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Abstract

This paper concerns with high-dimensional approximations of a LR criterion in
canonical correlation analysis of p—variate random vector & and ¢—variate random
vector y. Let A be the LR criterion for testing an additional information hypothesis
on a subvector of & and a subvector of y, based on a sample of size N = n + 1.
Using the fact that the null distribution of —(2/N)log A can be expressed a prod-
uct of two independent A distributions, first we derive high—dimensional asymptotic
distributions of A\ under a high—dimensional framework when the sample size and
the dimensions are large. Next we derive a high-dimensional asymptotic expansion.
Furthermore, we derive computable error bounds for the high-dimensional approx-
imations. Through numerical experiments it is noted that our error bounds are
useful in a wide range of p, ¢ and n.



1 Introduction

This paper concerns with high—dimensional approximations of the LR criterion in
canonical correlation analysis of p—variate random vector & and g-variate random
vector y. Let A\ be the likelihood ratio criterion for testing additional information
on pa(= p — py)-subvector &, of & and ¢2(= g — ¢1)—subvector y, of y, based on a
sample of size N = n+1. Then it is known (see Fujikoshi (1982)) that A is expressed
as

—(2/N) 10g>\: —logL(l)L(Q), (1.1)

where under the hypothesis, L) and L) are independently distributed as A, (g, n—
p1—q) and Ay, (p1, n—p1—q1), respectively. Here A,(m, n) denotes the p-dimensional
lambda distribution with (m, n)-degrees freedom. The lambda distribution may be
defined as |A|/|A + B|, where A and B are independently distributed as Wishart
distributions W,(n, ¥) and W,(m, X), respectively.

Under a large sample framework such that p and q are fixed and n — oo, —2log A
tends to a chi-square distribution with p;¢s + p2g degrees of freedom. Note that the
A belongs to Box class of likelihood ratio criteria. Therefore, based on Box (1949),
it is also possible to give an asymptotic expansion. However, such large-sample
approximations will not work well as the dimensions p and ¢ are large. In order
to overcome this weakness, high-dimensional approximations have been studied.
For a statistic T = —logA, where A ~ A,(m,n), we have some approximations
under high-dimensional frameworks such that ”m; fix and p/n — ¢ € (0,1)” or
"p/n — ¢ € (0,1) and m/n — d € (0,1)”. For these results, see Mudholkar
(1980), Tonda and Fujikoshi (2004), Wakaki (2006), etc. Sakurai (2009) attempted
to extend the approximations due to Tonda and Fujikoshi (2004) and Wakaki (2006)
to L = L)L) without discussing rigorous validity of the extended approximations.

In this paper we derive high-dimensional approximations for the null distribution
of L = L)L9) in (1.1). It is shown that our approximations are valid under a mild
high-dimensional framework such that

n—p—q— oo (1.2)
with the condition

(n—p)(n—q)(n—p1—q)
(n—p1)(n—q)(n—p—q)

> ¢ some constant ¢ > 1. (1.3)

We note that the condition (1.3) means that p, ¢ and py + g2 should tend to infinity
under the framework (1.2) because the left side of the inequality can be represented
as

(n—p)(n—q)(n_pl_Q1) _ {1+¢_q)}{1+n( P1q1 )}—1

(n—pi)(n—a)(n—p—q) n(n—p n—p—q
:<1+ P2+ ¢ ) (n—p)(n—q) (1.4)
n—p—q/(n—p)n—q)

A simple high-dimensional approximation is also derived. Furthermore, we derive
a computable error bound for the high-dimensional approximations. This result is
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obtained by extending the error bounds (see Wakaki (2009), Akita, Jin and Wakaki
(2010)) for A,(m,n) to a product of Lambda distributions. Through numerical
experiments it is noted that our error bounds are useful in a wide range of p, ¢ and
n.

2 Test for additional information hypothesis

Let  and y be p—variate and g—variate random vectors, respectively. We denote
the mean vectors and the covariance matrices as follows.

o = Elx], p, = E[y],
Y., = Covlz], ¥, = Covly], £,, = Cov[z, y|.

