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1 Introduction

Estimation of the covariance matrix Σ in high dimensions has been important for

many statistical procedures such as principal component analysis, linear regression

and discriminant analysis. Some of these procedures require estimation of the co-

variance structure and eigenvalues of Σ while the others need the inverse. It has long

been known that standard estimators such as maximum likelihood or least squares

developed for large sample sizes N and relatively small number of variables p do not

provide a satisfactory solution in high dimensions. Therefore modification of these

estimators is of crucial importance for high-dimensional problems.

During recent years, many methods for improving the estimators of Σ and its

inverse in the context of high dimensional data, i.e. if the number of variables p is

much larger than N , have been developed; see e.g., Kubokawa and Srivastava (2008)

and Ledoit and Wolf (2004). However, all of these methods have been focused on

the case where all data is observed. Since in practice data sets often contain missing

patterns, it is important to develop approaches for high dimensional covariance

estimation in presence of missing data.

In this study, we focus on a particular type of statistical missing data, a mono-

tone missing scheme with missing values patterns occurring completely at random.

In other words, we assume that the underlying missing-data mechanism is ignor-

able under parametric estimation. This type of missing data problem has been

extensively studied in the statistical literature; see e.g. Anderson (1957), Bhargava

(1975). The sample scheme treated in them is called a k-step monotone missing

data. In particular, in Anderson and Olkin (1985), the MLE of Σ for the case of

2-step monotone missing data was derived explicitly. Further, Kanda and Fujikoshi

(1998) studied asymptotic properties of MLE of Σ constructed by 2-step monotone

missing data and extend these results to the general case of k-step monotone missing

data. However, in high dimensional situations, the MLE of Σ is known to perform

poorly even for the case of complete data, since it is usually impossible to collect
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enough observations to fulfill p ≪ n condition.

In this paper, we present a solution to this problem by extending the idea of

Ledoit and Wolf (2004) to the case of 2-step monotone missing data and suggest a

new estimator of the covariance matrix that is adjusted to high dimensionality in

combination with missing data.

The rest of the paper is organized as follows. In Section 2, we set up 2-step mono-

tone missing data scheme and derive some auxiliary unbiased estimators, which then

will be used in Section 3 where we present our new shrinkage estimators. Section 4

reports numerical studies on the risk performance of the suggested estimators and

comparison with results by Ledoit and Wolf (2004). We conclude in Section 5 and

present the proof of key results in Appendix (A.2, A.3 and A.4).

2 Auxiliary unbiased estimators and their asymptotic property under

the 2-step monotone missing data

To specify the problem considered here, let x be the p-dimensional random vector

distributed as Np(µ,Σ), where µ is mean vector and Σ is covariance matrix. Assume

that x can be decomposed as (x′
1,x

′
2)

′, where x1 and x2 are p1 and p2-dimensional

vectors, respectively. Suppose now that we have N1 independent observations on the

full set of variables, x, and N2 independent observations on x1. We introduce some

notation for the sample means and covariance matrices. Let x̄(1) denote the sample

mean of x based on the N1 observations, and x̄(1) =
(
x̄
(1)′

1 , x̄
(1)′

2

)′
, x̄

(1)
i :pi × 1, i =

1, 2. Let further x̄(2) denote the p1-dimensional sample mean vector for based on the

N2 observations. Throughout this paper, we use the letter j only as running suffix

for sample observations.

With above notations, the 2-step monotone missing data scheme, described in

Shutoh et al. (2011) can be presented by

x
(1)
1 ,x

(1)
2 , . . . ,x

(1)
N1
, x

(2)
1 ,x

(2)
2 , . . . ,x

(2)
N2
,

where x
(1)
j (j = 1, . . . , N1) denotes the p-dimensional sample vector and x

(2)
j (j =

3



1, . . . , N2) denotes the p1-dimensional sample vector. The graphical representation

of this scheme is given in Figure 1.1.

Please insert Figure 1.1 around here.

Further the sample covariance matrices based on the N1 and N2 observations are

expressed as

S(1) =
1

n1

N1∑
j=1

(x
(1)
j − x̄(1))(x

(1)
j − x̄(1))′, S(2) =

1

n2

N2∑
j=1

(x
(2)
j − x̄(2))(x

(2)
j − x̄(2))′,

respectively, where ni = Ni − 1, i = 1, 2.

