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Abstract

Hotelling (1936) proposed canonical correlation analysis (CCA) as a way to find the linear re-

lationship between a pair of random vectors. However, CCA can not find nonlinear relationships

between them since the method maximizes the correlation between linear combinations of the vec-

tors. In order to find a nonlinear relationship, we convert the vectors through some conversion

functions like a kernel functions. Then we find the nonlinear relationship in the original vectors

through the conversion functions. However, this method which is used some conversion functions

has a critical issue in that the maximized correlation occasionally becomes 1 even if there is no

relationship between the random vectors (Hardoon et al., 2004). Akaho (2000) proposed a penalized

method that avoids this issue when the kernel functions are used for conversion. In this method,

however, methods have not been proposed for optimizing the penalty and parameters, even though

the results heavily depend on these parameters. In this paper, we propose an optimization method

for the penalty and other parameters, based on the cross-validation method.

Key words: Canonical Correlation Analysis; Cross-Validation; Nonlinear Relationship; Penalized

Method.

1. Introduction

Let y and x be q0- and p0-dimensional random vectors with E[y] = 0q0 and E[x] = 0p0 , where

0ℓ is an ℓ-dimensional vector of zeros. As a method for determining if there is a linear relationship

between y and x, Hotelling (1936) proposed canonical correlation analysis (CCA). This method is

formulated as follows:

max
a∈Rq0 ,b∈Rp0

a′Σyxb s.t. a′Σyya = 1 and b′Σxxb = 1, (1.1)

where Σyx = Cov(y,x), Σyy = Var(y), and Σxx = Var(x); and we assume det(Σyy) ̸= 0 and

det(Σxx) ̸= 0. Using the Lagrange method of undetermined multipliers, the solutions of a and b are

equivalent to the eigenvectors of Σ−1
yy ΣyxΣ

−1
xxΣ

′
yx and Σ−1

xxΣ
′
yxΣ

−1
yy Σyx, respectively. More details of

CCA can be found in Muirhead (1982), Gittins (1985), Srivastava (2002), and Weenink (2003). This

∗Corresponding author, E-mail: inagai@kwansei.ac.jp

1



method is currently being used for data analysis (see, e.g., Doeswijk, et al., 2011). CCA, however, can

not find nonlinear relationships between y and x, since the maximization term in (1.1) is equivalent

to Cov(a′y, b′x), which evaluates the linear relationship between linear combinations a′y and b′x.

A similar problem also occurs in the ordinary linear regression model.

In order to find a nonlinear relationship between y and x, we consider converting them by using

some functions like a kernel functions. CCA can then find a nonlinear relationship between the

converted y and x. This method is referred to as nonlinear canonical correlation analysis (NCCA),

and it is discussed in Section 2. Hardoon, et al. (2004) pointed out that NCCA has a critical issue

which is shown in Section 2.

Using the same idea as is used in the penalized nonlinear regression model, Akaho (2000) proposed

a penalized NCCA when the kernel functions are used for the conversion functions. We will refer to

the penalized NCCA as PNCCA even when it uses any conversion functions instead of the kernel

functions. In PNCCA, no criteria have yet been developed for for optimizing the penalty and other

parameters. Because of this, it is difficult to know how to evaluate the result of PNCCA. In particular,

determining how to optimize the penalty and other parameters is important, since the result of

PNCCA depends heavily on these parameters.

We propose a method based on cross-validation (CV), to optimize the penalty and other param-

eters in the PNCCA. Details of the proposed optimization method are presented in Section 3.

The remainder of the present paper is organized as follows: In Section 2, we present more details

of CCA, NCCA, and PNCCA. In Section 3, we propose the CV method for optimizing several

parameters in PNCCA. In Section 4, we use numerical studies to compare CCA, NCCA, and PNCCA

based on the optimized parameters. In Section 5, we present our conclusions. Using this CV method,

we can select the variables in y and x; this is illustrated in the Appendix.

2. CCA, NCCA, and PNCCA

In this section, we discuss CCA, NCCA, and PNCCA. We first discuss CCA, which is expressed

as (1.1). The Lagrange method of undetermined multipliers L(θa, θb,a, b), where θa and θb are

nonnegative undetermined constant terms, is then usually applied to (1.1). We solve the resulting

simultaneous equations: ∂L(θa, θb,a, b)/(∂a)|a=ã = 0q0 , ∂L(θa, θb,a, b)/(∂b)|b=b̃ = 0p0 , ∂L(θa, θb,a,
b)/(∂θa)|θa=θ̃a

= 0, and ∂L(θa, θb,a, b)/(∂θb)|θb=θ̃b
= 0. Thus, CCA is the same as solving the

following eigenvalue problem:

Σ−1
xxΣ

′
yxΣ

−1
yy Σyxb̃ = θ̃2b̃, (2.1)

and ã = Σ−1
yy Σyxb̃/θ̃, where θ̃ = ã′Σyxb̃ > 0; note that θ̃ = θ̃a = θ̃b. Hence, solving the eigenvalue

problem in (2.1) and using the largest eigenvalue and the corresponding eigenvector, we can solve
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the maximization problem in (1.1) under several conditions. More details of CCA can be found in

e.g., Muirhead (1982).

Since CCA can not find a nonlinear relationship between y and x, we consider using NCCA on

converted y and x. Let z = ϕ(y) and w = φ(x), where ϕ : Rq0 → Rq1 and φ : Rp0 → Rp1 , and

suppose that E[z] = 0q1 and E[w] = 0p1 . The nonlinear relationship between y and x can be found

through the conversion functions ϕ(·) and φ(·) by using CCA on z and w instead of on y and x.

However, Hardoon, et al. (2004) pointed out that, even if there is no relationship between y and x,

in some situations, NCCA can encounter the following problem:

1 = max
c∈Rq1 ,d∈Rp1

c′Σzwd s.t. c′Σzzc = 1 and d′Σwwd = 1, (2.2)

where Σzw = Cov(z,w), Σzz = Var(z), and Σww = Var(w).

In order to avoid this problem, Akaho (2000) proposed PNCCA when the kernel functions are

used for conversion functions. This is the primary method we consider in this paper. As with an

ordinary penalized estimator in the nonlinear regression model, the penalty term in PNCCA is set

to shrink the norms of c and d. If there exists ϕ−1 such that y = ϕ−1(z), then, since we can obtain

w2 = ϕ
−1(φ(x)), we can use y and w2 instead of z and w. Thus, in order to simplify, we consider

using the PNCCA with y and w = φ(x), and we assume E[w] = 0p1 and det(Σww) ̸= 0. Since, in

our setting, only x is converted, the penalty term is set to shrink the norm of d. PNCCA is then

expressed as follows:

max
a∈Rq0 ,d∈Rp1

a′Σywd s.t. a′Σyya = 1 and d′(Σww + λP )d = 1, (2.3)

where Σyw = Cov(y,w), λ is a nonnegative penalty parameter, and P is a known p1×p1 nonnegative

definite matrix. Note that λd′Pd is the penalty term in (2.3), and it is always nonnegative for any

d ∈ Rp1 . The same as for CCA in (1.1), in order to solve the maximization problem under various

conditions in (2.3), we use the Lagrange method of undetermined multipliers:

LP (ηa, ηd,a,d, λ|P ) = a′Σywd− ηa
2
(a′Σyya− 1)− ηd

2
{d′(Σww + λP )d− 1} ,

where ηa and ηd are undetermined nonnegative constants. For fixed λ, solving the simultaneous equa-

tions ∂LP (ηa, ηd,a,d, λ|P )/(∂a)|a=ãλ
= 0q0 , ∂LP (ηa, ηd,a,d, λ|P )/(∂d)|d=d̃λ

= 0p1 , ∂LP (ηa, ηd,a,

d, λ|P )/(∂ηa)|ηa=η̃a,λ = 0, and ∂LP (ηa, ηd,a,d, λ|P )/(∂ηd)|ηd=η̃d,λ = 0, coincides with the following

eigenvalue problem:

(Σww + λP )−1Σ′
ywΣ

−1
yy Σyxd̃λ = η̃2λd̃λ,

and ãλ = Σ−1
yy Σywd̃λ/η̃λ, where η̃λ = ã′

λΣywd̃λ > 0; note that η̃λ = η̃a,λ = η̃d,λ. Thus, when the

penalty parameter λ is given, the largest eigenvalue and the corresponding eigenvector of the above

eigenvalue problem solve (2.3).
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However, although it is important, there are no known optimization methods for λ. In the next

section, we propose a CV method for optimizing λ and some of the parameters in the conversion

function φ(·).