We assume without loss of generality that p < ¢. Let pjz, 7 =1,2,...,7r be the jth
largest root of the equation

det(Xay X,y Bye — p750a) = 0,

where r = rank(3,,). Then p; is called as the jth canonical correlation coefficient
of x and y.
Suppose that & and y are partitioned as

L1 Y1
€Xr = s = s
(=)o)

where &1 and y; are p; and ¢; dimensional subvectors, respectively. Along the above
partition, we partition X, ¥,, and X, as

Z — (Ex1x1 ZZ'1-732> 2 — (Zﬂ?lm EwlyQ) E — (Zylyl EylyQ) .
ExQ-Tl z:$2372 7 Y Zx2y1 2552.7;/2 7 v 2112111 292112
In this section we summarize an additional information hypothesis (or redun-
dancy hypothesis) of po(= p — p;)—subvector on @ and ¢o(= ¢ — ¢1)—subvector ys of
y and its likelihood ratio criterion, based on Fujikoshi (1983) and Fujikoshi et al.

(2010). A natural measure 6%(x, y) of the association between @ and y is the sum
of squares of canonical correlations:

(@, y) =D p = tr(S,) Sy Xy Sya)-
J=1

So a redundancy hypothesis of &5 and ys can be formulated as

62(&}', y) - 52($17 y1)7

which is equivalent to

Hy : szyz'l‘ws =0, 2552111‘931 =0, Eﬂclyz'yl =0, (21)



where

-1
lex1 Ew1 1 Exl 2
E$2y2'$1y1 = Z;32312 - (me meyl) (Zy > ! ) (Z ’ ) ’
171

Y1y1 Y1y2
E9623/1-w1 = Exzyl - Exzwllelm Emyu Zx1y2-y1 = Ew12,/2 - El‘lyl Eylyl Eylyz'
Suppose that (], y1), ..., (T, yy) beasample of size N = n+1 from N,,(pu, X),
where
am (), 5o (3 3.
Hy Yyr Dy
Let

N /
1 _ 7 _ 7
g — (S;m: Sxy) _ _Z ("Bl if) (wz -'f) ’
Syz Syy neF\¥%~-Y,\¥ Y
where T = % Zf\il x;, and g = % Zf\il y;. We partition S, S,y and S, similarly

as the partitions of ¥,,, ¥, and X,,.
Then the LR criterion A for testing Hy is given by

2/N __ _ ’Sx2332'331y| ‘Syzyz-mm‘ _
NN =L = S ) S - L(l) ) L(2) (SaY>a (2'2)
| CCQSCQ'CC1| | y2y2'yl|
where
_ —1

szxz'm - szxz - szmsxlxl lem’ Sy2y2~y1 S Y2y Sy2yl y1 Sy1y2>
S-Y»’1$1 S-lel 533192 -731312

Sm2y2-$1y = Sﬂﬂzyz - (‘522%1 Smyl Sr2y2> Syier Sy Sy ylyz )
Syle Sy2y1 Sy292 9292

Szmm 5961 1 - Sffl 2
Syzy2-:t1y1 = Sy2y2 - (Syza:1 Syzyl) (Sylml Sylzl) (Sylj;) '

3 The cumulants of —(2/N)log A

It is known that under the hypothesis Hy, L1y and L) are independently distributed
as Ap,(q¢,n —p1 —q) and Ay, (p1,n —p1 — q1), respectively (see, e.g., Theorem 11.5.2
in Fujikoshi et al., 2010).

The moments and the distributional results on the lambda distribution A,(m,n)
can be found in Anderson (2003, chapter 8), Muirhead (1982, chapter 10) and Siotani
et al. (1985, chapter 7). If A ~ A,(m,n),

w1 s —p+ ) + A5 (m +n —p+j)]
E[A]_H% (n—p+)T5(m+n—p+j)+h]

—_

j=1
and hence the characteristic function of —log A is given by
chy(t;m,n) = Bletlsd) = BA]
B H Ll3(n—p+j) —at]l[5(m +n—p+j)]
= L(

i Cls(n—p+)L5m+n—p+j) —it]

(3.1)
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Since the gamma function is analytic except at the non—positive integers, using
(3.1) the cumulant generating function of —log A can be expanded in a neighborhood
of t =0 as

- s—1) /T 1 /Mnt+tm
log ch,(t;m,n) Z {@/Jz(, 1)(5) —107() 1)(7)}
where
p

ula) = Yo v ()

