( ∑
s1+···+sk=j

bs1 · · · bsk
)
vj−l.

(4.8)
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If |t| ≤Mv and 0 < v < 1, then using (4.3) we can see

1

|t|
|φ(t)− φs(t)| =

1

|t|
exp
(
−t

2

2

)
·
∣∣∣∣ s∑
k=1

(it)3k

k!

∞∑
j=s−k+1

γk,j(it)
j +

∞∑
k=s+1

(it)3k

k!

( ∞∑
j=0

κ(j+3)

(j + 3)!
(it)j

)k∣∣∣∣
≤ exp

(
−t

2

2

){ s∑
k=1

1

k!
|t|3k−1

∞∑
j=s−k+1

( ∑
s1+···+sk=j

bs1 · · · bsk
)
M−(j+k)|t|j

+
∞∑

k=s+1

1

k!
|t|3k−1

( ∞∑
j=0

bjM
−(j+1)|t|j

)k}

= exp
(
−t

2

2

){ s∑
k=1

1

k!
|t|3k−1M−k

(
|t|
M

)s−k+1

Rk,s−k+1

[ |t|
M

]
+

∞∑
k=s+1

1

k!
|t|3k−1M−k

(
B
[ |t|
M

])k}

≤M−(s+1) exp
(
−t

2

2

){ s∑
k=1

1

k!
|t|s+2kRk,s−k+1[v]

+
1

(s+ 1)!
|t|3s+2(B[v])s+1 exp

(
t2vB[v]

)}
.

(4.9)

Hence

φ(t) = φs(t) +O(M−(s+1)).

Inverting (4.7), we obtain an Edgeworth expansion of the null distribution of the
standardized test statistic T up to the order O(M−s) as

Qs(x) = Φ(x)− ϕ(x)

{ s∑
k=1

1

k!

s−k∑
j=0

γk,jh3k+j−1(x)

}
, (4.10)

where Φ and ϕ are the distribution function and the probability density function of
the standard normal distribution, respectively, γk,j is given by (4.6), and hr(x) is
the r–th order Hermite polynomial defined by( d

dx

)r
exp
(
−x

2

2

)
= (−1)rhr(x) exp

(
−x

2

2

)
.

5 The validity and an error bound

Using the inverse Fourier transformation we obtain a uniform bound for the error
of the Edgeworth expansion as

sup
x

|P(T ≤ x)−Qs(x)| ≤
1

2π

∫ ∞

−∞

1

|t|
|φ(t)− φs(t)| dt

=
1

2π
(I1[v] + I2[v] + I3[v]),

(5.1)
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where

I1[v] =

∫ Mv

−Mv

1

|t|
|φ(t)− φs(t)| dt,

I2[v] =

∫
|t|>Mv

1

|t|
|φs(t)| dt and I3[v] =

∫
|t|>Mv

1

|t|
|φ(t)| dt

with some positive constant v < 1.
First we derive a bound for I1[v]. Let

L[v] =


3v − 2

4v
− (1− v)2

2v2
log(1− v) (0 < |v| < 1)

0 (v = 0).

(5.2)

Using − log(1 − v) = v + 1
2
v2 + 1

3
v3 + · · · , it is easily checked that L[v] can be

expanded as

L[v] =
∞∑
s=1

1

s(s+ 1)(s+ 2)
vs.

So B[v] can be expressed as

B[v] =
2

vκ
(2)
λ

{
L[v]− L

[n− p− q − 1
2

n− p− 1
2

v
]
− L

[n− p− q − 1
2

n− q − 1
2

v
]

− L
[ n− p− q − 1

2

n− p1 − q1 − 1
2

v
]
+ L

[n− p− q − 1
2

n− p1 − 1
2

v
]
+ L

[n− p− q − 1
2

n− q1 − 1
2

v
]}
,

(5.3)

which is bounded if 0 < v < 1.
From (4.9) we obtain I1[v] ≤ U1[v], where

U1[v] =
2

M s+1

{ s∑
k=1

1

k!
Rk,s−k+1[v]

∫ Mv

0

ts+2k exp
(
−t

2

2

)
dt

+
1

(s+ 1)!
(B[v])s+1

∫ Mv

0

t3s+2 exp
(
−t

2

2
cv

)
dt

}
,

(5.4)

and cv = 1− 2vB[v].
The calculation of integral I2 is not difficult. From (4.7)

I2[v] =

∫ ∞

Mv

2

t
exp
(
−t

2

2

)
dt+

s∑
k=1

2

k!

s−k∑
j=0

γk,j

∫ ∞

Mv

t3k+j−1 exp
(
−t

2

2

)
dt. (5.5)

In order to give a bound for I3 we prepare the following lemma.