3. Proposed Method

In this section, we propose a CV method for optimizing the penalty and other parameters in

PNCCA. Since Σww, Σyw, and Σyy are unknown matrices, we use their unbiased estimators to

estimate η̃λ, ãλ, and d̃λ. Let Sww, Syw, and Syy be the unbiased estimators for Σww, Σyw, and Σyy,

respectively, based on the sample {yi,xi}i=1,...,n and wi = φ(xi). Let η̂λ (> 0), âλ, and d̂λ be the

estimators of η̃λ, ãλ, and d̃λ, respectively. Then η̂2λ and d̂λ are derived as the largest eigenvalue and

the corresponding eigenvector of (Sww + λP )−1S′
ywS

−1
yy Syw, and âλ = S−1

yy Sywd̂λ/η̂λ.

We consider creating an objective function in order to propose a criterion for optimizing several

of the parameters in the PNCCA. Recall that âλ and d̂λ are derived from {yi.xi}i=1,...,n. Thus, in

order to evaluate âλ and d̂λ, we consider the following evaluation function:

R∗ = E[â′
λΣywd̂λ]. (3.1)

Maximizing the above function, we can optimize the parameters in the PNCCA. However, Σyw is an

unknown covariance matrix. We therefore consider using an estimator of Σyw that does not depend

on {yi,xi}i=1,...,n in order to estimate R∗ in (3.1).

Let y∗ and x∗ be new variables that are obtained independently with {yi,xi}i=1,...,n, and let Sy∗w∗

be the covariance matrix between y∗ and w∗ = φ(x∗). Then Sy∗w∗ is an estimator of Σyw. Based on

Sy∗w∗ , the evaluation function R∗ in (3.1) is estimated by using the average of the following value:

R̂∗ = â′
λSy∗w∗d̂λ. (3.2)

Nevertheless, these evaluation functions R∗ and R̂∗ in (3.1) and (3.2) can not be used directly for

optimizing the parameters in the PNCCA since y∗ and w∗ are not obtained. We thus use the CV

method to optimize several parameters in the PNCCA.

Let V = (v1, . . . ,vn)
′, where vi = (y′

i,w
′
i)
′, (i = 1, . . . , n) and wi = φ(xi). The essence of the

proposed method is to obtain a matrix that is an alternative to Sy∗w∗ . The ordinary CV method,

which is used for selecting variables in the linear regression model, is based on V [−i], which is

obtained by deleting v′i from V for each i. When we use the ordinary CV method, we can not obtain

an evaluation function to replace R̂∗ in (3.2). This is why, in the ordinary CV method, âλ and d̂λ

are derived from V [−i]. However, an alternative to Sy∗w∗ can not be obtained since it can not obtain

sufficient information from only one sample vi. Hence the ordinary CV method can not be used to

replace R̂∗.
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We now use vi = (y′
i,w

′
i)
′ and vj = (y′

j,w
′
j)

′, (i ̸= j) to derive an alternative to Sy∗w∗ , which can

be defined as

Ŝ[i,j] =
(yi − yj)(wj −wi)

′

4
, (i = 1, . . . , n; j = 1, . . . , n; i ̸= j),

since (yi + yj)/2 and (wi + wj)/2 are the sample means based on vi and vj, (i ̸= j), and the

sample covariance matrix between yi and wj is derived as (yi − (yi + yj)/2)(wj − (wi + wj)/2)
′.

Note that Ŝ[i,j] = Ŝ[j,i] for any i and j, i ̸= j. Let V [−i,−j], (i = 1, . . . , n; j = 1, . . . , n; i ̸= j) be

obtained by deleting v′i and v
′
j, (i ̸= j) from V . Furthermore, let S

[−i,−j]
ww , S

[−i,−j]
yw , and S

[−i,−j]
yy be

derived by using V [−i,−j] and be based on the ordinary estimation method for covariance matrices.

Then, if λ is given, d̂
[−i,−j]
λ is derived as the eigenvector that corresponds to the largest eigenvalue of

(S
[−i,−j]
ww +λP )−1S

[−i,−j]
yw

′
S

[−i,−j]
yy

−1
S

[−i,−j]
yw . Using d̂

[−i,−j]
λ and the largest eigenvalue (θ̂

[−i,−j]
λ )2, â

[−i,−j]
λ

is obtained as â
[−i,−j]
λ = S

[−i,−j]
yy

−1
S

[−i,−j]
yw d̂

[−i,−j]
λ /θ̂

[−i,−j]
λ , where θ̂

[−i,−j]
λ > 0. Note that â

[−i,−j]
λ and

d̂
[−i,−j]
λ are derived from V [−i,−j], and Ŝ[i,j] is derived from vi and vj, (i ̸= j), which are not used for

â
[−i,−j]
λ and d̂

[−i,−j]
λ . In order to optimize the penalty parameter λ and the other parameters, â

[−i,−j]
λ

and d̂
[−i,−j]
λ for each i and j, we evaluate T =

∑
i̸=j |cij| where

cij = â
[−i,−j]′

λ Ŝ[i,j]d̂
[−i,−j]
λ , (i = 1, . . . , n; j = 1, . . . , n; i ̸= j). (3.3)

Thus, for example, the penalty parameter λ in the PNCCA can be optimized as λ̂ = argmaxλ≥0 T .

Let α and β be the independent parameters in the PNCCA other than the penalty parameter λ.

Several parameters are optimized in the following algorithm:

1. Given α and β, we optimize λ̂, which is regarded as λ̂(α, β).

2. Given β, we obtain λ̂(α̂, β) by maximizing â′
λ̂(α,β)

Sywb̂λ̂(α,β) by changing α.

3. We obtain λ̂(α̂, β̂) by maximizing â′
λ̂(α̂,β)

Sywb̂λ̂(α̂,β) by changing β.

If we can use some other optimization method for two or more parameters, we can combine steps 2

and 3. Note that we can repeat this algorithm when we need to optimize more than two parameters.

4. Numerical Study

In this section, we use numerical simulations to compare CCA, NCCA, and PNCCA optimized

with the proposed CV method. Note that NCCA can be defined by the same form as PNCCA in

(2.3) and fixed λ = 0. Let ∆r(ρ) be an r × r matrix whose (i, j)th element is derived as ρ|i−j|. The

n× p0 matrix X is generated from X = U∆p0(ρx)
1/2, where U is an n× p0 matrix whose elements

were generated independently from the standard normal distribution. Then, y1, . . . ,yn are derived

5



as follows:

(A) yi = δx′
ixi1q0 + εi·q0 ,

(B) yi = δ(x′
ixi/max(x2

ij), sin(2x
′
ixi), cos(2x

′
ixi))

′ + εi·3,

(C) yi = δ(x′
ixi/max(x2

ij), sin(2x
′
ixi), cos(2x

′
ixi), exp(−x′

ixi/4))
′ + εi·4,

where xi = (xi1, . . . , xip0)
′ is the ith row of the standardized X, and εi·j is generated independently

from Nj(0j,∆j(0.5)), which is a j-dimensional multivariate normal distribution with mean 0j and

covariance matrix ∆j(0.5).

Both the NCCA and PNCCA methods use an n × p0 matrix W , whose (i, j)th element wij is

converted as wij = exp{−x2
ij/(2h)}, and then standardized. We choose h by comparing the maxi-

mized correlation for each value {0.05, 0.1, 0.5, 1, 2, 5} in each repetition. In PNCCA, the nonnegative

penalty matrix P is set to P = K ′K, where K = (k1, . . . ,kp0−2)
′ is a (p0 − 2) × p0 matrix and

kj = (0′
j−1, 1,−2, 1,0′

p0−j−2)
′, (j = 1, . . . , p0 − 2). (More details of K can be found in Green and

Silverman (1994).) Since the ‘argmax’ operator is equivalent to the ‘argmin’ operator with the sign

reversed, we select λ by using the Matlab ‘fminbnd’ function which is the Matlab ‘fminsearch’ in a

specified region, and we restrict the region to 1 to exp(20) in order to shorten the computation time.

Furthermore, in order to reduce computational tasks, we calculate cij in (3.3) for i = 1, . . . , n − 1

and j = i+ 1 for use in the CV method.