=1

and ) (a) is the polygamma function defined as

1 1
‘o RRD D (ew il ww) B

— (%) log l'[a] = k20 (1)) (3.2)

> (s=1,2,---).

pare (k; + a)s—‘rl

Here C is the Euler’s constant.
Hence the characteristic function and the s—th cumulant of the null distribution
—(2/N)log X are given by

¢/\(t) = Chpg(t§ qg,n—p1— Q)Chqg(tmhn —P1— Q1)

and
S S S— n— p]. S— n— pl
W = oo (=) e ()
(s—1) (M =P~ (s-1) (33)
+ 95 L) — v (5 )
2 2
Let
—2]og A\ — ﬁf\l)
T=-*x : (3.4)
e
A
and denote the standardized cumulants as
(s)
(s) — _ M _
K = —=2— (s=3,4,...).
Wy |

Then, E[T] = 0, Var[T] = 1, and the s (s > 3)-th cumulant of 7" is x(*). Therefore,
writing the characteristic function of 7" as gp(t) we have

(3.5)

Using (3.5) we can obtain formally the Edgeworth expansion of the null distribu-
tion of standardized test statistic 7. The purpose of this paper is to give a sufficient
condition for the validity of the Edgeworth expansion and to give a computable error
bound for the approximated distribution function by using the asymptotic expansion
of it.



4 Edgeworth expansion

Bounds for the cumulants
From (3.3), the s—th cumulant of —(2/N)log A is given by

=242 (o )

(k + "=t
k=0 2
a—aq (4.1)

(s —1)! (s —1)!
+Z<k+n —p1— q+J) (/{;+%“‘j)8>}>0'

First we give a lower bound for the variance. Consider a function defined by

10 = &[] @t

a—1/2
21 .
TER T

1 a+1
= 2 + 2log
It is easily seen that f(a) is a decreasing and positive function of a in (H%/ﬁ, 00).
This implies that

1 1
(o =B (g

1 0 1 1
> / / - — - dz dy
TJo (S \(k+y+ B (B py 4 R ’

1 1
(k + %ﬂlﬂ')z (k + %ﬂ')z

> /1 /0 ! ! de b d
- — - i
“Jo VU \ by v m2gmimmy (o y 4 oty ’

forall k> 0and 7 > 1if n —
n—p—q > 1. Then we have

S8 P—P1 1 1
(2 ( _ >
Ky’ > dx
A _/0 {/0 (y+ =25 HE)2 (y+ =5)?

q—q1 1 1
+/0 QWW)Z - (y+”—Tq+v"f)2>d‘”}dy (4.2)
— 9210 (n—p)(n—q)(n—p1—q)
(n—p)n—q)(n—p—q)

p —q > 1. All through this paper, we assume that

From the above lower bound we can see that the limit (or the limitinf) of /ff) under
(1.2) is positive if the condition (1.3) is satisfied.

Next we give an upper bound for the s—th cumulant for s > 3. Consider a
function

1 1
(y+42) (y+ H2)s

f(x,y) =
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Since f(x,y) is convex in [0,00) x [0,00) for 0 < a < b, we have the inequality

k+1/2 j+1/2
feiy< [ 3 [T s pdy
k—1/2 j—1/2
for any nonnegative integer k and any positive integer j when a > 1/2. Hence
o p—p1+1/2 — 1) — 1)
o< | {/ (L= =0y,
—172 (J1)2 (
(s —1)!

q—q1+1/2 (s _ 1)[
; (y + =By (y 4 m=HE)s

y_i_%—qﬂ‘)s (y—l—”_—gﬂ)s

/2
o (s—3)laet (s—3)2t  (s—3)12s!
(n—p—q=3)2 (-p=—3)2 (-qg—3)
(s —3)12s (s —3)12s! (s —3)125
+ —.
(n—aq—3)

(n=—p—q—3)2 (n—p—5)2

The inequality can be expressed as

) < {n_p_q_ %(/{(2))1/2}_ 5—2) 2
s! 2 * /@&2)(5 —2)(s—1)s
R e e
n—p—% n—q—%
n—p—q—35\*2 (M=p—q—35\52 (M—p—q—5\52
- ) (o) G
n—p—q-—s; n—p -3 n—q -3
- M_(S_Q)bs—i‘la
(4.3)
where
1
n_ J— _— =
M:#( (A2))1/27
b 2 {1 <n—p—q—% s+1
) N 1 )
Ky (s+1)(s+2)(s+ 3 n—p
Do+ (s +2)(s+3) 2 "