Lemma 5.1 If p < n < m+ n, then

log |chp(t;m,n)| < −1

4

p∑
j=1

∫ m+n−p

n−p

log

{
1 +

4t2

(j + x)2

}
dx

< −mp
4

log

{
1 +

16t2

(m+ 2n− p+ 1)2

}
,

(5.6)

where chp(t;m,n) is the characteristic function of Λp(m,n) given by (3.1).
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Proof It is known that∣∣∣∣Γ[x+ yi]

Γ[x]

∣∣∣∣2 = ∞∏
k=0

{
1 +

y2

(x+ k)2

}−1

for any real number x, y; (x > 0). Since if A < B

log

{
1 +

t2

(A+ x)2

}
− log

{
1 +

t2

(B + x)2

}
is a decreasing function of x > 0, we have

log |chp(t;m,n)|

= −1

2

∞∑
k=0

p∑
j=1

{
log
[
1 +

t2

(n−p+j
2

+ k)2

]
− log

[
1 +

t2

(m+n−p+j
2

+ k)2

]}

≤ −1

2

p∑
j=1

∫ ∞

0

{
log
[
1 +

t2

(n−p+j
2

+ x)2

]
− log

[
1 +

t2

(m+n−p+j
2

+ x)2

]}
dx

= −1

2

p∑
j=1

∫ (m+n−p+j)/2

(n−p+j)/2

log
{
1 +

t2

x2

}
dx

= −1

4

p∑
j=1

∫ m+n−p

n−p

log
{
1 +

4t2

(x+ j)2

}
dx.

(5.7)

The last inequality of (5.6) is obtained by using the inequality

p∑
j=1

∫ b

a

f(x, j)dx ≥
p∑

j=1

(b− a)f
(a+ b

2
, j
)
≥ p(b− a)f

(a+ b

2
,
p+ 1

2

)
for any convex function f(x, y). □

Using the above lemma

log |ϕλ(t)| = log |chp−p1(t; q, n− p1 − q)|+ log |chq−q1(t; p1, n− p1 − q1)|

< −q(p− p1)

4
log

{
1 +

16t2

(2n− q − p1 − p+ 1)2

}
− p1(q − q1)

4
log

{
1 +

16t2

(2n− q − p1 − q1 + 1)2

}
=: logG(t) (say) .

Hence

I3(v) ≤
∫ ∞

Mv

2

|t|
G(t(κ

(2)
λ )−1/2)dt =

∫ ∞

M0v

2

|t|
G(t)dt,

where

M0 =
n− p− q − 1

2

2
.
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Refinement of the bound for I3
From (5.7)

log |chp(t;m,n)| < −1

4

p∑
j=1

∫ m+n−p

n−p

log
{
1 +

4t2

(x+ j)2

}
dx

< −1

4

∫ p+1

1

[∫ m+n−p

n−p

log

(
1 +

4t2

(y + x)2

)
dx

]
dy

= −t2
{
F
(m+ n+ 1

2|t|

)
− F

(n+ 1

2|t|

)
− F

(m+ n− p+ 1

2|t|

)
+ F

(n− p+ 1

2|t|

)}
.

where

F (z) =

∫ z

0

∫ y

0

log(1 +
1

x2
)dxdy

=
z2

2
log
(
1 +

1

z2

)
+ 2z arctan(z)− 1

2
log(1 + z2).

Hence

|φ(t)| ≤ exp

{
− t2

κ
(2)
λ

G0(t(κ
(2)
λ )−1/2)

}
,

where

G0(t) =
{
F
(n− p1 + 1

2|t|

)
− F

(n− p+ 1

2|t|

)
+ F

(n− p− q + 1

2|t|

)
+ F

(n− q1 + 1

2|t|

)
− F

(n− q1 − p1 + 1

2|t|

)
− F

(n− q + 1

2|t|

)}
.

Therefore

I3(v) ≤
∫ ∞

M0v

2

|t|
exp
{
−t2G0(t)

}
dt =: U3[v] (say). (5.8)

Summarizing the above we obtain an error bound of the Edgeworth expansion
as in the following theorem.