In order to derive R∗ in (3.1), we set n = 10, 000 and generate X for each p0 and ρx, and

standardize them. Then, from each transformation function and each parameter δ and q0, we obtain

Y , which is also standardized. Note that q0 = 3 when the transformation function is in (B), and

q0 = 4 when the transformation function is in (C). In CCA, Σy∗y∗ , Σy∗x∗ , and Σx∗x∗ can be derived as

the sample variance matrix of the standardized Y , the sample covariance matrix of the standardized

Y and X, and the sample variance matrix of the standardized X, respectively. In the NCCA and

PNCCA methods, we convert X as above for each h and standardize the converted values. Then,

Σy∗w∗ and Σw∗w∗ can be derived as the sample covariance matrix of standardized Y andW and the

sample variance matrix of the standardizedW , respectively. Using these matrices, we evaluated the

results of each method.

In order to evaluate the methods, we X and generated Y for 1, 000 repetitions. We used the

standardized X, Y , and W in each repetition.

For the CCA method, for each repetition, we obtained the estimator of the covariance matrix Σyx,

that of the variance matrices Σyy and Σxx as Syx, Syy, and Sxx, respectively. On the other hand,

for the NCCA and PNCC methods, for each repetition, we obtained the estimator of the covariance

matrix Σyw, that of the variance matrices Σyy and Σww as Syw, Syy, and Sww, respectively.

For each repetition with the CCA method (1.1), we calculated the maximized correlation under

certain conditions by using Syx, Syy, and Sxx instead of Σyx, Σyy, and Σxx, respectively. We
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denote the maximized correlation as θ̂2, the eigenvector that corresponds to the largest eigenvalue of

S−1
xxS

′
yxS

−1
xxSxy, as b̂C, and then âC = S−1

yy Syxb̂C/θ̂ is derived where θ̂ > 0. For each repetition with

the NCCA method which can be defined as (2.3) with λ = 0, we calculated the maximized correlation

under certain conditions and the optimized h, for which we used Syw, Syy, and Sww instead of

Σyw, Σyy, and Σww, respectively. We denote the maximized correlation as η̂20, the eigenvector that

corresponds to the largest eigenvalue of S−1
wwS

′
ywS

−1
wwSwy as d̂N, and then âN = S−1

yy Syxd̂N/η̂0 is derived

where η̂0 > 0. For each repetition with the PNCCA method (2.3), we calculated the maximized

correlation under certain conditions by using the optimized λ and optimized h, and we used Syw,

Syy, and Sww instead of Σyw, Σyy, and Σww, respectively. We denote the maximized correlation

as η̂2
λ̂
and the eigenvector that corresponds to the largest eigenvalue of (Sww + λ̂P )−1S′

ywS
−1
wwSwy

as d̂P, where λ̂ is the optimized penalty parameter based on the proposed CV method, and then

âP = S−1
yy Sywd̂P/η̂λ̂ is derived where η̂λ̂ > 0.

Firstly, we compared the CCA, NCCA, and PNCCA methods by using the average values of θ̂2,

η̂20, and η̂2
λ̂
. These are presented in Tables 1 through 5; the bold and italic faces, respectively, mean

the biggest and second biggest values in each situation.

Please insert Tables 1 to 5 around here

From the results presented in these tables, we can see that, since there are nonlinear relationships

between the datum as (A), (B), or (C), the NCCA and PNCCA methods always perform better than

CCA. This reason is that CCA can not find a nonlinear relationship, since it evaluates the correlation

values between linear combinations. The NCCA and PNCCA methods, in contrast to this, can find

nonlinear relationships by using conversion functions. NCCA is almost always the best method since

PNCCA is defined by adding the penalty term λP to Sww as Sww + λP where λu′Pu ≥ 0 for any

u. However, recall that the NCCA has the critical issue that was pointed out by Hardoon, et al.

(2004) and showed in (2.2) in the present paper. We considered using the PNCCA in order to avoid

this issue.

Note that we considered the risk function in (3.1) in order to optimize λ based on the predictive

values. Thus we also compared these methods by using the average value of â′
CΣy∗x∗ b̂C, â

′
NΣy∗w∗d̂N,

and â′
PΣy∗w∗d̂P, and then we denoted the average value of each value as R∗

C, R
∗
N, and R∗

P in Tables

6, 8, 10, 12, and 14. Moreover, we compared these methods by finding the average value of

â′
CΣy∗x∗ b̂C√

â′
CΣy∗y∗âCb̂′CΣx∗x∗ b̂C

,
â′

NΣy∗w∗d̂N√
â′

NΣy∗y∗âNd̂′
NΣw∗w∗d̂N

, and
â′

PΣy∗w∗d̂P√
â′

PΣy∗y∗âPd̂′
PΣw∗w∗d̂P

,

and we denoted the average of each value as RC, RN, and RP, respectively, in Tables 7, 9, 11, 13,

and 15. In Tables 6 to 15, the bold and italic faces mean the biggest and second biggest values,

respectively, in each situation.

Please insert Tables 6 to 15 around here
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Comparing R∗
C with RC, R

∗
N with RN, and R∗

P with RP in all situations, we note the results were

similar except for the case where p0 = 3. Hence, we focus on R∗
C, R

∗
N, and R∗

P in Tables 6, 8, 10, 12,

and 14.

First, we consider the results when using pattern (A), which are presented in Tables 6, 8, and 10.

When ρx becomes large, the result values of CCA become small, the results of PNCCA become large,

and the result values of NCCA also become large except when (n, p0) = (30, 5) and (n, p0) = (30, 8).

The result values of each method become large in almost all cases when δ becomes large except

when (n, p0) = (100, 3). In this pattern, we can change q0. Thus, next, we consider the result values

when q0 changes. When q0 changes from 3 to 8, the result values of NCCA become large in almost

cases. When q0 becomes large, the result values of PNCCA become large in almost situations in

(n, p0, δ) = (30, 3, 1), (n, p0, δ) = (50, 3, 1), and (n, p0, δ) = (100, 3, 1), and that of PNCCA become

small in almost situations in (n, p0, δ) = (30, 3, 3), (n, p0) = (30, 5), and (n, p0) = (30, 8). Next, we

consider the results when p0 becomes large. In n = 50 and n = 100, the result values of NCCA and

PNCCA become large when p0 becomes large. The result values of PNCCA also become large when

n = 30 and p0 becomes large. In this connection, we focus on the results when n becomes large.

When n changes from 30 to 50, the result values of CCA almost all become small in (p0, q0) = (3, 5)

and (p0, q0) = (3, 8), the result values of NCCA become large, and the result values of PNCCA

become large when p0 = 3 and p0 = 5. When (p0, q0) = (8, 5) and (p0, q0) = (8, 8) and n changes

from 30 to 50, the result values of PNCCA almost all become small. The result values of NCCA

also become small when n changes from 30 to 50 in almost all situations when (p0, ρx) = (8, 0.8).

When n changes from 50 to 100 and p0 = 8, the result values of PNCCA almost always become

small. The result values of PNCCA also become small when n changes from 30 to 100 except when

(p0, ρx) = (8, 0.95). The result values of NCCA become large when n changes from 30 to 100.

Next, we consider the results when using pattern (B), which are presented in Table 12. When

ρx becomes large, the result values of CCA become small when (p0, δ) = (5, 1), p0 = 8 except when

(n, δ, p0) = (30, 3, 3). When ρx becomes large, the result values of NCCA become large when p0 = 3,

(n, p0) = (100, 8), and (n, δ, p0) = (50, 3, 8) but not when (n, δ, p0) = (30, 1, 5). The result values

of PNCCA become large when ρx becomes large. The result values of NCCA and PNCCA become

large when δ becomes large. When δ becomes large, the result values of CCA also become large

when (n, p0) = (30, 8), and that of CCA become small when (n, p0) = (50, 8) and (n, p0) = (100, 8).

When p0 = 5 and δ becomes large, the result values of CCA also almost all become small, except

when ρx = 0.8. Next, we compare the result values when p0 and n both become large. When p0

becomes large, the result values of PNCCA become large. The result values of CCA become small

when p0 changes from 3 to 5 except when (δ, ρx) = (3, 0.8). When p0 changes from 3 to 8, the result

values of CCA almost all become small. The result values of NCCA become large when p0 changes
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from 3 to 5 in (n, δ) = (50, 3) and (n, δ) = (100, 3), and when p0 changes from 3 to 8 in n = 50 and

n = 100. When p0 changes from 5 to 8 and δ = 3, the result values of NCCA almost all become

large. In contrast to this, the result values of CCA become small when p0 changes from 3 to 5 in

n = 30. Moreover, when n changes from 50 to 100 and p0 = 3, and it changes from 30 to 100 and

p0 = 8, the result values of CCA become small. The result values of NCCA become large except when

(p0, ρx) = (3, 0.95) and (p0, δ) = (8, 3), when n changes from 50 to 100. The result values of PNCCA

almost always become large when n becomes large and p0 = 3 and p0 = 5. When (p0, δ) = (8, 1)

and n changes from 30 to 50 and 30 to 100, the result values of PNCCA also become large. When n

changes from 50 to 100 and p0 = 8, the result values of PNCCA become small.

