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Abstract

We propose a new test procedure for testing linear hypothesis on the mean
vectors of normal populations with unequal covariance matrices when the
dimensionality, p exceeds the sample size N , i.e. p/N → c < ∞. Our
procedure is based on the Dempster trace criterion and is shown to be power
and size consistent in high dimensions.

The asymptotic null and non-null distributions of the proposed test statis-
tic are established in the high dimensional setting and improved estimator of
the critical point of the test is derived using Cornish-Fisher expansion. As a
special case, our testing procedure is applied to multivariate Behrens-Fisher
problem. We illustrate the relevance and benefits of the proposed approach
via Monte-Carlo simulation which show that our new test is comparable to,
and in many cases is more powerful than, the tests for equality of means
presented in the recent literature.
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1. Introduction

The problem of testing mean vectors is a part of many procedures of multi-
variate statistical analysis, such as multiple comparisons, MANOVA and clas-
sification. The standard testing technique is based on classical Hotelling’s T 2

test which is known to have optimal performance properties in a large sample
case, i.e assuming that the number of feature variables, p is fixed and is much
smaller the sample size, N . However, in many practical applications of mod-
ern multivariate statistics (e.g. DNA microarray data) the number of feature
p exceeds N , so that a straightforward use of T 2 statistics is impossible due
to singularity of the sample covariance matrix. Thus, to cope with this high
dimensional situation, it would be desirable to develop new tests for N ≤ p,
and investigate their asymptotic properties when both N and p are going to
infinity; this asymptotic framework is also known as (N, p)-asymptotics.

There have been a series of important results on this testing problem.
In particular, Bai and Saranadasa (1996) focus on (normal) the two-sample
case with equal covariance matrix, and propose to use an estimator of Eu-
clidean norm of the shift vector instead of T 2 statistics; they also establish
the asymptotic normality of the test statistics assuming that p and N is of
the same order. Later, by using the same approach as Bai and Saranadasa
(1996), Aoshima and Yata (2011) derive the test for which the significance
levels can be controlled with or without the assumption of normality of the
data, that is robust for the model assumption. Unlike the above approach,
Srivastava (2007) suggests F -type test statistics based on the Moore-Penrose
inverse of the singular sample covariance matrix, and Srivastava and Du
(2008) have developed the test procedure based on the Dempster’s trace cri-
terion (D-criterion) (Dempster (1958,1960)) under the assumption of variable
independence. Also it is important to note, that both these procedures are
less restrictive than that of Bai and Saranadasa (1996) in a sense that they
allow p grow faster than N according to (N, p)-asymptotic framework.

Motivated by the previous literature and as part of effort in developing
testing procedures with stable characteristics in high-dimensions, we focus
on testing linear hypotheses of mean vectors for high-dimensional data with
unequal covariance matrices. Our main objective in this paper is to show
that our newly derived test statistics based on the Dempster trace criterion
has a number of attractive asymptotic properties and demonstrates good per-
formance in large (N, p). We state the asymptotic distribution of the derived
test statistics under both the null and the local alternative hypotheses, and
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provide the explicit expressions for asymptotic power of the test in terms of
δ when N = O(pδ) and 0 < δ < 1. To further improve the test performance,
Cornish-Fisher approximation of the upper 100α percentile of the test is pro-
vided in (N, p)-asymptotics. We also apply our new test procedure to the
multivariate Behrens-Fisher problem and compare its performance with the
above-mentioned testing procedures from resent literature.

The rest of the paper is organized as follows. Section 2 provides descrip-
tion of the new test and main asymptotic results. Section 3 considers the
application to the Behrens-Fisher problem. In Section 4, the level hypothesis
is tested and the attained significance levels of the newly derived test is an-
alyzed for a number of high dimensional scenarios. At last, we provide some
concluding remarks. The proofs of theorems and lemmas stated in Section 2
are given in the Appendix A and the Appendix B.

2. Description of the new test and asymptotic properties

Let x
(i)
1 , . . . , x

(i)
Ni

, i = 1, . . . , k be Ni samples from Np(µi, Σi), respectively.
We are interesting in the linear testing the hypothesis

H0 :
k∑

i=1

βiµi = 0 vs. H1 : 6= H0, (2.1)

where β1, . . . , βk are given scalars and covariance matrices Σi’s are assumed
to be unequal. In this study, we consider Bennett (1951)’s transform derived
Anderson (2003) for k-sample case (see, Bennett (1951), Anderson (2003)).
For convenience, let N1 be the smallest. Then, for j = 1, . . . , N1, we define

yj = β1x
(1)
j +

k∑
`=2

β`

√
N1

N`

(
x

(`)
j − 1

N1

N1∑
m=1

x(`)
m +

1√
N1N`

N∑̀
n=1

x(`)
n

)
.

Especially, when N1 = · · · = Nk, yj =
∑k

`=1 β`x
(`)
j . The expected value of

yj and the covariance matrix of y` and ym are

E
(
yj

)
=

k∑
i=1

βiµi,

Cov (y`, ym) = δ`m

(
k∑

i=1

β2
i N1

Ni

Σi

)
,
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respectively, where δ`m is Kronecker’s delta. We further set

k∑
i=1

βiµi ≡ µ,

k∑
i=1

β2
i N1

Ni

Σi ≡ Σ,

respectively, and note that y1, . . . , yN1
are independent and identically dis-

tributed as Np(µ, Σ). Thus, we may consider testing

H0 : µ = 0 vs. H1 : µ 6= 0, (2.2)

which is equivalent to (2.1).
For testing (2.2) under the assumption that p > n1 = N1 − 1, we define

a new test statistic as follows

TD =
N1y

′y

trS
, (2.3)

where

y =
1

N1

N1∑
i=1

yi, S =
1

n1

N1∑
i=1

(yi − y)(yi − y)′.

TD is based on Dempster trace criterion and does not require any restrictions
on the relation between the dimension and sample size.

At first, we derive the null distribution of the statistic (2.3) under the
following (N, p)-asymptotic framework:

(A.1) : p, n1 → ∞,
p

n1

→ c ∈ (0,∞).

Further, in addition to (A1), we assume that

(A.2) : lim
p→∞

trΣi

p
→ ai ∈ (0,∞), i = 1, . . . , 4,

(A.3) : lim
p→∞

trΣi

p
→ ai ∈ (0,∞), i = 1, . . . , 8.

Let

T̃D =
√

p

{
N1y

′y

trS
− 1

}
. (2.4)
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The following theorem provides asymptotic null distribution of T̃D/σD where

σD =

√
2a2

a2
1

=

√
2trΣ2/p

trΣ/p
.