_<n—p—q—%>s+l_<n—p—q—% )S+1
n—q-—s; n—pi—q—;

+<n—p—q—%>s+l+<n—p—q—%>s+1}
IR a1/

The following theorem gives a sufficient condition of the asymptotic normality
of the standardized test statistic 7.
Theorem 4.1 Under the asymptotic framework (1.2) with the condition (1.3), it

holds that under H
T % N(0,1).



Proof First we note that nf\s) > 0 (see (4.1)), and the limit of KE\Q) is positive. Since
Yoo o bsv?® s finite for |v] < 1, using (4.3) we have for any fixed ¢

o0 o0

(s) (s+3)
K K
E ts < E t s+3
s! - (s+3)! 4
s=3 s=0
[t~y s
< i E bsv® -0 (M — o0),

if |t|/M < v < 1. Hence the cumulant generating function of 7' converges to
—1?/2 (M — o0), which shows the asymptotic normality of T O

Corollary 4.1 Let

T:—%log)\—@’
%
where
~(1) 1 1
Ry :(n—p—q—§>log(n—p—q+1)—(n—q—§>log(n—q—|—1)
1 1
+<n—p1—§)log(n—p1+1)—(n—p—§>log(n—p+1)
1 1
+<n—q1—§)log(n—q1+1)—(n—ql—pl—§>log(n—q1—p1+1),
_p_1 -1 —p — g — L
/%E\Q)ZQIOg(n p 23(” q 2)1(71 P1—q1 ?)
m—pr—3)n—q —3)n—p—q—73)

Then under the same assumption as in Theorem 4.1 it holds that under Hy
= d
T — N(0,1).

Proof Applying Lemma A.1 in Appendix to (4.1) we can see

K =&V +0((n—p—aq)™),
Y =&+ 0((n-p-a)7).

Therefore we have T =T + O((n — p — ¢)~"), which implies the required result. [

Edgeworth expansion
Let ¢(t) be the characteristic function of T" given by (3.4). Then we can expand



©(t) as follows:

— s!
t2 oo (Zt)?)k 0 R(S+3) . k
:e”%_§>{1+§: k!(§:@+3y<”> (4.5)
k=1 s=0
t2 o0 (Zt)gk o0
:exp(—a){l—l—z o Z*ykj(zt)j ,
k=1 T =0
where
/{:(81+3) . /{:(sk+3)
Vej = . 4.6
’ 81+;9k =j (Sl T 3) (Sk T 3)' ( )

Under the asymptotic framework (1.2) with the condition (1.3) M — co. From
(4.3) we can see that 7y, ; = O(M~UTR). Let

ww—m@ﬁ%+zkf§%mw (4.7)

7=0

Define Blv| and Ry [v] by
= i bsv®,
Ry[v] = v‘l{(B[v])’“ - Z( > by bsk)vj} (4.8)

J=0 si1+-+sp=j



If |[t| < Mv and 0 < v < 1, then using (4.3) we can see

() = pu(®)] = L exp(~1)
S X -y
W v |t\ 2
° zt?”“ . kU3 k
[R5 > e > B )
k= j=s—k+1 k=s+1 Jj=

2 oo

t . i ,
SeXp<—§){Z I > ( > bsl"'bsk)M U [t}
k=1

j—s k+1 “sit-tsp=j

+ Z |t]3k 1(ZbM (+1) \tw)k}

il (4.9)

“en( S gt (57) T e [
- 3 g (o[

k=s+1
12 ‘1
< M+ exp<—5> {Z g|t|s+2kRk,s—k+1[?}]
1 s )
ey exp(t%B[vD}‘

Hence

p(t) = s(t) + O(M D),

Inverting (4.7), we obtain an Edgeworth expansion of the null distribution of the
standardized test statistic 7" up to the order O(M~*) as

s 1 s—k
Qs(x) = () — ﬁb(x){z 0 Z'Yk,jh?)k—&-j—l(x)}a (4.10)
k=1 " j=0

where @ and ¢ are the distribution function and the probability density function of
the standard normal distribution, respectively, 74 ; is given by (4.6), and h,(x) is
the r—th order Hermite polynomial defined by