Finally, we consider the results with pattern (C), which are in Table 14. When ρx becomes large,

the result values of CCA and PNCCA become small and large, respectively. When ρx becomes large,

the result values of NCCA almost always become large in p0 = 3, p0 = 5, (n, p0, δ) = (50, 8, 3), and

(n, p0) = (100, 8). When δ becomes large, the result values of NCCA and PNCCA become large.

When δ becomes large, the result values of CCA become small when (n, p0) = (100, 8) and p0 = 3,

but not when (p0, ρx) = (3, 0.5). Next, we compare the results when p0 becomes large and n becomes

large. When ρx becomes large, the result values of PNCCA almost always become large. The result

values of NCCA become small when p0 changes from 3 to 5 and n = 30. Moreover, when n becomes

large, the result values of NCCA and PNCCA almost always become large.

The PNCCA is always the best method except when p0 = 3 and (n, p0) = (50, 5) in (A), when

we compared R∗
C, R

∗
N, and R∗

P. In addition to this, when we compared RC, RN, and RP, the PNCCA

is always the best method except when p0 = 3. Further, of the three methods, PNCCA is never the

worst. Based on these results, we recommend using the PNCCA method with the CV method, as

proposed in this paper.

5. Conclusions

In the present paper, we considered finding a nonlinear relationship between random vectors

by using PNCCA. This method is based on CCA (Hotelling, 1936) and a penalty method that

is similar to the nonlinear regression model. The CCA method finds a linear relationship between

random vectors, based on the correlation between linear combinations of them. The use of conversion

functions allows a nonlinear relationship to be found by using the CCA method on the converted

variables. Hardoon, et al. (2004) pointed out that this method has a critical problem, and, to avoid

this, Akaho (2000) proposed the PNCCA when the conversion functions are the kernel functions.

Although the result of PNCCA heavily depends on the penalty and several parameters, there have

been no optimization methods proposed for them until the present paper. The reason for this is that

the evaluation method for the covariance matrix is not defined.
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In order to optimize the penalty and other parameters in the PNCCA method, we proposed using

the CV method, which is based on the risk function in (3.1) in Section 3. Using the two samples

{yi,wi} and {yj,wj}, where i ̸= j, we define Ŝ[i,j] for all i and j, (i ̸= j). On the other hands, for the

fixed parameters, the results of PNCCA are derived based on the remains datum. Using Ŝ[i,j] and

the results of PNCCA for each i and j, (i ̸= j), we then optimize the penalty and several parameters

based on the CV method. Our numerical studies showed that the PNCCA method is almost always

the best of the three we tested. Thus, we recommend using the PNCCA method, optimized by using

the CV method.
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Appendix: Using proposed CV method to select variables in y and x

Using the optimized penalty parameter λ̂, the maximized value of a′Σywd in (2.3) is estimated by

using η̂λ̂, which coincides with the square root of the largest eigenvalue of (Sww + λ̂P )−1S′
ywS

−1
yy Syw.

In this section, we illustrate the variable selection method.

Let y[1] and x[1] be subsets of y and x, respectively, and w[1] = ψ(x[1]), where ψ(·) is any

conversion function that does not correspond with φ(·). Let Sw[1]w[1] , Sy[1]w[1] , and Sy[1]y[1] be the

sample covariance matrices of w[1] and w[1], y[1] and w[1], and y[1] and y[1], respectively, and let

P [1] be some known nonnegative penalty matrix. Based on the proposed CV method, the optimized

penalty parameter λ̂[1] is derived. We can then obtain (η̂
[1]

λ̂[1]
)2, which is the estimator of the maximized

correlation between the linear combinations of y[1] and w[1].

Next, (η̂
[2]

λ̂[2]
)2 is derived using the same procedure as in the PNCCA method and the above

procedure based on y[2] and x[2], where y[2] and x[2] are also subsets of y and x but are not the same

as y[1] and x[1]. If it holds that η̂
[1]

λ̂[1]
> η̂

[2]

λ̂[2]
(η̂

[1]

λ̂[1]
> 0 and η̂

[2]

λ̂[2]
> 0), we select y[1] and x[1]; y[2] and

x[2] are selected if it does not hold.

Since we evaluate the covariance matrix by using the CV method, we conjecture that we may

select another statistical estimation method based on the covariance matrix.
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Table 1: Average values of θ̂2 (CCA), η̂20 (NCCA), and η̂2
λ̂
(PNCCA) for n = 30 and (A)

p0 = 3 p0 = 5 p0 = 8

q0 δ ρx θ̂2 η̂20 η̂2
λ̂

θ̂2 η̂20 η̂2
λ̂

θ̂2 η̂20 η̂2
λ̂

3 1 0.5 0.5409 0.9468 0.9413 0.5594 0.9317 0.9106 0.6683 0.9663 0.9445
0.8 0.5122 0.9610 0.9577 0.5470 0.9472 0.9315 0.6700 0.9739 0.9593
0.95 0.5343 0.9680 0.9564 0.5555 0.9581 0.9390 0.6852 0.9763 0.9593

3 0.5 0.5498 0.9813 0.9781 0.5570 0.9519 0.9348 0.6646 0.9738 0.9542
0.8 0.5103 0.9906 0.9894 0.5469 0.9588 0.9448 0.6701 0.9771 0.9635
0.95 0.5350 0.9895 0.9797 0.5546 0.9651 0.9470 0.6844 0.9780 0.9617

5 1 0.5 0.6093 0.9601 0.9544 0.6508 0.9456 0.9257 0.7487 0.9719 0.9505
0.8 0.5914 0.9727 0.9704 0.6475 0.9561 0.9412 0.7549 0.9777 0.9640
0.95 0.6039 0.9772 0.9675 0.6512 0.9645 0.9470 0.7540 0.9793 0.9626

3 0.5 0.6195 0.9841 0.9810 0.6499 0.9571 0.9407 0.7501 0.9769 0.9580
0.8 0.5922 0.9923 0.9912 0.6423 0.9633 0.9499 0.7517 0.9796 0.9666
0.95 0.6059 0.9911 0.9830 0.6490 0.9688 0.9515 0.7592 0.9804 0.9642

8 1 0.5 0.6987 0.9724 0.9472 0.7524 0.9579 0.9358 0.8366 0.9785 0.9567
0.8 0.6825 0.9823 0.9802 0.7445 0.9652 0.9513 0.8350 0.9821 0.9693
0.95 0.6887 0.9841 0.9765 0.7463 0.9710 0.9541 0.8396 0.9831 0.9665

3 0.5 0.6957 0.9870 0.9735 0.7493 0.9646 0.9463 0.8389 0.9815 0.9616
0.8 0.6856 0.9940 0.9931 0.7482 0.9688 0.9562 0.8344 0.9836 0.9712
0.95 0.6950 0.9928 0.9857 0.7493 0.9742 0.9584 0.8381 0.9838 0.9674

Table 2: Average values of θ̂2 (CCA), η̂20 (NCCA), and η̂2
λ̂
(PNCCA) for n = 50 and (A)

p0 = 3 p0 = 5 p0 = 8

q0 δ ρx θ̂2 η̂20 η̂2
λ̂

θ̂2 η̂20 η̂2
λ̂

θ̂2 η̂20 η̂2
λ̂

3 1 0.5 0.3522 0.9509 0.9483 0.4310 0.9623 0.9587 0.5016 0.9842 0.9797
0.8 0.3316 0.9671 0.9656 0.4077 0.9693 0.9668 0.5157 0.9928 0.9918
0.95 0.3305 0.9740 0.9623 0.4020 0.9730 0.9711 0.5353 0.9953 0.9931

3 0.5 0.3563 0.9914 0.9895 0.4328 0.9790 0.9763 0.4962 0.9922 0.9886
0.8 0.3343 0.9939 0.9932 0.4034 0.9775 0.9755 0.5127 0.9960 0.9954
0.95 0.3267 0.9943 0.9812 0.4043 0.9784 0.9769 0.5332 0.9969 0.9950

5 1 0.5 0.4324 0.9649 0.9625 0.5080 0.9693 0.9660 0.5832 0.9874 0.9834
0.8 0.4157 0.9765 0.9750 0.4933 0.9730 0.9707 0.5937 0.9941 0.9933
0.95 0.4186 0.9814 0.9711 0.4885 0.9757 0.9739 0.6000 0.9960 0.9940