Theorem 5.1 Let T be the standardized test statistic given by (3.4) and Qs(x) be
the Edgeworth expansion of the null distribution function of T given by (4.10). Then
we have a uniform bound for the error given by

sup
x

|P(T ≤ x)−Qs(x)| ≤
1

2π
|U1[v] + I2[v] + U3[v]|,

where U1, I2 and U3 are given by (5.4), (5.5) and (5.8), respectively.

Corollary 5.1 Under the asymptotic framework (1.2) with the condition (1.3) and

p+ q

n− p− q
≤ C some constant, (5.9)

it holds that

sup
x

|P(T ≤ x)−Qs(x)| = O(M−(s+1)).
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Proof If we choose v such that cv > 0, U1[v] = O(M−(s+1)). It is easy to show
I2[v] = O(exp(−M2v2c)) for any positive number c < 1/2. From the first equality
in (1.4), the condition (1.3) imposes that q/(n−p−q) ≥ d for some positive constant
d. Hence

logG(t) < −q(p− p1)

4
log

{
1 +

16t2

(2n− q − p1 − p+ 1)2

}
< −dp2

4
(n− p− q) log

{
1 +

16t2

(2 + C)(n− p− q)

}
Therefore

I3(v) ≤
∫ ∞

M0v

2

t

{
1 +

16t2

(2 + C)(n− p− q)

}−dp2(n−p−q)/4

dt

=

∫ ∞

Cv

1

u
(1 + u)−dp2(n−p−q)/4du = C−1

v (1 + Cv)
1−dp2(n−p−q)/4

= O((1 + Cv)
−dp2M0/4)

where Cv = {4M0v/((2 + C)(n− p− q))}2. □

The condition (5.9) is a suffucient condition and will be weakened since I3[v] =
o(M−s) for any s.

6 Numerical experiments

The upper bound given in the previous section depends on v. Some numerical
calculations show that it will be sufficient to calculate the upper bounds with v =
0.05, 0.01, . . . , 0.95 and choose the minimum.

Table 1 gives such minimums in the case that s = 1, n = 50 and several combi-
nations of p, q, p1, q1. If p and q is less than 20 the bounds are not so small. We can
see that the bounds get large as p1 and q1 get large. The reason is that κ

(2)
λ becomes

large which leads that bs becomes large and M becomes small.
Table 2 shows the similar result in the case of s = 2. If p and q are larger than

10, the bounds are sufficiently small.
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Table 1: Error bounds in the case of n = 50 and s = 1

p q p1 q1 bound v m κ
(2)
λ

5 5 1 1 0.0763 0.6 3.1 0.16
5 5 2 2 0.0868 0.6 2.9 0.15
5 5 3 3 0.1116 0.65 2.6 0.13
5 5 4 4 0.1859 0.7 2. 0.1
10 10 2 2 0.0186 0.5 5.3 0.36
10 10 4 4 0.0211 0.5 5. 0.34
10 10 6 6 0.0285 0.5 4.5 0.31
10 10 8 8 0.0534 0.6 3.5 0.24
15 15 3 3 0.0078 0.45 6.2 0.64
15 15 6 6 0.0091 0.5 6. 0.62
15 15 9 9 0.0121 0.5 5.5 0.56
15 15 12 12 0.0237 0.55 4.4 0.45
20 20 4 4 0.0057 0.6 5.2 1.1
20 20 8 8 0.0064 0.6 5.1 1.07
20 20 12 12 0.0085 0.6 4.8 1.01
20 20 16 16 0.0165 0.65 4. 0.84

Appendix

Lemma A.1 For any positive numbers a, b (a < b) and positive integer p we have
the following two asymptotic formulas:

∞∑
k=1

p∑
j=1

{ 1

k + a+j
2

− 1

k + b+j
2

}
=
(
b+ p− 1

2

)
log(b+ p+ 1)−

(
a+ p− 1

2

)
log(a+ p+ 1)

−
(
b− 1

2

)
log(b+ 1) +

(
a− 1

2

)
log(a+ 1) +O(a−1) (a→ ∞).

(A.1)

∞∑
k=0

p∑
j=1

{
1

(k + a+j
2
)2

− 1

(k + b+j
2
)2

}

= 2 log
(b− 1

2
)(a+ p− 1

2
)

(a− 1
2
)(b+ p− 1

2
)
+O(a−2) (a→ ∞).