2 2

(L) eol-5) = rhisron( )

5 The validity and an error bound

Using the inverse Fourier transformation we obtain a uniform bound for the error
of the Edgeworth expansion as

sup P(T < ) = Quia)| < 5= [ lielt) = (o)l a
1

— %(Il[v] + L[v] + I3[v]),

(5.1)
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where

nil = [ " L) - e dt,

Mwv |t|
1 1
Ly[v] = rles(t)|dt and - Ifv] = 7 le(t)] dt
1> [t 1> [t]
with some positive constant v < 1.
First we derive a bound for I;[v]. Let

3v—2  (1—0)?
L] = W o log(l—v) (0<|v] <1) 52)
0 (v=0).

Using —log(1 —v) = v+ 3v* + 30° + -+, it is easily checked that L[v] can be
expanded as

o 1 .
Ll =2 sGrU(s+2)

s=1

So Blv] can be expressed as

Blv] = %{L[v] - [ e

Y R zlv}m[p—ﬁv]u[p—ql%]},
n—pi—aq—35 n—pri—s3
which is bounded if 0 < v < 1.
From (4.9) we obtain I1[v] < U;[v], where

Ui[v] = 2 ES 1 R " stok t?
1[1}] Ms+1 — k! k,S—k-i—l[’U] ; t exp(——2 >dt
2

1 Mwv 3 9 t

s+ s+ _

+ (S+1)!(B[v]) /0 t exp( 20v>dt},
and ¢, = 1 — 2uBJv].

The calculation of integral I, is not difficult. From (4.7)

9 t? L2 & T t?
Bil = [ Fen(-5)ite Y 5 Y s [ O lew(-5)d 65)
Mv k=1 j=0 Mo

In order to give a bound for I3 we prepare the following lemma.

(5.4)

Lemma 5.1 Ifp <n <m+n, then

1 p m+n—p 4t2
log |chy(t;m, n)| < _Zz/n—p log{l + (J +$)2}d$
< (5.6)

mp 16t2
< ——logq 1
4 og{ Jr(m—{—2n—p—{—1)2 ’

where chy(t;m,n) is the characteristic function of A,(m,n) given by (3.1).
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Proof It is known that
2

‘M
T[]

:fﬁl+@fmﬁl

k=0

for any real number z,y; (z > 0). Since if A < B

is a decreasing function of x > 0, we have
log |ch,(t;m,n)|

1 o P t2 t2

k=0 j=1

< 1i/w{log[1+ e } log[l—i— r ]}d
S -5 Tt e l| T —— T
222 ), (P25 1 o) (BTPE )2 (5.7)

1 <& (m+n—p+j)/2 2
:——Z/ 10g{1+—2}dx
x

2= Jn-pti)2

2

1 i /m+"—p 4t
= —— log{l + : }dw.
4 j=1v"n"P (x + j)2

The last inequality of (5.6) is obtained by using the inequality

i/abf(x,j)dx > i(b—a)f<a;rb,j> Zp(b—a)f<a;b,]%1>

for any convex function f(x,y). O

Using the above lemma

log [ (t)] = log |chy—p, (t; ¢, — p1 — Q)| + log [chy—q, (t; 1,7 — p1 — @1))]

Q(p—Pl) 16t }
S N £V P S
4 g{ (2n—q—p1—p+1)?

— 16t2
_Pl(q @) 10g{1+ 2}
4 Cn—qg—p1—q+1)

=:log G(t) (say) .