3 0.5 0.4298 0.9933 0.9915 0.5077 0.9806 0.9780 0.5788 0.9929 0.9895
0.8 0.4168 0.9952 0.9945 0.4919 0.9789 0.9770 0.5892 0.9963 0.9957
0.95 0.4144 0.9953 0.9844 0.4915 0.9797 0.9781 0.5996 0.9972 0.9953

8 1 0.5 0.5194 0.9761 0.9740 0.5916 0.9750 0.9720 0.6610 0.9902 0.9865
0.8 0.5107 0.9838 0.9826 0.5816 0.9768 0.9746 0.6681 0.9953 0.9945
0.95 0.5029 0.9871 0.9783 0.5802 0.9789 0.9770 0.6759 0.9967 0.9948

3 0.5 0.5141 0.9948 0.9932 0.5941 0.9825 0.9798 0.6646 0.9936 0.9904
0.8 0.5105 0.9961 0.9953 0.5847 0.9808 0.9788 0.6712 0.9967 0.9961
0.95 0.5064 0.9961 0.9875 0.5779 0.9811 0.9795 0.6762 0.9974 0.9957
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Table 3: Average values of θ̂2 (CCA), η̂20 (NCCA), and η̂2
λ̂
(PNCCA) for n = 100 and (A)

p0 = 3 p0 = 5 p0 = 8

q0 δ ρx θ̂2 η̂20 η̂2
λ̂

θ̂2 η̂20 η̂2
λ̂

θ̂2 η̂20 η̂2
λ̂

3 1 0.5 0.2504 0.9461 0.9456 0.3070 0.9785 0.9777 0.3618 0.9829 0.9802
0.8 0.2255 0.9560 0.9558 0.2805 0.9892 0.9889 0.3542 0.9916 0.9905
0.95 0.2198 0.9606 0.9522 0.2742 0.9909 0.9899 0.3554 0.9941 0.9932

3 0.5 0.2515 0.9798 0.9797 0.3046 0.9925 0.9921 0.3586 0.9919 0.9897
0.8 0.2252 0.9780 0.9780 0.2788 0.9960 0.9959 0.3552 0.9961 0.9952
0.95 0.2222 0.9771 0.9702 0.2768 0.9950 0.9942 0.3558 0.9964 0.9957

5 1 0.5 0.3073 0.9574 0.9570 0.3610 0.9834 0.9827 0.4192 0.9860 0.9836
0.8 0.2905 0.9638 0.9636 0.3462 0.9915 0.9913 0.4146 0.9932 0.9922
0.95 0.2852 0.9664 0.9599 0.3404 0.9924 0.9914 0.4147 0.9949 0.9941

3 0.5 0.3054 0.9814 0.9813 0.3605 0.9932 0.9928 0.4231 0.9924 0.9903
0.8 0.2895 0.9793 0.9793 0.3455 0.9963 0.9962 0.4142 0.9964 0.9955
0.95 0.2820 0.9782 0.9728 0.3421 0.9953 0.9944 0.4166 0.9966 0.9959

8 1 0.5 0.3703 0.9667 0.9665 0.4221 0.9870 0.9865 0.4794 0.9886 0.9863
0.8 0.3551 0.9701 0.9699 0.4132 0.9934 0.9932 0.4812 0.9945 0.9935
0.95 0.3566 0.9714 0.9652 0.4079 0.9936 0.9924 0.4767 0.9956 0.9948

3 0.5 0.3672 0.9830 0.9829 0.4226 0.9937 0.9933 0.4795 0.9929 0.9908
0.8 0.3541 0.9807 0.9806 0.4141 0.9966 0.9965 0.4777 0.9966 0.9958
0.95 0.3559 0.9794 0.9747 0.4096 0.9955 0.9945 0.4772 0.9968 0.9960

Table 4: Average values of θ̂2 (CCA), η̂20 (NCCA), and η̂2
λ̂
(PNCCA) for (B)

p0 = 3 p0 = 5 p0 = 8

n δ ρx θ̂2 η̂20 η̂2
λ̂

θ̂2 η̂20 η̂2
λ̂

θ̂2 η̂20 η̂2
λ̂

30 1 0.5 0.5082 0.6672 0.5687 0.5448 0.6735 0.5453 0.6357 0.7816 0.6339
0.8 0.4487 0.6824 0.6271 0.5396 0.7411 0.6635 0.6582 0.8323 0.7507
0.95 0.4515 0.7614 0.7083 0.5426 0.7831 0.7128 0.6722 0.8632 0.7696

3 0.5 0.5343 0.8477 0.8157 0.5197 0.8567 0.8175 0.6396 0.9249 0.8870
0.8 0.5001 0.8903 0.8673 0.5058 0.9014 0.8768 0.6373 0.9441 0.9225
0.95 0.4680 0.9390 0.9215 0.5702 0.9295 0.9046 0.6628 0.9577 0.9316

50 1 0.5 0.3530 0.4971 0.4252 0.4319 0.6029 0.5233 0.4907 0.7027 0.6264
0.8 0.3198 0.5423 0.4894 0.4460 0.6929 0.6648 0.4919 0.8053 0.7709
0.95 0.3239 0.6151 0.5486 0.4431 0.8298 0.8090 0.5158 0.8709 0.8451

3 0.5 0.3413 0.7422 0.7267 0.4247 0.8522 0.8420 0.4113 0.9197 0.9063
0.8 0.2772 0.7872 0.7748 0.4534 0.9157 0.9095 0.4396 0.9633 0.9587
0.95 0.2967 0.8562 0.8180 0.5195 0.9524 0.9489 0.4874 0.9764 0.9714

100 1 0.5 0.2445 0.4398 0.4046 0.3208 0.5352 0.5100 0.3715 0.5574 0.5015
0.8 0.2324 0.4930 0.4704 0.2793 0.6912 0.6736 0.3534 0.6758 0.6482
0.95 0.2619 0.5518 0.5151 0.2684 0.7712 0.7449 0.3325 0.7791 0.7562

3 0.5 0.2496 0.7066 0.7007 0.3288 0.8455 0.8407 0.3859 0.8547 0.8412
0.8 0.2007 0.7570 0.7525 0.2615 0.9306 0.9282 0.3383 0.9292 0.9245
0.95 0.2724 0.8112 0.7806 0.2145 0.9502 0.9456 0.2861 0.9559 0.9524
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Table 5: Average values of θ̂2 (CCA), η̂20 (NCCA), and η̂2
λ̂
(PNCCA) for (C)

p0 = 3 p0 = 5 p0 = 8

n δ ρx θ̂2 η̂20 η̂2
λ̂

θ̂2 η̂20 η̂2
λ̂

θ̂2 η̂20 η̂2
λ̂

30 1 0.5 0.5468 0.7017 0.6122 0.5952 0.7149 0.5889 0.6927 0.8101 0.6608
0.8 0.5155 0.7062 0.6528 0.5947 0.7589 0.6740 0.7033 0.8526 0.7683
0.95 0.5089 0.7855 0.7340 0.5938 0.8030 0.7330 0.7143 0.8749 0.7838

3 0.5 0.5728 0.8835 0.8619 0.5796 0.8773 0.8388 0.6916 0.9309 0.8955
0.8 0.5665 0.9103 0.8945 0.5738 0.9096 0.8843 0.6981 0.9484 0.9273
0.95 0.5100 0.9478 0.9343 0.6103 0.9346 0.9108 0.7229 0.9595 0.9289

50 1 0.5 0.3895 0.5577 0.4823 0.4708 0.6383 0.5612 0.5299 0.7240 0.6460
0.8 0.3683 0.5825 0.5378 0.4847 0.7216 0.6928 0.5321 0.8194 0.7876
0.95 0.3739 0.6515 0.5836 0.4857 0.8389 0.8193 0.5529 0.8768 0.8515

3 0.5 0.3802 0.8202 0.8099 0.4632 0.8782 0.8693 0.4829 0.9298 0.9171
0.8 0.3276 0.8497 0.8424 0.4985 0.9285 0.9239 0.4990 0.9667 0.9625
0.95 0.3545 0.8913 0.8617 0.5755 0.9585 0.9556 0.5409 0.9788 0.9744