Theorem 2.1. When the null hypothesis H0 : µ = 0 is true, the distribution
function of T̃D/σ̂D can be expanded in the asymptotic framework (A.1) and
under assumption (A.3) as

P

(
T̃D

σ̂D

≤ z

)
= Φ(z) − φ(z)

[ 1
√

p
c3h2(z)

+
1

p
{c4h3(z) + c6h5(z)} +

1

n1

c2h1(z)
]

+ O(p−3/2), (2.5)

where σ̂D is obtained by replacing a1 and a2 with their estimators, Φ(z) is
the distribution function of the standard normal distribution,

c2 =
1

2
, c3 =

√
2a3

3
√

a3
2

, c4 =
a4

2a2
2

, c6 =
a2

3

9a3
2

,

and hi(z)’s (i = 1, . . . , 6) are the Hermite polynomials given by

h1(z) = z, h2(z) = z2 − 1, h3(z) = z3 − 3z, h4(z) = z4 − 6z2 + 3,

h5(z) = z5 − 10z3 + 15z, h6(z) = z6 − 15z4 + 45z2 − 15.

Proof. See, Appendix A.1.

In practice, ci’s and ai’s are unknown. Hence, to use the result of Theorem
2, we need their estimators that are expected to be good in high-dimension
setting. As sample counterparts of ai’s, we use their (N, p)-consistent and
unbiased estimators derived in Srivastava(2005), Srivastava and Yanagihara
(2010) and Hyodo, Takahashi and Nishiyama (2012) as

â1 =
trS

p
,
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â2 =
n2

1

p(n1 − 1)(n1 + 2)

{
trS2 − (trS)2

n1

}
,

â3 =
n1

(n1 − 1)(n1 − 2)(n1 + 2)(n1 + 4)

×
{trS3

p
− 3(n1 + 2)(n1 − 1)â1â2 − n1p

2â3
1

}
,

â4 =
1

b0

(trS4

p
− pb1â1 − p2b2â

2
1â2 − pb3â

2
2 − n1p

3â4
1

)
,

where

b0 = n1(n
3
1 + 6n2

1 + 21n1 + 18), b1 = 2n1(2n
2
1 + 6n1 + 9),

b2 = 2n1(3n1 + 2), b3 = n1(2n
2
1 + 5n1 + 7).

Type 1 error of the asymptotic test based on using the main term of
(2.5) can be essentially improved by the corrected estimator of the upper

100α-percentile of T̃D/σ̂. This correction is achieved by using Cornish-Fisher
expansion.

Corollary 2.2. Under the asymptotic framework (A.1) and assumption

(A.3), Cornish-Fisher expansion of the estimated upper percentile of T̃D/σ̂ is
derived as

ẑ(α) = zα +
1
√

p

√
2â3

3
√

â3
2

(z2
α − 1)

+
1

p

{ â4

2â2
2

zα(z2
α − 3) − 2â2

3

9â3
2

zα(2z2
α − 5)

}
+

1

2n1

zα + Op(p
−3/2), (2.6)

where zα is the upper 100α% percentile of the standard normal distribution.

Proof. See, Appendix A.2.

Next, we state the asymptotic distribution of the test statistic TD under
the local alternative. We state

H
L(δ)
1 : Nµ′µ = O(pδ), Nµ′Σµ = O(pδ), 0 < δ < 1, (2.7)
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where N =
∑k

i=1 Ni and assume that N1/Ni → ci ∈ (0,∞) (i = 1, . . . , k).

Then, under the hypothesis H
L(δ)
1 , the test statistic can be expressed as

T ∗
D =

N1y
′y

trS
− 1 − N1µ

′µ

trΣ
. (2.8)

Theorem 2.3 provides the limiting distribution of T ∗
D/σ∗

D, where

σ∗
D =

√
2trΣ2 + 4N1µ′Σµ

(trΣ)2
,

under the hypothesis H
L(δ)
1 .

Theorem 2.3. When the local alternative hypothesis H
L(δ)
1 is true, the

distribution of T ∗
D/σ∗

D is asymptotically normal, i.e.

T ∗
D

σ∗
D

=
N1y

′y/trS − 1 − N1µ
′µ/trΣ√

(2trΣ2 + 4N1µ′Σµ)/trΣ2
−→d N(0, 1),

in the asymptotic framework (A.1) and under assumption (A.2).

Proof. See, Appendix A.3.

Using the asymptotic distribution under the alternative hypothesis, we
are able to describe the (N, p)-asymptotic behavior of the power function of
our test statistic which is collaborated in the following theorem.

Theorem 2.4. Let

Powerα(T̃D, δ) = P

(
T̃D

σD

≥ zα | H
L(δ)
1

)
,

be the power function of T̃D. Then, in the asymptotic framework (A.1) and
assumptions (A.2),

(i) Powerα(T̃D, δ) −→ α, if 0 < δ < 1/2,

(ii) Powerα(T̃D, δ) −→ Φ

(
N1µ

′µ√
2trΣ2

− zα

)
, if δ = 1/2,

(iii) Powerα(T̃D, δ) −→ 1, if 1/2 < δ < 1.
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Proof. See, Appendix A.4.

In words, this theorem claims that the test statistic T̃D is (N, p)-consistent.

3. New test procedure for multivariate Behrens-Fisher problem

In this section, we focus on an important special case of the testing prob-
lem (2.1). We consider testing equality of mean vectors of two normal pop-
ulations with unequal covariance matrices, that is, we consider testing the
hypothesis

H0 : µ1 = µ2 vs. H1 : µ1 6= µ2. (3.1)

We note that (3.1) is the special case that k = 2, β1 = 1 and β2 = −1
in (2.1). This problem is known as the multivariate Behrens-Fisher prob-
lem, and many authors have discussed (see, e.g., Bennett (1951), Johnson
and Weerahandi (1988) and Yanagihara and Yuan (2005)). Also, for high-
dimensional data, testing equality of mean vectors of two populations have
been discussed by Bai and Saranadasa (1996), Srivastava (2007), Chen and
Qin (2010), Aoshima and Yata (2011), and so on. Especially, Chen and Qin
(2010) and Aoshima and Yata (2011) gave a test statistic for the multivariate
Behrens-Fisher problem in high-dimension setting.

We propose a new test statistic for this problem by using the idea stated
in Section 2, that is, we consider the following statistic

TD =
N1y

′y

trS
,

where, for j = 1 . . . , N1,

yj = x
(1)
j −

√
N1

N2

x
(2)
j +

1√
N1N2

N1∑
m=1

x(2)
m − 1

N2

N2∑
n=1

x(2)
n . (3.2)

Then we note that y1, . . . , yN1
are independent and identically distributed

as Np(µ, Σ) where

µ = µ1 − µ2, Σ = Σ1 +
N1

N2

Σ2, (3.3)
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respectively (see, Bennett (1951)), that is, (3.1) is equivalent to the following
hypothesis:

H0 : µ = 0 vs. H1 : µ 6= 0.