Let the partitions of µ,Σ and S(1) corresponding to ones of x be

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, S(1) =

(
S
(1)
11 S

(1)
12

S
(1)
21 S

(1)
22 ,

)
.

respectively. Let µ̂ and Σ̂ denote the MLE of µ and Σ, respectively, and assume

that µ̂ and Σ̂ can be partitioned in the same way as µ and Σ. From Anderson and

Olkin (1985), we can express the MLE’s µ̂ and Σ̂ as follows

µ̂1 =
1

N
(N1x̄

(1)
1 +N2x̄

(2)), µ̂2 = x̄
(1)
2 − Σ̂21Σ̂

−1
11 (x̄

(1)
1 − µ̂1),

Σ̂11 =
1

N
(W

(1)
11 +W (2)), Σ̂12 = Σ̂11(W

(1)
11 )−1W

(1)
12 ,

Σ̂22 =
1

N1

W
(1)
22·1 + Σ̂21Σ̂

−1
11 Σ̂12,

where

N = N1 +N2,

W (1) = n1S
(1), W (2) = n2S

(2) +
N1N2

N
(x̄

(1)
1 − x̄(2))(x̄

(1)
1 − x̄(2))′,

W (1) =

(
W

(1)
11 W

(1)
12

W
(1)
21 W

(1)
22

)
, W

(1)
22·1 = W

(1)
22 −W

(1)
21 (W

(1)
11 )−1W

(1)
12 .

In Lemma 2.1 stated below, we propose two auxiliary unbiased estimators of Σ under

2-step monotone missing data.

Lemma 2.1. Let Σ̂1 and Σ̂2 be defined as

Σ̂1 =

(
Σ̂1,11 Σ̂1,12

Σ̂1,21 Σ̂1,22

)
, Σ̂2 =

(
Σ̂2,11 Σ̂2,12

Σ̂2,21 Σ̂2,22

)
,
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where

Σ̂1,11 =
1

N − 1
(W

(1)
11 +W (2)), Σ̂1,12 = Σ̂11(W

(1)
11 )−1W

(1)
12 ,

Σ̂1,21 = Σ̂′
1,12, Σ̂1,22 = b1W

(1)
22·1 + Σ̂21Σ̂

−1Σ̂12,

Σ̂2,11 =
1

N − 1
(W

(1)
11 +W (2)), Σ̂2,12 =

1

N1 − 1
W

(1)
12 ,

Σ̂2,21 = Σ̂′
2,12, Σ̂2,22 =

1

N1 − 1
W

(1)
22 ,

and

b1 =
1

N1 − p1 − 1

(
1− p1

N − 1
− N2p1

(N − 1)(N1 − p1 − 2)

)
.

Then

E[Σ̂1] = E[Σ̂2] = Σ.

Proof : See Appendix (A.2).

Due to the unbiasedness property, both estimators, Σ̂1 and Σ̂2 are expected

to perform better than S(1) which is based on the complete data part only. The

following lemma provides exact results on the relative performance accuracy of these

three estimators in terms of expected quadratic loss.

Lemma 2.2. Let

β0 =
p

n1

a21 +
1

n1

a2,

where ai = trΣi/p and Σi denotes i-th power of the matrix Σ for i = 1, 2. Then,

(i) E[∥S(1) − Σ∥2F ] = β0,

(ii) E[∥Σ̂1 − Σ∥2F ] = β0 −m1,

(iii) E[∥Σ̂2 − Σ∥2F ] = β0 −m2,

where ∥ · ∥2F denotes the normalized Frobenious norm,

m1 =
N2

nn1

{
pa21 + a2 − k1

tr Σ2
22·1
p

− k2
(tr Σ22·1)

2

p
− 2k3

(
tr Σ11 tr Σ22·1

p

+
trΣ22·1Σ21Σ

−1
11 Σ12

p
+
trΣ22·1 tr Σ21Σ

−1
11 Σ12

p

)}
,

m2 =
N2

nn1

(
pa

(11)2

1 + a
(11)
2

)
,
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and

k1 =

(
1− 3r1 + 4r21 − 2r31r2 −

4− 11r1 + 6r21r2
n1

+
3− 4r1r2

n2
1

)
{
(1− r1)

(
1− r1 −

1

n1

)(
1− r1 −

3

n1

)}−1

, (2.1)

k2 =
(
1− 4r1 + 7r21 − 4r31 − 2r31r2 + 2r41r2

+
8r31r2 − 4r21r2 − 15r21 + 16r1 − 5

n1

+
8r21r2 − 2r1r2 − 12r1 + 7

n2
1

+
2r1r2 − 3

n3
1

){
(1− r1)

(
1− r1 −

1

n1

)2(
1− r1 −

3

n1

)}−1

, (2.2)

k3 =

(
1− r1 −

1

n1

)−1

, (2.3)

r1 =
p1
n1

, r2 =
n1

n
.