100 1 0.5 0.2777 0.4956 0.4670 0.3499 0.5742 0.5486 0.4041 0.5759 0.5224
0.8 0.2650 0.5282 0.5121 0.3177 0.7184 0.7019 0.3866 0.6968 0.6708
0.95 0.2922 0.5813 0.5462 0.3043 0.7824 0.7590 0.3653 0.7899 0.7683

3 0.5 0.2787 0.7917 0.7881 0.3553 0.8723 0.8672 0.4038 0.8707 0.8585
0.8 0.2382 0.8153 0.8119 0.3077 0.9392 0.9371 0.3678 0.9371 0.9326
0.95 0.2960 0.8547 0.8368 0.2714 0.9557 0.9497 0.3329 0.9609 0.9576

Table 6: Average values of R∗
C (CCA), R∗

N (NCCA), and R∗
P (PNCCA) for n = 30 and (A)

p0 = 3 p0 = 5 p0 = 8
q0 δ ρx R∗

C R∗
N R∗

P R∗
C R∗

N R∗
P R∗

C R∗
N R∗

P

3 1 0.5 0.0055 1.0848 1.0888 0.0028 1.0723 1.2443 0.0070 1.4206 1.6244
0.8 0.0029 1.6265 1.6713 0.0017 1.6642 2.4493 0.0020 1.5904 3.5193
0.95 0.0021 2.3404 2.2292 0.0007 0.8485 3.6166 0.0010 0.5696 5.8488

3 0.5 0.0156 1.1349 1.1383 0.0033 1.0898 1.2380 0.0063 1.4944 1.6558
0.8 0.0019 1.6746 1.6993 0.0027 1.6857 2.4588 0.0032 1.6175 3.5545
0.95 0.0012 2.4598 2.2841 0.0014 0.8380 3.6303 0.0006 0.5747 5.9185

5 1 0.5 0.0101 1.0912 1.0904 0.0040 1.0728 1.2353 0.0048 1.4135 1.6298
0.8 0.0027 1.6389 1.6753 0.0026 1.6435 2.4555 0.0024 1.5689 3.4765
0.95 0.0013 2.3832 2.2656 0.0009 0.8670 3.5930 0.0006 0.5830 5.7756

3 0.5 0.0075 1.1186 1.1206 0.0041 1.0938 1.2437 0.0049 1.4588 1.6316
0.8 0.0052 1.6788 1.7040 0.0024 1.6680 2.4355 0.0022 1.6021 3.5511
0.95 0.0010 2.4589 2.3020 0.0007 0.8388 3.5998 0.0009 0.5777 5.8660

8 1 0.5 0.0068 1.0992 1.0367 0.0051 1.0519 1.2061 0.0052 1.3710 1.5844
0.8 0.0055 1.6640 1.6981 0.0032 1.6006 2.4153 0.0032 1.5513 3.4621
0.95 0.0017 2.3961 2.2814 0.0008 0.8437 3.5642 0.0007 0.5925 5.6960

3 0.5 0.0065 1.1145 1.0829 0.0045 1.0623 1.2186 0.0052 1.3998 1.5976
0.8 0.0037 1.6753 1.6990 0.0024 1.6347 2.4313 0.0024 1.5424 3.4618
0.95 0.0020 2.4499 2.2716 0.0008 0.8474 3.5708 0.0005 0.5795 5.7208
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Table 7: Average values of RC (CCA), RN (NCCA), and RP (PNCCA) for n = 30 and (A)

p0 = 3 p0 = 5 p0 = 8
q0 δ ρx RC RN RP RC RN RP RC RN RP

3 1 0.5 0.0070 0.9477 0.9474 0.0054 0.8811 0.9430 0.0102 0.9111 0.9704
0.8 0.0068 0.9594 0.9657 0.0061 0.9102 0.9689 0.0073 0.8998 0.9760
0.95 0.0121 0.9649 0.8896 0.0082 0.8796 0.9714 0.0129 0.9025 0.9778

3 0.5 0.0196 0.9846 0.9849 0.0071 0.9080 0.9631 0.0101 0.9356 0.9820
0.8 0.0042 0.9868 0.9879 0.0094 0.9197 0.9781 0.0098 0.9072 0.9814
0.95 0.0096 0.9866 0.9086 0.0151 0.8829 0.9735 0.0083 0.9080 0.9822

5 1 0.5 0.0121 0.9545 0.9513 0.0077 0.8838 0.9419 0.0075 0.9058 0.9655
0.8 0.0058 0.9652 0.9702 0.0090 0.9014 0.9655 0.0077 0.8894 0.9723
0.95 0.0059 0.9705 0.8990 0.0098 0.8766 0.9645 0.0076 0.8936 0.9708

3 0.5 0.0093 0.9838 0.9829 0.0075 0.9044 0.9582 0.0072 0.9259 0.9772
0.8 0.0111 0.9872 0.9881 0.0076 0.9137 0.9734 0.0072 0.8985 0.9779
0.95 0.0063 0.9868 0.9164 0.0073 0.8819 0.9705 0.0120 0.9002 0.9745

8 1 0.5 0.0083 0.9568 0.9037 0.0087 0.8696 0.9229 0.0075 0.8900 0.9455
0.8 0.0104 0.9686 0.9721 0.0093 0.8930 0.9585 0.0099 0.8784 0.9641
0.95 0.0081 0.9710 0.9022 0.0092 0.8728 0.9554 0.0091 0.8802 0.9570

3 0.5 0.0077 0.9804 0.9514 0.0080 0.8866 0.9412 0.0075 0.9037 0.9568
0.8 0.0086 0.9879 0.9885 0.0077 0.9005 0.9665 0.0079 0.8818 0.9673
0.95 0.0086 0.9831 0.9045 0.0085 0.8730 0.9595 0.0068 0.8815 0.9596

Table 8: Average values of R∗
C (CCA), R∗

N (NCCA), and R∗
P (PNCCA) for n = 50 and (A)

p0 = 3 p0 = 5 p0 = 8
q0 δ ρx R∗

C R∗
N R∗

P R∗
C R∗

N R∗
P R∗

C R∗
N R∗

P

3 1 0.5 0.0046 1.1368 1.1325 0.0055 1.3697 1.3605 0.0042 1.5363 1.5706
0.8 0.0028 1.8384 1.8374 0.0020 2.6066 2.6390 0.0025 3.4349 3.5174
0.95 0.0025 2.4768 2.4821 0.0007 3.5793 4.0919 0.0006 5.1110 6.2173

3 0.5 0.0070 1.1820 1.1759 0.0037 1.3715 1.3574 0.0061 1.5809 1.6030
0.8 0.0042 1.8803 1.8716 0.0038 2.6648 2.6590 0.0019 3.5191 3.5492
0.95 0.0011 2.5765 2.5221 0.0007 3.7883 4.1181 0.0004 5.4452 6.2972

5 1 0.5 0.0069 1.1455 1.1404 0.0055 1.3621 1.3533 0.0045 1.5577 1.5855
0.8 0.0032 1.8480 1.8430 0.0025 2.6401 2.6667 0.0021 3.4211 3.4885
0.95 0.0013 2.5102 2.5123 0.0009 3.5909 4.1073 0.0005 5.1608 6.2080

3 0.5 0.0074 1.1671 1.1607 0.0047 1.3896 1.3751 0.0053 1.5632 1.5857
0.8 0.0041 1.8859 1.8769 0.0032 2.6548 2.6521 0.0019 3.5276 3.5593
0.95 0.0013 2.5805 2.5345 0.0007 3.7451 4.1177 0.0006 5.4121 6.2852

8 1 0.5 0.0060 1.1588 1.1532 0.0076 1.3608 1.3512 0.0051 1.5440 1.5711
0.8 0.0043 1.8764 1.8695 0.0028 2.6122 2.6418 0.0024 3.4513 3.5162
0.95 0.0016 2.5381 2.5289 0.0008 3.5632 4.0960 0.0006 5.1504 6.2035

3 0.5 0.0063 1.1669 1.1596 0.0057 1.3798 1.3646 0.0052 1.5522 1.5769
0.8 0.0039 1.8831 1.8726 0.0028 2.6527 2.6566 0.0023 3.4788 3.5145
0.95 0.0018 2.5776 2.5306 0.0008 3.7039 4.1246 0.0005 5.3411 6.2406
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Table 9: Average values of RC (CCA), RN (NCCA), and RP (PNCCA) for n = 50 and (A)

p0 = 3 p0 = 5 p0 = 8
q0 δ ρx RC RN RP RC RN RP RC RN RP

3 1 0.5 0.0062 0.9531 0.9549 0.0070 0.9650 0.9695 0.0068 0.9708 0.9787
0.8 0.0050 0.9670 0.9670 0.0054 0.9764 0.9798 0.0105 0.9838 0.9858
0.95 0.0125 0.9700 0.9454 0.0078 0.9796 0.9816 0.0113 0.9860 0.9886