Therefore from Theorem 2.1, Corollary 2.2 and Theorem 2.4, we have follow-
ing corollary.

Corollary 3.1. Suppose that T̃D, âi’s, ci’s and Powerα(T̃D, δ) are defined
according to (3.2) and (3.3). Then, under the asymptotic framework (A.1)

and assumption (A.3) the asymptotic distribution of T̃D under the null hy-
pothesis H0 : µ1 = µ2 and Cornish-Fisher expansion of the upper percentile
are derived as follows

P

(
T̃D

σ̂D

≤ z

)
= Φ(z) − φ(z)

[ 1
√

p
c3h2(z)

+
1

p
{c4h3(z) + c6h5(z)} +

1

n1

c2h1(z)
]

+ O(p−3/2),

ẑ(α) = zα +
1
√

p

√
2â3

3
√

â3
2

(z2
α − 1)

+
1

p

{ â4

2â2
2

zα(z2
α − 3) − 2â2

3

9â3
2

zα(2z2
α − 5)

}
+

1

2n1

zα + Op(p
−3/2), (3.4)

respectively, and for the asymptotic power of T̃D we have

(i) Powerα(T̃D, δ) −→ α, if 0 < δ < 1/2,

(ii) Powerα(T̃D, δ) −→ Φ

(
N1µ

′µ√
2trΣ2

− zα

)
, if δ = 1/2,

(iii) Powerα(T̃D, δ) −→ 1, if 1/2 < δ < 1.

4. Simulation study

A simulation study shows the effectiveness of the suggested test statistics
in high dimension. We first provide a study justifying accuracy of the approx-
imation for the critical point derived in Corollary 2.2 of our testing procedure
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by simulating the Attained Significance Level (ASL), or size of the test. We
draw k independent samples of size Ni = 10(1+ i) and Ni = 20(1+ i), where
i = 1, . . . , k valid p-dimensional normal distributions under the null hypoth-
esis (i.e. (2.1)). We replicate this r = 105 times, and using T̃D from (2.4)
calculate

ASL1
α

(
T̃D

)
=

] of
(
T̃D/σ̂ > zα | H0 is true

)
r

,

and

ASL2
α

(
T̃D

)
=

] of
(
T̃D/σ̂ > ẑ(α) | H0 is true

)
r

,

denoting the ASL of T̃D where zα is the upper 100α percentile of the stan-
dard normal distribution and ẑ(α) is the corrected value of the upper 100α
percentile given by (2.6).

Tables 1-4 provide the results for a number of high-dimensional scenarios
and an assortment of null hypothesis H0 specified by the choice of βi’s for
i = 1, . . . , k. Also, we set up the covariance structures Σ1 = I, Σ2 = (0.2|i−j|),
Σ3 = (0.5|i−j|) for the case k = 3 and Σ1 = I, Σ2 = 2I, Σ3 = (0.2|i−j|),
Σ4 = (0.5|i−j|) for the case k = 4, respectively. For each table, the simulated

size of T̃D is systematically lower for the suggested corrected percentile ẑ(α),
and ẑ(α) is closer to the selected nominal level α. Furthermore, in all the
settings of H0, the size of the test remains essentially the same when both p
and k grows thereby validating our asymptotic results.

Further, we perform a series of power simulations to investigate consis-
tency of our test and to demonstrate its improved performance under certain
alternative hypotheses. From now on we focus on the simulations for the
case of k = 2, representing multivariate Behrens-Fisher problem.

We provide examples for two cases of H
L(δ)
1 , ∆ = 5 and ∆ = 10 for the

following settings of Σi:

Table 5 : Σ1 = I, Σ2 = (0.5|i−j|) and ∆ = 5,

Table 6 : Σ1 = I, Σ2 = (0.5|i−j|) and ∆ = 10,

Table 7 : Σ1 = (0.2|i−j|), Σ2 = (0.5|i−j|) and ∆ = 5,

Table 8 : Σ1 = (0.2|i−j|), Σ2 = (0.5|i−j|) and ∆ = 10,
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where ∆ = ‖µ1 −µ2‖2, and we recall that in our notations, see (2.7), N∆ =
O(pδ).

Using the same number of replicates as above, we draw k = 1, 2 indepen-
dent samples of size Nk under H

L(δ)
1 and using T ∗

D from (2.8) calculate the
empirical power as

EPα

(
T̃D, δ

)
=

] of
(

T̃D/σ̂D > ẑ(α) | H
L(δ)
1 is true

)
r

.

To make comparisons of T̃D with the test statistics defined in (Srivastava
(2007) (S), Srivastava and Du (2008) (SD) and Aoshima and Yata (2011)
(AY)), the same is repeated for the corresponding tests.

Srivastava (2007) and Srivastava and Du (2008) discussed one and two
sample problem, but their procedures for testing equality of two mean vectors
are based on the assumption of equal covariance structure. So, in order to
adapt these procedures to our approach, we at first consider transformation
(3.2), and adapted transformed yj (j = 1, . . . , N1) to their procedures for
one sample problem.

Aoshima and Yata (2011) proposed the test procedure for the multivariate
Behrens-Fisher problem with size α and power no less than 1 − β when
∆ ≥ ∆L, where α, β ∈ (0, 1/2) and ∆L(> 0) are prespecified constant.
As they assumed ∆L = o(p1/2), we set up β = 0.1 and ∆L = ∆/2. Also,
procedure by Aoshima and Yata (2011) does not need the assumption of
normality, but in order to compare it with other procedures we carry out the
simulation study under normality.

Tables 5 to 8 show that our test statistic appear to be consistent as
(N, p) → ∞. Further, under simulated alternative hypothesis H

L(δ)
1 with

∆ = 5 our statistic performs better than both S and SD, and is comparable
to AY. For the alternative with ∆ = 10 our test turns out to be most powerful
for almost all the settings of p ans Ni. Hence, as ∆ increases the newly
proposed test appears to dominate that of AY, and both are seen to be
consistent as ∆ grows. We also see that neither test perform particularly
well for ∆ = 5, in combination with small Ni and large p.

Further, a series of simulations is provided to demonstrate the advantage
of the correction procedure suggested in (3.4) for the critical point of the
test. We simulate the ASL of our test using ẑ(α) from the approximation
(3.4), and ASL of AY which uses ∆Lzα/(zα + zβ) as the critical point (see
for details Aoshima and Yata (2011)). Both S and SD use zα. Tables 9-12
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give ASL for the following cases:

Table 9 : Σ1 = I, Σ2 = (0.5|i−j|) N1 = 10, and N2 = 20,

Table 10 : Σ1 = I, Σ2 = (0.5|i−j|) N1 = 20, and N2 = 30,

Table 11 : Σ1 = (0.2|i−j|), Σ2 = (0.5|i−j|) N1 = 10, and N2 = 20,

Table 12 : Σ1 = (0.2|i−j|), Σ2 = (0.5|i−j|) N1 = 20, and N2 = 30.