(A.2)

Here the order of the remainder terms is uniform with respect to b and p.
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Table 2: Error bounds in the case of n = 50 and s = 2

p q p1 q1 bound v m κ
(2)
λ

5 5 1 1 0.0706 0.65 3.1 0.16
5 5 2 2 0.0824 0.65 2.9 0.15
5 5 3 3 0.1138 0.7 2.6 0.13
5 5 4 4 0.2227 0.7 2. 0.1
10 10 2 2 0.0109 0.5 5.3 0.36
10 10 4 4 0.0135 0.55 5. 0.34
10 10 6 6 0.0195 0.55 4.5 0.31
10 10 8 8 0.0441 0.6 3.5 0.24
15 15 3 3 0.0034 0.5 6.2 0.64
15 15 6 6 0.0042 0.5 6. 0.62
15 15 9 9 0.0063 0.55 5.5 0.56
15 15 12 12 0.0154 0.6 4.4 0.45
20 20 4 4 0.0022 0.65 5.2 1.1
20 20 8 8 0.0026 0.65 5.1 1.07
20 20 12 12 0.0039 0.65 4.8 1.01
20 20 16 16 0.0095 0.7 4. 0.84

Proof In order to show (A.1) and (A.2), it is sufficient to show

∞∑
k=1

p∑
j=1

1

k + a+j
2

= −
(
a+ p− 1

2

)
log(a+ p+ 1) +

(
a− 1

2

)
log(a+ 1) +O(a−1).

(A.3)
∞∑
k=0

p∑
j=1

1

(k + a+j
2
)2

= 2 log
a+ p− 1

2

a− 1
2

+O(a−2). (A.4)

We apply Lemma A.2 to each of the following sums:

K−1∑
k=1

p∑
j=1

1

k − 1 + a+j
2

and
K−1∑
k=1

p∑
j=1

1

(k − 1 + a+j
2
)2
,

and taking the limit K → ∞. Then we can express each of the sums as the sums of
six definite integrals. The first three integrals can be exactly computed.

The remainder three definite integrals can be estimated by noting that Bi(x−[x])
are finite. It is shown that these are O(a−1) for the left side of (A.3) and O(a−2)
for the left side of (A.4). By proceeding these procedures we can show the required
results. □
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Lemma A.2 Let f(x, y) be a C2–class function. Then

m−1∑
k=1

n−1∑
l=1

f(k, l) =

∫ m

1

{∫ n

1

f(x, y)dy

}
dx− 1

2

∫ n

1

{f(m, y)− f(1, y)}dy

− 1

2

∫ m

1

{f(x, n)− f(x, 1)}dx+
∫ m

1

{∫ n

1

B2(0)−B2(x− [x])

2
fxx(x, y)dy

}
dx

+

∫ m

1

{∫ n

1

B2(0)−B2(y − [y])

2
fyy(x, y)dy

}
dx

+

∫ m

1

{∫ n

1

{B1(1)−B1(x− [x])}{B1(1)−B1(y − [y])}fxy(x, y)dy
}
dx,

where fxx, fxy and fyy are the second order partial derivatives, and Bk(x) (k =
0, 1, 2, . . .) is the k–th order Bernoulli polynomial defined by

text

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
.

Proof The Euler–Maclaurin formula can be given with two parts:∫ n

1

g(x)dx =
n−1∑
l=1

g(l) +
g(n)− g(1)

2
−
∫ n

1

B1(x− [x])g′(x)dx (A.5)∫ n

1

Bj(x− [x])g(x)dx =

∫ n

1

Bj+1(0)−Bj+1(x− [x])

j + 1
g′(x)dx (j ≥ 1). (A.6)

Noting that B1(x) = x − 1/2 and hence B1(1) = 1/2, the formula (A.5) can be
written as

n−1∑
l=1

g(l) =

∫ n

1

[g(x)− {B1(1)−B1(x− [x])}g′(x)]dx. (A.7)

Applying (A.7) to f(x, y) twice as the function of x and as the function of y we have

m−1∑
k=1

n−1∑
l=1

f(k, l)

=
m−1∑
k=1

∫ n

1

f(k, y)dy −
m−1∑
k=1

∫ n

1

{B1(1)−B1(y − [y])}fy(k, y)dy

=

∫ n

1

[∫ m

1

[
f(x, y)− {B1(1)−B1(x− [x])}fx(x, y)

]
dx

− {B1(1)−B1(y − [y])}
∫ m

1

[
fy(x, y)− {B1(1)−B1(x− [x])}fxy(x, y)

]
dx

]
dy.

Apply (A.6) to g(x) = fx(x, y) and g(y) = fy(x, y) with j = 1 then we obtain the
desired result. □
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