Proof : See Appendix (A.3).

It follows from (2.1)-(2.3) that ki = 1+O(n−1) for all i, assuming that p is fixed

and n is relatively large. Then the following relationship between m1 and m2 holds

m2 = m1 +
N2

nn1

(
tr(Σ21Σ

−1
11 Σ12)

2

p
+

Σ21Σ12

p
+

(trΣ21Σ
−1
11 Σ12)

2

p

+
(trΣ11 tr Σ21Σ

−1
11 Σ12)

2

p

)
+ o

(
1

n

)
,

which implies that Σ̂1 is more accurate estimator than Σ̂2 in a large sample case.

However, Σ̂1 will be worse than S(1) since k1, k2 and k3 grow when p1/N1 → 1. On

the other hand, since Σ̂2 does not depend on the relationship between p1 and N1,

its accuracy is better than S(1). By this reason, it can be said that Σ̂2 is a flexibly

accurate estimator.

3 The shrinkage estimator for high-dimensional data with 2-step mono-

tone missing values

On the complete samples, Ledoit and Wolf (2004) provide a shrinkage estimator for

Σ given by

Σ̂∗
f =

β̂f

δ̂f
µ̂fI +

α̂f

δ̂f
S(1),
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where

α̂f = â2 − â21, β̂f =

(
p

n1

)
â21, δ̂f = â2 +

(
p

n1

− 1

)
â21, µ̂f = â1.

In this study, we extend this approach to the case of 2-step monotone missing data

using auxiliary estimators Σ̂1 and Σ̂2 derived in Section 2.

Ledoit and Wolf type estimator is derived by the linear combination Σ∗ = ρ1I +

ρ2Σ̂b of the identity matrix I and the unbiased estimator Σ̂b = (Σ̂1 or Σ̂2) whose

expected quadratic loss is minimum. Observed that Σ̂∗ = Σ̂∗
f if Σ̂b = S(1). Following

the technique of Ledoit and Wolf (2004), consider now the optimization problem

min
ρ1, ρ2

E[∥Σ∗ − Σ∥2F ] s.t. Σ∗ = ρ1I + ρ2Σ̂b, (3.1)

where the coefficients ρ1 and ρ2 are non-random. The solution of (3.1) is given by

Σ∗ =
β

δ
µI +

α

δ
Σ̂b,

where µ = trΣ/p, α = ∥Σ − µI∥2F , β = E[∥Σ̂b − Σ∥2F ], δ = E[∥Σ̂b − µI∥2F ]. With

this notations we obtain µ = a1, α = a2 − a21.

3.1 The suggested estimator based on Σ̂1

A crucial step of our estimation is to get the explicit expressions of E[∥Σ̂1 − Σ∥2F ]

and E[∥Σ̂1 − µI∥2F ] in terms of ai and a
(22·1)
i which are functions of tr Σ22·1. We

consider the following conditions

C0 : n1, n2, p1, p → ∞,
p1
n1

→ c0 ∈ [0, 1),
p

ni

→ ci ∈ (0,∞), i = 1, 2.

C1 : 0 < lim
p→∞

ai = lim
p→∞

tr Σi/p < ∞, i = 1, . . . , 4.

Using Lemma A.1, under the conditions C0 and C1,

E[∥Σ̂1 − Σ∥2F ] = β1 + o(1), E[∥Σ̂1 − µI∥2F ] = δ1 + o(1),
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where

β1 =
p

n1

a21 −m∗
1,

δ1 = a2 +

(
p

n1

− 1

)
a21 −m∗

1,

m∗
1 = m∗

1(a1, a
(22·1)
1 ) =

N2p

nn1

{
a21 − 2k3a

(22·1)
1 a1 + (2k3 − k2)a

(22·1)2
1

}
and a

(22·1)
1 = trΣ22·1/p. Thus, the asymptotically optimal linear combination of the

identity matrix I and Σ̂1 is given by

Σ∗
1 =

β1

δ1
µI +

α

δ1
Σ̂1.

Observe however that Σ∗
1 depends on unknown parameters. Therefore, the next

step is to replace these parameters their consistent estimators, and show that the

asymptotic properties of the resulting estimator are unchanged.