Also, AY(2.5) and AY(5) denote AY with ∆L = 2.5 and ∆L = 5, respectively.
Tables 9 to 12 show that the our test procedure based on ẑ(α) outperforms

all other procedures for both types of alternatives, ∆ = 5 and ∆ = 10, and
for all the settings of p and Ni, yielding the value of ASL closest to the
nominal level α.

Lastly, we study the effect of p on the power of the test. From tables 5 to
12 one can see that for both ∆ = 5 and ∆ = 10 our test statistic appear to
have most stable power when p grows, and this result remain valid for very
small sizes.

5. Concluding remarks

We have proposed a new test statistic for testing linear hypothesis of mean
vectors assuming that covariance matrices are unequal. We also suggested
a method for correcting the critical point of the test that leads to better
performance in large p and small Ni case. Simulations indicate that the
newly derived test statistic, T̃D, in (2.4) appear to perform well for a range
of settings of H0 specified by βi’s and k > 2, when ẑ(α) from Corollary 2.2
is used as a critical point.

For the multivariate Behrens-Fisher problem, our test procedure has a
comparable power performance to that of Aoshima and Yata (2011), and
outperforms both procedures derived in Srivastava (2007) and Srivastava and
Du (2008) for all the high-dimensional settings of p and Ni and a number of
settings of Σi’s. It is especially important to point out that our procedure
performs well for small deviations from H0, i.e. when ∆ = 5.

In conclusion, our test can be recommended for testing the mean vectors
for both k > 2 case and multivariate Behrens-Fisher problem, when p is
much larger than Ni, and when a small deviation from H0 is suspected.
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Appendix A.

A.1. Proof of Theorem 2.1.

To derive the asymptotic expansion of the distribution of T̃D/σ̂D under
null hypothesis we need estimators of a1 and a2. So we consider unbiased
and (N, p)-consistent estimators of a1 and a2 derived in Srivastava (2005)
(see, section 2). By (N, p)−consistency, we obtain

T̃D

σ̂D

=
N1y

′y − trS√
2pâ2

.

Let w = n1(â2 − a2) which implies that w = Op(1) (see Srivastava (2005))

and T̃D/σ̂D can be expanded as

T̃D

σ̂D

=
1√
2pâ2

(N1y
′y − trS)

(
1 +

1

n1a2

w

)−1/2

=
1√
2pâ2

(N1y
′y − trS)

(
1 − 1

2n1a2

w + Op(n
−2
1 )

)
.

To further explore the distribution of T̃D/σ̂D, we derive the asymptotic ex-
pansion of the characteristic function. The following lemma is proved in
Appendix B.

Lemma A.1. Under the asymptotic framework (A.1), the characteristic

function of T̃D/σ̂D can be expressed as

C(t) =

∣∣∣∣∣Ip −
√

2(it)
√

pa2

Σ

∣∣∣∣∣
−1/2 ∣∣∣∣∣Ip +

√
2(it)

n1
√

pa2

Σ

∣∣∣∣∣
−n1/2

Ez∗
1,Z∗

2
[g(S, y)],

where

g(S, y) = 1 − (it)w

2n1a2

√
2pa2

(N1y
′y − trS) + Op(n

−2
1 ).

We now proceed to show Theorem 2.1 by analyzing

(i)

∣∣∣∣∣Ip −
√

2(it)
√

pa2

Σ

∣∣∣∣∣
−1/2 ∣∣∣∣∣Ip +

√
2(it)

n1
√

pa2

Σ

∣∣∣∣∣
−n1/2

, (ii) Ez∗
1,Z∗

2
[g(S, y)],
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respectively. At first, for (i), the following equality are hold

log

∣∣∣∣∣Ip −
√

2(it)
√

pa2

Σ

∣∣∣∣∣
−1/2

log

∣∣∣∣∣Ip +

√
2(it)

n1
√

pa2

Σ

∣∣∣∣∣
−n1/2

=
1

2


√

2(it)
√

pa2

trΣ +
1

2

(√
2(it)

√
pa2

)2

trΣ2 +
1

3

(√
2(it)

√
pa2

)3

trΣ3

+
1

4

(√
2(it)

√
pa2

)4

trΣ4 + O(p−3/2) } − n1

2

{ √
2(it)

n1
√

pa2

trΣ

− (it)2

n2
1pa2

trΣ2 + O(p−7/2) }

=
(it)2

2
+

√
2(it)3a3

3
√

pa3
2

+
(it)4a4

2pa2
2

+
(it)2

2n1

+ O(n
−3/2
1 ).

Therefore (i) can be rewritten as∣∣∣∣∣Ip −
√

2(it)
√

pa2

Σ

∣∣∣∣∣
−1/2 ∣∣∣∣∣Ip +

√
2(it)

n1
√

pa2

Σ

∣∣∣∣∣
−n1/2

= exp

{
(it)2

2
+

√
2(it)3a3

3
√

pa3
2

+
(it)4a4

2pa2
2

+
(it)2

2n1

+ O(n
−3/2
1 )

}

= exp

{
(it)2

2

}{
1+

√
2(it)3a3

3
√

pa3
2

+
(it)4a4

2pa2
2

+
(it)6a2

3

9pa3
2

+
(it)2

2n1

}
+O(n

−3/2
1 ).

(1)

Secondly, we expand Ez∗
1,Z∗

2
[g(S, y)] in (ii) as follows:

E(z∗
1,Z∗

2 )[g(S, y)]

= 1 − (it)

2n1a2

√
2pa2

E[w(N1y
′y − trS) + Op(n

−2
1 )]

= 1 − (it)

2n1a2

√
2pa2

E
[{ n2

1

p(n1 + 2)(n1 − 1)

(tr(ΣZ2Z
′
2ΣZ2Z

′
2)

n2
1

−(tr(ΣZ2Z
′
2))

2

n3
1

)
− trΣ2

p

}(
tr(Σz1z

′
1) −

tr(ΣZ2Z
′
2)

n1

)
+ Op(n

−2
1 )

]
14



= 1 − (it)

2n1a2

√
2pa2

E
[{ 1

(n1 + 2)(n1 − 1)
tr

(
BZ∗

2Z
∗′
2 BZ∗

2Z
∗′
2

)
− 1

n1(n1 + 2)(n1 − 1)

(
tr

(
BZ∗

2Z
∗′
2

))2

− trΣ2
}{

tr
(
Az∗

1z
∗′
1

)
− 1

n1

tr
(
BZ∗

2Z
∗′
2

)}]
+ O(n−2

1 ), (2)

where

A = Σ

(
Ip −

√
2(it)

√
pa2

Σ

)−1

, B = Σ

(
Ip +

√
2(it)

n1
√

pa2

Σ

)−1

,

respectively. To calculate the expectation in (2), we need the following
lemma.