Hence

L) < [ 2 = [ Zawa

Mwv |t| Mov |t|

where
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Refinement of the bound for I3
From (5.7)

1 p m+n—p 4t2
log |ch,(t;m,n)| < ~1 ;/ﬂ_p log{l + @ —|—j)2}d$

UL e )]
< —= log{ 1+ — |dz|dy
4 1 n—p (y+$)2

:_t2{F<m+n+1> _F<n+1) _F(m+n—p+1>+F(n—p+1>}
2[¢| 2[t] 2[¢| 2[t] '

where
z y 1
F(z) = / log(1 + — )dxdy
0o Jo xr
22 1 1 )
=5 10g<1 + ?> + 2z arctan(z) — 5 log(1 + =29).
Hence
t? _
0)] < exp{ Gt .
U\
where
n—p +1 n—p+1 n—p—q-+1
t)y=F\——F— ) - F|—— Fl——————
Go(t) = { F( 2t )-F( [t )+ 7 ( ot )
n—q+1 n—q¢—pi+1 n—q+1
Fl——— ) - F —F(——) .
+( o[t] ) - F( 20¢] )-#( 20¢] )}
Therefore
Lv) < E-|exp{--1t Gb@)}dt:::Ughﬂ(say) (5.8)
Mov

Summarizing the above we obtain an error bound of the Edgeworth expansion
as in the following theorem.

Theorem 5.1 Let T be the standardized test statistic given by (3.4) and Qs(x) be
the Edgeworth expansion of the null distribution function of T given by (4.10). Then
we have a uniform bound for the error given by

1
sup |[P(T < z) — Qs(x)| < %\Ul[v] + Lr[v] + Us[v]|,
where Uy, Iy and Us are given by (5.4), (5.5) and (5.8), respectively.

Corollary 5.1 Under the asymptotic framework (1.2) with the condition (1.3) and

P+q

< C  some constant, (5.9)
n—p-q

it holds that
sup [P(T < 2) — Qy(z)] = O(M D),
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Proof If we choose v such that ¢, > 0, U;[v] = O(M~6+Y). Tt is easy to show
L[v] = O(exp(—M?v?%c)) for any positive number ¢ < 1/2. From the first equality
in (1.4), the condition (1.3) imposes that ¢/(n—p—¢q) > d for some positive constant
d. Hence

q(p — p1) 16t
l t A | 1
8 Gl) < 4 Og{ +(2n—q—p1—p+1)2
dp> 16¢2
<—g o ‘q)log{” (2+C’)(n—p—q)}
Therefore
16t2 —dpa(n—p—q)/4
) < dt
_/MOU 2+C’)(n—p—q)}
:/ dpz(nfpfq)/lldu =C (1 + O, )1 dp2(n—p—q)/4
= O((1 + C,) = Mo/%)
where C, = {4Mov/((2+ C)(n —p — q))}* O

The condition (5.9) is a suffucient condition and will be weakened since I3[v] =
o(M~#) for any s.

6 Numerical experiments

The upper bound given in the previous section depends on v. Some numerical
calculations show that it will be sufficient to calculate the upper bounds with v =
0.05,0.01,...,0.95 and choose the minimum.

Table 1 gives such minimums in the case that s = 1,n = 50 and several combi-
nations of p, q, p1,q1. If p and ¢ is less than 20 the bounds are not so small. We can
see that the bounds get large as p; and ¢; get large. The reason is that /4;&2) becomes
large which leads that by becomes large and M becomes small.

Table 2 shows the similar result in the case of s = 2. If p and ¢ are larger than
10, the bounds are sufficiently small.
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Table 1: Error bounds in the case of n = 50 and s = 1

Pl q | p|q | bound | v m /1&2)
515111100763 06 |3.1]0.16
5151 2]2]0088| 06 |29]0.15
515133 ]01116 | 0.65| 2.6 | 0.13
5154 41]0189| 07 | 2. | 0.1
1010 2 | 2 0.018 | 0.5 | 5.3 ]0.36
1010 4 | 4 |{0.0211] 0.5 | 5. | 0.34
1010 6 | 6 |0.0285| 0.5 | 4.5 0.31
1010 8 | 8 10.0534| 06 |3.5]0.24
15115 3 | 3 |0.0078 | 0.45 | 6.2 | 0.64
15115 6 | 6 |0.0091 | 0.5 | 6. | 0.62
15015199 00121 | 0.5 | 5.5]0.56
151 15| 12 | 12 | 0.0237 | 0.55 | 4.4 | 0.45
20120 4 | 4 |0.0057 | 0.6 |52 1.1
20[20] 8 | 8 10.0064 | 0.6 | 5.1 1.07
20120 12|12 | 0.0085 | 0.6 | 4.8 | 1.01
20120 ]16 |16 | 0.0165 | 0.65 | 4. | 0.84

Appendix

Lemma A.1 For any positive numbers a,b (a < b) and positive integer p we have
the following two asymptotic formulas:

izp:{k;%j - k+1%}

k=1 j—1
:(b—irp—%)log(bjtp—l—l)—(a+p—%)log(a+p+1) (A1)
—(b— %) log(b+1) + (a — %) log(a+1)+0O(a™") (a— o).