3 0.5 0.0091 0.9866 0.9876 0.0052 0.9838 0.9874 0.0098 0.9831 0.9896
0.8 0.0073 0.9880 0.9883 0.0097 0.9858 0.9882 0.0080 0.9891 0.9901
0.95 0.0076 0.9871 0.9587 0.0081 0.9823 0.9838 0.0074 0.9901 0.9921

5 1 0.5 0.0082 0.9611 0.9627 0.0078 0.9687 0.9736 0.0070 0.9723 0.9805
0.8 0.0056 0.9737 0.9731 0.0072 0.9777 0.9809 0.0079 0.9851 0.9868
0.95 0.0064 0.9758 0.9529 0.0091 0.9797 0.9818 0.0082 0.9860 0.9885

3 0.5 0.0097 0.9871 0.9882 0.0063 0.9836 0.9874 0.0079 0.9838 0.9899
0.8 0.0077 0.9885 0.9888 0.0082 0.9854 0.9882 0.0072 0.9904 0.9914
0.95 0.0094 0.9880 0.9634 0.0070 0.9842 0.9858 0.0092 0.9882 0.9903

8 1 0.5 0.0082 0.9665 0.9681 0.0096 0.9707 0.9756 0.0075 0.9747 0.9823
0.8 0.0087 0.9778 0.9771 0.0074 0.9765 0.9803 0.0086 0.9857 0.9876
0.95 0.0097 0.9781 0.9551 0.0090 0.9800 0.9823 0.0081 0.9845 0.9868

3 0.5 0.0080 0.9863 0.9872 0.0077 0.9819 0.9860 0.0078 0.9807 0.9879
0.8 0.0090 0.9902 0.9900 0.0079 0.9823 0.9854 0.0080 0.9886 0.9900
0.95 0.0087 0.9852 0.9599 0.0088 0.9829 0.9850 0.0063 0.9884 0.9905

Table 10: Average values of R∗
C (CCA), R∗

N (NCCA), and R∗
P (PNCCA) for n = 100 and (A)

p0 = 3 p0 = 5 p0 = 8
q0 δ ρx R∗

C R∗
N R∗

P R∗
C R∗

N R∗
P R∗

C R∗
N R∗

P

3 1 0.5 0.0055 1.2018 1.2057 0.0032 1.5306 1.5352 0.0041 1.5487 1.5695
0.8 0.0029 1.9092 1.9138 0.0021 2.8659 2.8950 0.0023 3.2276 3.2883
0.95 0.0021 2.5552 2.5396 0.0007 3.9258 4.2784 0.0007 5.5941 6.0614

3 0.5 0.0067 1.2531 1.2561 0.0043 1.5357 1.5381 0.0065 1.5865 1.6023
0.8 0.0045 1.9513 1.9497 0.0029 2.9057 2.9187 0.0023 3.2731 3.3141
0.95 0.0014 2.6314 2.5962 0.0006 4.0318 4.3034 0.0005 5.7878 6.1337

5 1 0.5 0.0062 1.2067 1.2105 0.0047 1.5263 1.5302 0.0051 1.5673 1.5850
0.8 0.0033 1.9120 1.9155 0.0024 2.9000 2.9256 0.0021 3.2101 3.2612
0.95 0.0015 2.5791 2.5716 0.0008 3.9569 4.2926 0.0005 5.6221 6.0548

3 0.5 0.0068 1.2363 1.2393 0.0042 1.5575 1.5604 0.0055 1.5703 1.5851
0.8 0.0034 1.9561 1.9548 0.0028 2.9022 2.9150 0.0019 3.2823 3.3243
0.95 0.0017 2.6327 2.6061 0.0007 4.0373 4.3078 0.0007 5.7813 6.1237

8 1 0.5 0.0062 1.2187 1.2221 0.0061 1.5266 1.5304 0.0053 1.5545 1.5720
0.8 0.0041 1.9385 1.9404 0.0027 2.8822 2.9037 0.0024 3.2381 3.2901
0.95 0.0020 2.5963 2.5784 0.0008 3.9735 4.2905 0.0006 5.6429 6.0518

3 0.5 0.0060 1.2348 1.2378 0.0056 1.5482 1.5508 0.0048 1.5607 1.5771
0.8 0.0043 1.9512 1.9502 0.0029 2.9138 2.9264 0.0024 3.2405 3.2813
0.95 0.0016 2.6274 2.5991 0.0009 4.0515 4.3232 0.0005 5.7381 6.0822
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Table 11: Average values of RC (CCA), RN (NCCA), and RP (PNCCA) for n = 100 and (A)

p0 = 3 p0 = 5 p0 = 8
q0 δ ρx RC RN RP RC RN RP RC RN RP

3 1 0.5 0.0076 0.9557 0.9561 0.0052 0.9708 0.9716 0.0062 0.9764 0.9798
0.8 0.0052 0.9684 0.9687 0.0060 0.9815 0.9821 0.0091 0.9862 0.9875
0.95 0.0110 0.9706 0.9529 0.0077 0.9825 0.9836 0.0111 0.9883 0.9893

3 0.5 0.0091 0.9874 0.9875 0.0074 0.9891 0.9894 0.0100 0.9876 0.9902
0.8 0.0073 0.9882 0.9882 0.0080 0.9899 0.9901 0.0085 0.9907 0.9918
0.95 0.0078 0.9870 0.9721 0.0076 0.9845 0.9855 0.0074 0.9918 0.9926

5 1 0.5 0.0076 0.9634 0.9638 0.0077 0.9768 0.9775 0.0077 0.9791 0.9822
0.8 0.0054 0.9747 0.9749 0.0069 0.9835 0.9839 0.0071 0.9877 0.9888
0.95 0.0065 0.9763 0.9621 0.0088 0.9835 0.9845 0.0076 0.9885 0.9894

3 0.5 0.0089 0.9879 0.9880 0.0065 0.9901 0.9906 0.0080 0.9885 0.9910
0.8 0.0069 0.9886 0.9886 0.0076 0.9911 0.9912 0.0074 0.9922 0.9932
0.95 0.0096 0.9876 0.9760 0.0067 0.9876 0.9885 0.0100 0.9902 0.9910

8 1 0.5 0.0082 0.9693 0.9696 0.0089 0.9804 0.9810 0.0077 0.9815 0.9849
0.8 0.0084 0.9788 0.9790 0.0074 0.9853 0.9857 0.0088 0.9886 0.9899
0.95 0.0097 0.9781 0.9632 0.0087 0.9866 0.9873 0.0079 0.9873 0.9880

3 0.5 0.0077 0.9867 0.9868 0.0079 0.9898 0.9904 0.0070 0.9865 0.9897
0.8 0.0096 0.9897 0.9898 0.0078 0.9900 0.9902 0.0084 0.9908 0.9920
0.95 0.0084 0.9844 0.9718 0.0085 0.9886 0.9891 0.0068 0.9909 0.9917

Table 12: Average values of R∗
C (CCA), R∗

N (NCCA), and R∗
P (PNCCA) for (B)

p0 = 3 p0 = 5 p0 = 8
n δ ρx R∗

C R∗
N R∗

P R∗
C R∗

N R∗
P R∗

C R∗
N R∗

P

30 1 0.5 0.0050 0.1803 0.1924 0.0060 0.1426 0.2362 0.0042 0.1415 0.3359
0.8 0.0029 0.3026 0.3593 0.0017 0.1841 0.5203 0.0020 0.2017 1.0257
0.95 0.0027 0.5701 0.7467 0.0014 0.2478 1.3996 0.0005 0.1366 2.7816

3 0.5 0.0088 0.5705 0.5645 0.0025 0.5279 0.6730 0.0049 0.8081 1.0558
0.8 0.0015 0.9216 0.9264 0.0036 0.8489 1.5573 0.0026 0.9735 2.3869
0.95 0.0038 1.5283 1.5091 0.0025 0.6209 2.5992 0.0007 0.3815 4.4913

50 1 0.5 0.0051 0.1904 0.1936 0.0048 0.1715 0.2568 0.0051 0.2230 0.3839
0.8 0.0032 0.3164 0.4315 0.0020 0.3590 0.6171 0.0021 0.5467 1.1514
0.95 0.0023 0.4452 0.8387 0.0011 0.6805 1.7296 0.0005 0.6244 3.3308