Lemma A.2. Let z∗
1 and Z∗

2 be mutually independently and distributed as
Np(0, Ip) and Npn1(0, Ip ⊗ In1), respectively. Then the following expectations
are calculated as

E[tr(BZ∗
2Z

∗′
2 BZ∗

2Z
∗′
2 )]E[tr(Az∗

1z
∗′
1 )] = trA{n1(n1 + 1)trB2 + n1(trA)2},

E[tr(BZ∗
2Z

∗′
2 BZ∗

2Z
∗′
2 )tr(BZ∗

2Z
∗′
2 )] = 4n1(n1 + 1)trB3 + n1(n

2
1 + n1 + 4)

×trBtrB2 + n2
1(trB)3,

E[{tr(BZ∗
2Z

∗′
2 )}2tr(Az∗

1z
∗′
1 )] = trA{2n1trB

2 + n2
1(trB)2},

E[{tr(BZ∗
2Z

∗′
2 )}3] = 8n1trB

3 + 6n2
1trBtrB2 + n3

1(trB)3,

E[trΣ2tr(Az∗
1z

∗′
1 )] = trΣ2trA,

E[trΣ2tr(BZ∗
2Z

∗′
2 )] = trΣ2trB.

Proof. See, Himeno (2007).

Now, by applying Lemma A.2 to (2), we obtain:

E(z∗
1,Z∗

2 )[g(S, y)] = 1 + O(n
−3/2
1 ).

Summarizing (1) and (2), we obtain the expansion of the characteristic
function

C(t) = exp
{(it)2

2

}
×

[
1 +

√
2(it)3a3

3
√

pa3
2

+
(it)4a4

2pa2
2

+
(it)6a2

3

9pa3
2

+
(it)2

2n1

]
+ O(n

−3/2
1 ).
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By inverting this characteristic function, we get the following density function
of T̃D/σ̂D;

f(z) =
1

2π

∫ ∞

−∞
exp{−itz}C(t)dt

= φ(z)
[
1+

1
√

p
c3h3(z)+

1

p
{c4h4(z)+c6h6(z)}+

1

n1

c2h2(z)
]
+O(n

−3/2
1 ),

where φ(z) is the density function of the standard normal distribution,

c2 =
1

2
, c3 =

√
2a3

3
√

a3
2

, c4 =
a4

2a2
2

, c6 =
a2

3

9a3
2

,

and hi(z)’s (i = 1, . . . , 6) are the Hermite polynomials given by

h1(z) = z, h2(z) = z2 − 1, h3(z) = z3 − 3z, h4(z) = z4 − 6z2 + 3,

h5(z) = z5 − 10z3 + 15z, h6(z) = z6 − 15z4 + 45z2 − 15.

Therefore, we obtain Theorem 2.1.

A.2. Proof of Corollary 2.2.

We prepare following Lemma to derive the Cornish-Fisher expansion of
the upper 100α percentiles of T̃D/σ̂D.

Lemma A.3. Let z(α) be

z(α) = zα +
1
√

p
q1(zα) +

1

p
q2(zα) +

1

n1

q3(zα),

where zα is the upper 100α% point of the standard normal distribution and

q1(zα) =

√
2a3

3
√

a3
2

(z2
α − 1),

q2(zα) =
a4

2a2
2

zα(z2
α − 3) − 2a2

3

9a3
2

zα(2z2
α − 5),

q3(zα) =
zα

2
.
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Then under the framework (A.1) and assumption (A.3),

P

(
T̃D

σ̂D

≤ z(α)

)
= 1 − α + O(p−3/2).

Proof. See, Appendix B.2.

Now, by replacing ai’s in Lemma A.3 with their unbiased and consistent
estimators âi’s for i = 1, . . . , 4, we obtain Corollary 2.2.

A.3. Proof of Theorem 2.3.

We derive the limiting distribution of the statistic T ∗
D/σ∗

D under (A.1),

(A.2) and H
L(δ)
1 . T ∗

D/σ∗
D is expanded as

T ∗
D

σ∗
D

=
(trΣ/trS)N1y

′y − trΣ − N1µ
′µ√

2trΣ2 + 4N1µ′Σµ

=
1√

2trΣ2 + 4N1µ′Σµ
(z′

1Σz1 + 2
√

N1µ
′Σ1/2z1 − trΣ) + op(1).

Also, the characteristic function of T ∗
D/σ∗

D is calculated as

C(t) = Ez1

[
exp

{
it(z′

1Σz1 + 2
√

N1µΣ1/2z1 − trΣ)√
2trΣ2 + 4N1µ′Σµ

}]
+ o(1)

= etr

{
−(it)trΣ√

2trΣ2 + 4N1µ′Σµ

} ∫
z1

(2π)−p/2 × etr

{
− 1

2

(
Ip

− 2(it)Σ√
2trΣ2 + 4N1µ′Σµ

)
z1z

′
1 +

2(it)
√

N1µ
′Σ1/2z1√

2trΣ2 + 4N1µ′Σµ

}
dz1 + o(1).

Further, we consider the following transformation

z∗
1 =

(
Ip −

2(it)Σ√
2trΣ2 + 4N1µ′Σµ

)1/2

z1

−
(

Ip −
2(it)Σ√

2trΣ2 + 4N1µ′Σµ

)−1/2
2(it)√

2trΣ2 + 4N1µ′Σµ

√
N1Σ

1/2µ,

17



whose Jacobian is given by
∣∣∣Ip − 2(it)Σ/

√
2trΣ2 + 4N1µ′Σµ

∣∣∣−1/2

. Also, un-

der (A.2),

log

∣∣∣∣∣Ip −
2(it)Σ√

2trΣ2 + 4N1µ′Σµ

∣∣∣∣∣
−1/2

=
(it)trΣ√

2trΣ2 + 4N1µ′Σµ
+

(it)2trΣ2

2trΣ2 + 4N1µ′Σµ
+ o(1).

Therefore,∣∣∣∣∣Ip −
2(it)Σ√

2trΣ2 + 4N1µ′Σµ

∣∣∣∣∣
−1/2

= exp

(
(it)trΣ√

2trΣ2 + 4N1µ′Σµ
+

(it)2trΣ2

2trΣ2 + 4N1µ′Σµ

)
+ o(1),

and then we obtain the expansion of the characteristic function

C(t) = exp

(
− (it)trΣ√

2trΣ2 + 4N1µ′Σµ

)
exp

(
(it)trΣ√

2trΣ2 + 4N1µ′Σµ

+
(it)2trΣ2

2trΣ2 + 4N1µ′Σµ

)
exp

(
(it)22N1µ

′Σµ√
2trΣ2 + 4N1µ′Σµ

)
+ o(1)

= exp

{
(it)2

2

}
+ o(1).