SN 1 1

X\ -
0Dy |
—21g(a—%)(b+p—%)+0( ) (a— ).

Here the order of the remainder terms is uniform with respect to b and p.
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Table 2: Error bounds in the case of n = 50 and s = 2

Pl q | p|q | bound | v m /1&2)
515 1] 11]0.0706 | 0.65|3.1]0.16
5152 2]0.0824|065|29]|0.15
515133101138 0.7 |26 ]0.13
5154410227 07| 2 | 0.1
1010 2 | 2 0.0109| 0.5 |53]0.36
1010 4 | 4 10.0135|0.55| 5. |0.34
1010 6 | 6 |0.0195|0.55 | 4.5 | 0.31
1010 8 | 8 10.0441 | 06 |3.5]0.24
150151 3 | 3 /0.0034| 0.5 |6.2]0.64
15115 6 | 6 |0.0042 | 0.5 | 6. | 0.62
150151 9 | 9 |0.0063 | 0.55 | 5.5 | 0.56
1515|1212 ]0.0154 | 0.6 | 4.4 0.45
20120 4 | 4 10.0022 | 0.65|5.2] 1.1
2020 8 | 8 10.0026 | 0.65 | 5.1 | 1.07
20120 | 12| 12 | 0.0039 | 0.65 | 4.8 | 1.01
2012016 |16 | 0.0095 | 0.7 | 4. | 0.84

Proof In order to show (A.1) and (A.2), it is sufficient to show

1
ZZ o = a+p——)log(a+p+1)+(a—é)log(a—i—l)—i—O(a_l).
k=1 j= 1k+
(A.3)
a+p—— _
ZZ Ty - =2log ——2 +0(a™). (A4)
k=0 j7=1 + a

We apply Lemma A.2 to each of the following sums:

N

K-1 p

Z 1+a+] ZZ 1+a+])

k=1 j=1 k1j1

and taking the limit X' — co. Then we can express each of the sums as the sums of
six definite integrals. The first three integrals can be exactly computed.

The remainder three definite integrals can be estimated by noting that B;(x—[z])
are finite. It is shown that these are O(a™!) for the left side of (A.3) and O(a™?)
for the left side of (A.4). By proceeding these procedures we can show the required
results. O
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Lemma A.2 Let f(z,y) be a C*~class function. Then

m—1 n—1

if(k, /{/fwydy}dw——/{fmy f(Ly)}dy

k=1 [=1

[t [ OB
+/ {/ 2O gZ(y_[nyyy@,y)dy}dx

/ {/ {B1(1) = Bi(z — [z]) {B:1(1) = Bi(y — [y])}fxy(x,y)dy}daf,

where fyz, foy and fy,, are the second order partial derivatives, and By(x) (k =
0,1,2,...) is the k—th order Bernoulli polynomial defined by

tezt oo tk
e ZBk(x)H.

/1 " gayde =3 gy + LU 9D / " Bi(x — (o)) (x)dz (A5)

[ B = hgtaae = [ EO=Bale =l iy 2 )

Noting that Bj(z) = x — 1/2 and hence B;(1) = 1/2, the formula (A.5) can be
written as

Zg — [ lot@) = (Bl) - Bulo — o]}/ @) (A7
Applying (A.7) to f(z,y) twice as the function of = and as the function of y we have
YD FkD
k=1 I=1
=S [ sty = Y [ B - Buly — )}, (k)
k=171 k=11

_ /1 [/lm [f(z,9) — {Bi(1) = Bi(z — [e)}fu,9)]do
(B = By~ D)} [ o) — (BaD) = Bale ~ e by (o)) o dy.

Apply (A.6) to g(x) = fu(x,y) and g(y) = f,(z,y) with j = 1 then we obtain the
desired result. 0
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