3 0.5 0.0053 0.6274 0.6285 0.0027 0.6998 0.7309 0.0033 0.9603 1.0420
0.8 0.0025 1.0326 1.1067 0.0060 1.5704 1.7519 0.0012 2.1235 2.4541
0.95 0.0011 1.4164 1.6434 0.0010 2.2205 2.9867 0.0005 2.8972 5.0905

100 1 0.5 0.0051 0.2578 0.2644 0.0075 0.2691 0.3349 0.0037 0.2601 0.3816
0.8 0.0030 0.4277 0.5193 0.0014 0.4836 0.7042 0.0019 0.6373 1.0948
0.95 0.0014 0.5038 0.9007 0.0007 0.8114 1.7327 0.0005 0.9769 3.3225

3 0.5 0.0044 0.6661 0.6800 0.0030 0.7958 0.8217 0.0029 0.9588 1.0304
0.8 0.0017 1.1146 1.1567 0.0022 1.8378 1.9598 0.0017 2.0936 2.3122
0.95 0.0010 1.3845 1.6391 0.0006 2.4001 3.1127 0.0005 3.3980 4.9799
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Table 13: Average values of RC (CCA), RN (NCCA), and RP (PNCCA) and (B)

p0 = 3 p0 = 5 p0 = 8
n δ ρx RC RN RP RC RN RP RC RN RP

30 1 0.5 0.0066 0.1775 0.1861 0.0084 0.1375 0.1801 0.0062 0.1291 0.2039
0.8 0.0050 0.2333 0.2481 0.0059 0.1558 0.2255 0.0071 0.2063 0.3223
0.95 0.0108 0.3582 0.3550 0.0093 0.3434 0.4088 0.0070 0.4026 0.5196

3 0.5 0.0116 0.5377 0.5259 0.0041 0.4626 0.5170 0.0064 0.5600 0.6291
0.8 0.0024 0.5889 0.5772 0.0157 0.5805 0.6510 0.0099 0.6010 0.6828
0.95 0.0194 0.6695 0.6366 0.0082 0.6211 0.6991 0.0091 0.7010 0.7886

50 1 0.5 0.0069 0.1746 0.1741 0.0060 0.1553 0.1910 0.0081 0.1806 0.2383
0.8 0.0059 0.2399 0.2619 0.0045 0.2197 0.2400 0.0084 0.3078 0.3381
0.95 0.0112 0.3557 0.3795 0.0077 0.4322 0.4427 0.0083 0.5402 0.5673

3 0.5 0.0073 0.5383 0.5387 0.0028 0.5229 0.5324 0.0062 0.6266 0.6436
0.8 0.0043 0.5813 0.5908 0.0093 0.6414 0.6499 0.0062 0.6845 0.6928
0.95 0.0101 0.6862 0.6686 0.0060 0.7198 0.7225 0.0107 0.8075 0.8146

100 1 0.5 0.0068 0.2287 0.2286 0.0087 0.2048 0.2243 0.0059 0.2041 0.2439
0.8 0.0060 0.2858 0.2983 0.0047 0.2445 0.2518 0.0071 0.3192 0.3358
0.95 0.0089 0.3753 0.3857 0.0070 0.4588 0.4602 0.0069 0.5595 0.5688

3 0.5 0.0063 0.5517 0.5554 0.0032 0.5291 0.5343 0.0041 0.6338 0.6481
0.8 0.0042 0.6068 0.6103 0.0069 0.6610 0.6634 0.0083 0.6904 0.6946
0.95 0.0117 0.6874 0.6582 0.0074 0.7400 0.7406 0.0082 0.8128 0.8171

Table 14: Average values of R∗
C (CCA), R∗

N (NCCA), and R∗
P (PNCCA) for (C)

p0 = 3 p0 = 5 p0 = 8
n δ ρx R∗

C R∗
N R∗

P R∗
C R∗

N R∗
P R∗

C R∗
N R∗

P

30 1 0.5 0.0074 0.2507 0.2479 0.0047 0.1690 0.2528 0.0050 0.1576 0.4187
0.8 0.0063 0.3503 0.4134 0.0016 0.1914 0.5353 0.0032 0.2065 1.1178
0.95 0.0016 0.5057 0.6864 0.0012 0.2715 1.4164 0.0005 0.1110 2.3199

3 0.5 0.0082 0.6628 0.6571 0.0069 0.6211 0.7752 0.0046 0.8311 1.0931
0.8 0.0023 1.1161 1.1373 0.0028 0.8099 1.4641 0.0019 0.9546 2.3910
0.95 0.0012 1.4540 1.4771 0.0011 0.6674 2.5052 0.0006 0.3961 4.7958

50 1 0.5 0.0064 0.3006 0.2786 0.0051 0.2095 0.3011 0.0045 0.2809 0.4944
0.8 0.0049 0.3943 0.5459 0.0028 0.4195 0.7251 0.0018 0.6204 1.2818
0.95 0.0012 0.4479 0.8000 0.0020 0.6926 1.7492 0.0005 0.5374 2.7939

3 0.5 0.0067 0.7499 0.7488 0.0053 0.8343 0.8708 0.0027 0.9939 1.0766
0.8 0.0029 1.3193 1.3724 0.0029 1.5655 1.7197 0.0019 2.1370 2.4582
0.95 0.0009 1.5079 1.7138 0.0008 2.2223 2.9143 0.0004 3.1285 5.4998

100 1 0.5 0.0057 0.3862 0.3951 0.0053 0.3193 0.3888 0.0051 0.3464 0.5038
0.8 0.0044 0.5380 0.6380 0.0015 0.6137 0.8462 0.0023 0.7448 1.2510
0.95 0.0013 0.5335 0.8878 0.0007 0.8215 1.8003 0.0005 0.8568 2.8302

3 0.5 0.0083 0.8072 0.8198 0.0062 0.9455 0.9823 0.0036 1.0074 1.0798
0.8 0.0025 1.3925 1.4396 0.0029 1.7927 1.8991 0.0012 2.1214 2.3359
0.95 0.0008 1.6185 1.7614 0.0006 2.4415 3.0633 0.0004 3.8614 5.3736
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Table 15: Average values of RC (CCA), RN (NCCA), and RP (PNCCA) for (C)

p0 = 3 p0 = 5 p0 = 8
n δ ρx RC RN RP RC RN RP RC RN RP

30 1 0.5 0.0091 0.2365 0.2303 0.0068 0.1632 0.1979 0.0075 0.1450 0.2500
0.8 0.0109 0.2647 0.2782 0.0044 0.1614 0.2375 0.0106 0.2144 0.3470
0.95 0.0073 0.3297 0.3328 0.0082 0.3483 0.4200 0.0069 0.3166 0.4382

3 0.5 0.0102 0.6314 0.6229 0.0080 0.5651 0.6183 0.0058 0.5799 0.6492
0.8 0.0039 0.7200 0.7124 0.0075 0.5646 0.6311 0.0071 0.6006 0.6918
0.95 0.0047 0.6615 0.6501 0.0064 0.6208 0.6864 0.0090 0.7442 0.8442

50 1 0.5 0.0080 0.2652 0.2436 0.0070 0.1916 0.2275 0.0072 0.2284 0.3022
0.8 0.0099 0.2826 0.3228 0.0062 0.2637 0.2889 0.0066 0.3398 0.3711
0.95 0.0081 0.3453 0.3653 0.0140 0.4428 0.4556 0.0074 0.4569 0.4812

3 0.5 0.0101 0.6612 0.6608 0.0057 0.6433 0.6539 0.0045 0.6553 0.6696
0.8 0.0051 0.7472 0.7549 0.0051 0.6589 0.6675 0.0086 0.7003 0.7077
0.95 0.0094 0.7242 0.7277 0.0044 0.7123 0.7169 0.0071 0.8695 0.8770

100 1 0.5 0.0072 0.3245 0.3248 0.0068 0.2473 0.2661 0.0082 0.2686 0.3179
0.8 0.0109 0.3446 0.3615 0.0045 0.3084 0.3126 0.0081 0.3626 0.3810
0.95 0.0106 0.3779 0.3827 0.0072 0.4697 0.4821 0.0071 0.4818 0.4942

3 0.5 0.0121 0.6798 0.6822 0.0065 0.6525 0.6588 0.0055 0.6696 0.6825
0.8 0.0056 0.7632 0.7666 0.0083 0.6697 0.6705 0.0049 0.7160 0.7202
0.95 0.0075 0.7381 0.7337 0.0059 0.7343 0.7444 0.0063 0.8794 0.8823
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