Therefore, T ∗
D/σ∗

D −→d N(0, 1).

A.4. Proof of Theorem 2.4.

Let

∆T = T̃D − T ∗
D =

√
p
N1µ

′µ

trΣ
,

then the power of T̃D with significance level α can be expressed as:

Powerα(T̃D, δ) = P (T ∗
D > σDzα − ∆T | H

L(δ)
1 ).
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Then, by the results of Theorem 2.3,

lim
p→∞

Powerα(T̃D, δ) = lim
p→∞

Φ

(
∆T − σDzα

σ∗
D

)
.

By the assumption (A.2), Powerα(T̃D, δ) → 1 when 1/2 < δ < 1, since

∆T → ∞, and Powerα(T̃D, δ) → α when 0 < δ < 1/2, since ∆T → 0 and
σ∗

D → σD. When δ = 1/2, we obtain

lim
p→∞

Powerα(T̃D, δ) = Φ

(
∆T

σD

− zα

)
= Φ

(
N1µ

′µ√
2trΣ2

− zα

)
.

Appendix B.

B.1. Proof of Lemma A.1.

The characteristic function of T̃D/σ̂D is calculated as

C(t) = E

[
exp

(
(it)T̃D

σ̂D

)]
= E

[
exp

{
(it)√
2pa2

(N1y
′y − trS)

}
g(S, y)

]
,

where

g(S, y) = 1 − (it)w

2n1a2

√
2pa2

(N1y
′y − trS) + Op(n

−2
1 ).

Let z1 be a p-dimensional random vector distributed as Np(0, Ip), and Z2 be
a p×n1 random matrix such that vec(Z2) is distributed as Npn1(0, Ip ⊗ In1).
Then we note that

N1y
′y = tr(Σ1/2z1z

′
1Σ

1/2), n1S = Σ1/2Z2Z
′
2Σ

1/2,

and we can rewrite the characteristic function as

C(t) = E

[
exp

{
(it)√
2pa2

(
tr(Σ1/2z1z

′
1Σ

1/2) − tr(Σ1/2Z2Z
′
2Σ

1/2)

n1

)}
g(S, y)

]
=

∫ ∫
(2π)−(n1+1)p/2etr

{
−1

2

(
Ip −

√
2(it)

√
pa2

Σ

)
z1z

′
1

}

×etr

{
−1

2

(
Ip +

1

n1
√

pa2

Σ

)
Z2Z

′
2

}
g(S, y)dz1dZ2.
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Here, we consider following transformations

z1 =

(
Ip −

√
2(it)

√
pa2

Σ

)−1/2

z∗
1, Z2 =

(
Ip +

√
2(it)

n1
√

pa2

Σ

)−n1/2

Z∗
2 ,

respectively, and the Jacobians for these transformations are∣∣∣∣∣Ip −
√

2(it)
√

pa2

Σ

∣∣∣∣∣
−1/2

,

∣∣∣∣∣Ip +

√
2(it)

n1
√

pa2

Σ

∣∣∣∣∣
−n1/2

.

Therefore the characteristic function can be written as

C(t) =

∣∣∣∣∣Ip −
√

2(it)
√

pa2

Σ

∣∣∣∣∣
−1/2 ∣∣∣∣∣Ip +

√
2(it)

n1
√

pa2

Σ

∣∣∣∣∣
−n1/2

×
∫ ∫

(2π)−(n1+1)p/2etr

{
−1

2
z∗

1z
∗′
1 − 1

2
Z∗

2Z
∗′
2

}
g(S, y)dz∗

1dZ
∗
2

=

∣∣∣∣∣Ip −
√

2(it)
√

pa2

Σ

∣∣∣∣∣
−1/2 ∣∣∣∣∣Ip +

√
2(it)

n1
√

pa2

Σ

∣∣∣∣∣
−n1/2

Ez∗
1,Z∗

2
[g(S, y)].

B.2. Proof of Lemma A.3

Let z(α) be the upper 100α percentile of T̃D/σ̂D. We further expand z(α)
as

z(α) = u +
1
√

p
q1(u) +

1

p
q2(u) +

1

n1

q3(u).

Now, from the result of Theorem 2.1, we derive the following expansion

1 − α = P

(
T̃D

σ̂D

≤ z(α)

)

= Φ(z(α)) − φ(z(α))

[
1
√

p
c3h2(z(α))

+
1

p
{c4h3(z(α)) + c6h5(z(α))} +

1

n1

c2h1(z(α))

]
+ O(p−3/2).
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Then, by Taylor expansion of Φ, φ and hi’s around u, we obtain

P

(
T̃D

σ̂D

≤ z(α)

)
= Φ(u) − φ(u)

[
1
√

p
{q1(u) − c3h2(u)}

+
1

p
{q2(u) − c4h3(u) − c6h5(u)} +

1

n1

{q3(u) − c2h1(u)}
]

+ O(p−3/2).

Therefore, we have

q1(u) =

√
2a3

3
√

a3
2

(u2 − 1),

q2(u) =
a4

2a2
2

u(u2 − 3) − 2a2
3

9a3
2

u(2u2 − 5),

q3(u) =
u

2
.
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Table 1: ASL in the case of k = 3 and β1 = β2 = β3 = 1 (i = 1, 2, 3).
Ni = 10(1 + i) Ni = 20(1 + i)

p α zα t ASL1
α ASL2

α t ASL1
α ASL2

α

0.01 2.326 2.756 0.022 0.012 2.682 0.020 0.010
60 0.05 1.645 1.835 0.067 0.052 1.788 0.063 0.051

0.1 1.282 1.374 0.114 0.102 1.341 0.109 0.101
0.01 2.326 2.691 0.020 0.011 2.623 0.018 0.010

90 0.05 1.645 1.807 0.065 0.052 1.768 0.061 0.051
0.1 1.282 1.366 0.113 0.102 1.331 0.108 0.100
0.01 2.326 2.661 0.019 0.011 2.581 0.017 0.010

120 0.05 1.645 1.796 0.064 0.052 1.755 0.061 0.051
0.1 1.282 1.362 0.113 0.102 1.334 0.108 0.101
0.01 2.326 2.625 0.018 0.011 2.565 0.017 0.010

150 0.05 1.645 1.783 0.063 0.052 1.746 0.059 0.051
0.1 1.282 1.355 0.111 0.102 1.326 0.107 0.100
0.01 2.326 2.591 0.017 0.011 2.541 0.016 0.010

200 0.05 1.645 1.767 0.062 0.051 1.737 0.059 0.051
0.1 1.282 1.350 0.111 0.101 1.326 0.107 0.101

Table 2: ASL in the case of k = 3, β1 = 1 and β2 = β3 = −1/2 (i = 1, 2, 3).
Ni = 10(1 + i) Ni = 20(1 + i)

p α zα t ASL1
α ASL2

α t ASL1
α ASL2

α

0.01 2.326 2.728 0.021 0.011 2.661 0.019 0.011
60 0.05 1.645 1.824 0.066 0.052 1.782 0.062 0.051

0.1 1.282 1.371 0.114 0.102 1.343 0.110 0.101
0.01 2.326 2.658 0.019 0.011 2.612 0.018 0.011

90 0.05 1.645 1.790 0.063 0.051 1.762 0.061 0.051
0.1 1.282 1.349 0.111 0.100 1.336 0.108 0.101
0.01 2.326 2.630 0.018 0.011 2.583 0.017 0.011

120 0.05 1.645 1.787 0.064 0.052 1.743 0.059 0.050
0.1 1.282 1.363 0.113 0.103 1.323 0.107 0.100
0.01 2.326 2.602 0.017 0.011 2.542 0.016 0.010

150 0.05 1.645 1.775 0.063 0.052 1.740 0.059 0.051
0.1 1.282 1.354 0.111 0.102 1.332 0.108 0.102
0.01 2.326 2.583 0.017 0.011 2.505 0.015 0.010

200 0.05 1.645 1.757 0.061 0.051 1.725 0.058 0.050
0.1 1.282 1.340 0.109 0.100 1.323 0.107 0.100
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Table 3: ASL in the case of k = 4 and β1 = β2 = β3 = β4 = 1 (i = 1, . . . , 4).
Ni = 10(1 + i) Ni = 20(1 + i)

p α zα t ASL1
α ASL2

α t ASL1
α ASL2

α

0.01 2.326 2.731 0.021 0.012 2.659 0.019 0.010
60 0.05 1.645 1.821 0.066 0.052 1.780 0.063 0.051

0.1 1.282 1.371 0.113 0.102 1.339 0.109 0.101
0.01 2.326 2.668 0.020 0.011 2.611 0.018 0.011

90 0.05 1.645 1.799 0.065 0.052 1.758 0.061 0.050
0.1 1.282 1.363 0.113 0.102 1.331 0.108 0.100
0.01 2.326 2.632 0.019 0.011 2.562 0.016 0.010

120 0.05 1.645 1.785 0.063 0.052 1.747 0.060 0.050
0.1 1.282 1.355 0.112 0.101 1.330 0.108 0.101
0.01 2.326 2.617 0.018 0.011 2.546 0.016 0.010

150 0.05 1.645 1.775 0.062 0.051 1.741 0.059 0.051
0.1 1.282 1.352 0.111 0.102 1.324 0.107 0.100
0.01 2.326 2.584 0.017 0.011 2.519 0.015 0.010

200 0.05 1.645 1.766 0.062 0.051 1.730 0.058 0.050
0.1 1.282 1.346 0.110 0.101 1.323 0.107 0.100

Table 4: ASL in the case of k = 4, β1 = β3 = 1 and β2 = β4 = −1 (i = 1, . . . , 4).
Ni = 10(1 + i) Ni = 20(1 + i)

p α zα t ASL1
α ASL2

α t ASL1
α ASL2

α

0.01 2.326 2.733 0.021 0.012 2.669 0.019 0.011
60 0.05 1.645 1.821 0.066 0.052 1.783 0.063 0.051

0.1 1.282 1.368 0.113 0.102 1.342 0.110 0.101
0.01 2.326 2.671 0.019 0.011 2.605 0.017 0.010

90 0.05 1.645 1.799 0.064 0.052 1.759 0.061 0.050
0.1 1.282 1.362 0.113 0.102 1.333 0.108 0.101
0.01 2.326 2.639 0.019 0.011 2.576 0.017 0.010

120 0.05 1.645 1.791 0.064 0.052 1.749 0.060 0.051
0.1 1.282 1.360 0.112 0.102 1.329 0.108 0.100
0.01 2.326 2.609 0.018 0.011 2.545 0.016 0.010

150 0.05 1.645 1.773 0.062 0.051 1.743 0.060 0.051
0.1 1.282 1.350 0.111 0.101 1.331 0.108 0.101
0.01 2.326 2.581 0.017 0.011 2.525 0.015 0.010

200 0.05 1.645 1.765 0.062 0.051 1.730 0.058 0.050
0.1 1.282 1.348 0.111 0.101 1.322 0.107 0.100
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Table 5: Empirical powers with Σ1 = I, Σ2 = (0.5|i−j|) and ∆ = 5.
N1 = 10, N2 = 20 N1 = 20, N2 = 30

p α S SD AY NHSP S SD AY NHSP
0.01 0.430 0.426 0.842 0.586 0.932 0.880 0.965 0.919

50 0.05 0.551 0.623 0.863 0.769 0.965 0.952 0.975 0.973
0.1 0.621 0.728 0.877 0.847 0.976 0.974 0.981 0.987
0.01 0.201 0.106 0.729 0.391 0.628 0.527 0.931 0.783

100 0.05 0.307 0.280 0.751 0.606 0.751 0.761 0.946 0.910
0.1 0.380 0.422 0.769 0.718 0.811 0.859 0.955 0.950
0.01 0.131 0.025 0.628 0.287 0.407 0.231 0.894 0.659

150 0.05 0.217 0.116 0.652 0.497 0.559 0.517 0.912 0.839
0.1 0.281 0.231 0.668 0.621 0.642 0.686 0.924 0.904
0.01 0.100 0.006 0.552 0.231 0.286 0.088 0.857 0.561

200 0.05 0.175 0.048 0.573 0.433 0.429 0.314 0.877 0.772
0.1 0.233 0.126 0.589 0.561 0.519 0.507 0.890 0.856

Table 6: Empirical powers with Σ1 = I, Σ2 = (0.5|i−j|) and ∆ = 10.
N1 = 10, N2 = 20 N1 = 20, N2 = 30

p α S SD AY NHSP S SD AY NHSP
0.01 0.700 0.883 0.971 0.953 0.996 0.999 0.998 1.000

50 0.05 0.793 0.956 0.980 0.986 0.999 1.000 0.999 1.000
0.1 0.837 0.977 0.985 0.994 0.999 1.000 1.000 1.000
0.01 0.384 0.485 0.927 0.848 0.905 0.977 0.996 0.997

100 0.05 0.509 0.735 0.942 0.942 0.950 0.995 0.998 1.000
0.1 0.582 0.845 0.953 0.969 0.967 0.999 0.999 1.000
0.01 0.251 0.186 0.873 0.743 0.733 0.860 0.991 0.988

150 0.05 0.363 0.459 0.895 0.887 0.837 0.967 0.995 0.998
0.1 0.438 0.641 0.909 0.936 0.884 0.989 0.996 0.999
0.01 0.182 0.058 0.811 0.650 0.578 0.639 0.984 0.971

200 0.05 0.284 0.250 0.836 0.828 0.715 0.888 0.989 0.993
0.1 0.355 0.444 0.854 0.896 0.783 0.956 0.993 0.997
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Table 7: Empirical powers with Σ1 = (0.2|i−j|), Σ2 = (0.5|i−j|) and ∆ = 5.
N1 = 10, N2 = 20 N1 = 20, N2 = 30

p α S SD AY NHSP S SD AY NHSP
0.01 0.425 0.418 0.817 0.533 0.913 0.853 0.954 0.882

50 0.05 0.546 0.603 0.838 0.721 0.953 0.935 0.965 0.957
0.1 0.618 0.704 0.854 0.810 0.968 0.963 0.972 0.978
0.01 0.207 0.116 0.709 0.354 0.612 0.509 0.915 0.729

100 0.05 0.311 0.285 0.731 0.562 0.738 0.737 0.931 0.878
0.1 0.382 0.420 0.746 0.677 0.801 0.837 0.941 0.928
0.01 0.134 0.030 0.619 0.261 0.403 0.238 0.878 0.605

150 0.05 0.221 0.127 0.641 0.462 0.551 0.504 0.896 0.801
0.1 0.284 0.239 0.656 0.587 0.635 0.667 0.909 0.876
0.01 0.102 0.008 0.540 0.208 0.282 0.094 0.841 0.510

200 0.05 0.177 0.053 0.560 0.398 0.426 0.315 0.861 0.731
0.1 0.236 0.132 0.575 0.522 0.516 0.500 0.875 0.824

Table 8: Empirical powers with Σ1 = (0.2|i−j|), Σ2 = (0.5|i−j|) and ∆ = 10.
N1 = 10, N2 = 20 N1 = 20, N2 = 30

p α S SD AY NHSP S SD AY NHSP
0.01 0.705 0.861 0.960 0.925 0.995 0.999 0.997 0.999

50 0.05 0.796 0.940 0.971 0.974 0.998 1.000 0.998 1.000
0.1 0.841 0.966 0.977 0.988 0.999 1.000 0.999 1.000
0.01 0.393 0.475 0.908 0.799 0.901 0.965 0.993 0.993

100 0.05 0.518 0.715 0.926 0.915 0.948 0.992 0.996 0.999
0.1 0.592 0.825 0.938 0.953 0.966 0.997 0.997 0.999
0.01 0.262 0.195 0.851 0.686 0.737 0.837 0.986 0.976

150 0.05 0.376 0.455 0.874 0.848 0.839 0.955 0.991 0.995
0.1 0.452 0.628 0.889 0.910 0.884 0.982 0.994 0.998
0.01 0.189 0.066 0.795 0.596 0.583 0.621 0.977 0.951

200 0.05 0.293 0.260 0.820 0.789 0.720 0.869 0.984 0.987
0.1 0.364 0.444 0.838 0.867 0.786 0.943 0.988 0.994
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Table 9: ASL in the case of Σ1 = I, Σ2 = (0.5|i−j|).
N1 = 10, N2 = 20

p α S SD AY(2.5) AY(5) NHSP
0.01 0.087 0.014 0.085 0.015 0.018

50 0.05 0.152 0.045 0.103 0.024 0.059
0.1 0.203 0.078 0.119 0.034 0.108
0.01 0.052 0.003 0.099 0.029 0.016

100 0.05 0.101 0.016 0.114 0.040 0.057
0.1 0.142 0.037 0.126 0.052 0.105
0.01 0.042 0.001 0.097 0.035 0.016

150 0.05 0.087 0.006 0.109 0.047 0.057
0.1 0.126 0.019 0.118 0.057 0.105
0.01 0.041 0.000 0.090 0.036 0.015

200 0.05 0.084 0.002 0.100 0.047 0.055
0.1 0.121 0.010 0.108 0.056 0.103

Table 10: ASL in the case of Σ1 = I, Σ2 = (0.5|i−j|).
N1 = 20, N2 = 30

p α S SD AY(2.5) AY(5) NHSP
0.01 0.298 0.009 0.032 0.001 0.011

50 0.05 0.419 0.037 0.047 0.002 0.052
0.1 0.497 0.073 0.062 0.004 0.102
0.01 0.097 0.002 0.064 0.005 0.012

100 0.05 0.181 0.014 0.083 0.010 0.052
0.1 0.246 0.037 0.102 0.017 0.101
0.01 0.062 0.000 0.085 0.011 0.012

150 0.05 0.128 0.005 0.105 0.020 0.053
0.1 0.185 0.020 0.122 0.030 0.103
0.01 0.048 0.000 0.095 0.017 0.011

200 0.05 0.106 0.001 0.114 0.028 0.052
0.1 0.158 0.011 0.130 0.039 0.102
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Table 11: ASL in the case of Σ1 = (0.2|i−j|), Σ2 = (0.5|i−j|).
N1 = 10, N2 = 20

p α S SD AY(2.5) AY(5) NHSP
0.01 0.083 0.016 0.093 0.020 0.017

50 0.05 0.144 0.047 0.111 0.030 0.058
0.1 0.192 0.082 0.127 0.041 0.105
0.01 0.050 0.004 0.111 0.036 0.016

100 0.05 0.099 0.019 0.126 0.049 0.056
0.1 0.142 0.043 0.138 0.061 0.106
0.01 0.043 0.001 0.110 0.044 0.017

150 0.05 0.086 0.007 0.123 0.057 0.058
0.1 0.124 0.022 0.132 0.068 0.106
0.01 0.039 0.000 0.101 0.045 0.015

200 0.05 0.081 0.003 0.112 0.056 0.055
0.1 0.117 0.012 0.120 0.066 0.103

Table 12: ASL in the case of Σ1 = (0.2|i−j|), Σ2 = (0.5|i−j|).
N1 = 20, N2 = 30

p α S SD AY(2.5) AY(5) NHSP
0.01 0.265 0.012 0.039 0.002 0.012

50 0.05 0.381 0.042 0.057 0.004 0.053
0.1 0.456 0.079 0.073 0.007 0.103
0.01 0.092 0.003 0.075 0.008 0.011

100 0.05 0.170 0.017 0.096 0.015 0.052
0.1 0.233 0.043 0.114 0.023 0.102
0.01 0.058 0.001 0.095 0.016 0.012

150 0.05 0.123 0.008 0.116 0.026 0.052
0.1 0.178 0.024 0.133 0.037 0.101
0.01 0.046 0.000 0.107 0.024 0.012

200 0.05 0.102 0.003 0.127 0.036 0.051
0.1 0.152 0.014 0.143 0.048 0.102
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