Under the conditions C0 and C1, the consistent estimators of α, β1 and δ1 are

given by

α̂ = â2 − â21, β̂1 =
p

n1

â21 − m̂∗
1, δ̂1 = (p/n1 − 1)â21 + â2 − m̂∗

1, (3.2)

where m̂∗
1 = m∗

1(â1, â
(22·1)
1 ), and â1, â2 and â

(22·1)
1 are consistent estimators of the

corresponding parameters

â1 =
trS(1)

p
, â2 =

n2
1

(n1 − 1)(n1 + 2)

(
trS(1)2

p
− (trS(1))2

n1p

)
,

â
(22·1)
1 =

n1 trS
(1)
22·1

(n1 − p1)p
. (3.3)

Now, by combining (3.2) and (3.3), we define the our estimator as

Σ̂∗
1 =

β̂1

δ̂1
µ̂I +

α̂

δ̂1
Σ̂1.

One can see that Σ̂∗
1 has the same asymptotic properties as Σ∗

1: ∥Σ̂∗
1 − Σ∗

1∥2F
P−→ 0

and E[∥Σ̂∗
1 − Σ∥2F ] → E[∥Σ∗ − Σ∥2F ] under conditions C0 and C1.

Consider further the relationship between Σ̂∗
1 and Σ̂∗

f by Ledoit and Wolf (2004)

when using complete data part only. The following proposition provides conditions

for the estimator Σ̂∗
f to dominate Σ̂∗

f under the expected quadratic loss.
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Proposition 3.1. Under the conditions C1 and n1, n2, p1, p → ∞ with p1/n1 → 0,

p/ni → ci ∈ (0,∞), i = 1, 2 and ni/(n1 + n2) → ci ∈ (0, 1), i = 3, 4

E[∥Σ̂∗
f − Σ∥2F ]− E[∥Σ̂∗

1 − Σ∥2F ] →
c1c4α

δ0δ1
(a21 − a

(22·1)
1 )2.

Proof : See Appendix (A.4).

3.2 The suggested estimator based on Σ̂2

The dominance property of Σ̂∗
1 over Σ̂

∗
f follows from the condition p1/n1 → 0, which

is very strong. Furthermore, if p1 > n1, Σ̂
∗
1 is not applicable due to singularity of

Σ̂1. In this subsection, we get another condition for the estimator of Σ to dominate

Σ̂∗
f in the case of p1 > n1. Using the technique of subsection 3.1 and by considering

C3 : n1, n2, p1, p → ∞,
p1
n1

→ c0 ∈ [0,∞),
p

ni

→ ci ∈ (0,∞), i = 1, 2,

ni/(n1 + n2) → ci ∈ (0, 1), i = 3, 4,

we obtain

E[∥Σ̂2 − Σ∥2F ] = β2 + o(1), E[∥Σ̂2 − µI∥2F ] = δ2 + o(1),

where

β2 =
p

n1

a21 −m∗
2, δ2 = a2 +

(
p

n1

− 1

)
a21 −m∗

2, m∗
2 = m∗

2(a
(11)
1 ) =

N2p

nn1

a
(11)2

1

and a
(11)
1 = trΣ11/p. Observe that C3 presents more flexible asymptotic framework

than C0. Now, the asymptotically optimal linear combination of the identity matrix

I and Σ̂2 is given by

Σ∗
2 =

β2

δ2
µI +

α

δ2
Σ̂2.

Of this, we propose our estimator of the form

Σ̂∗
2 =

β̂2

δ̂2
µ̂I +

α̂

δ̂2
Σ̂2,
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where

α̂ = â2 − â21, β̂2 =
p

n1

â21 −m∗
2(â

(11)
1 ), δ̂2 = (p/n1 − 1)â21 + â2 −m∗

2(â
(11)
1 )

and â
(11)
1 = trS

(1)
11 /p.

By the same arguments as in subsection 3.1, Σ∗
2 and Σ̂∗

2 have the same asymptotic

properties because ∥Σ̂∗
2 − Σ∗

2∥2F
P−→ 0 and E[∥Σ̂∗

2 − Σ∥2F ] → E[∥Σ∗
2 − Σ∥2F ] under

conditions C1 and C3.

The dominance property of Σ̂∗
2 over Σ̂∗

f follows from the following proposition.

Proposition 3.2. Under the conditions C1 and C3,

E[∥Σ̂∗
f − Σ∥2F ]− E[∥Σ̂∗

2 − Σ∥2F ] →
c1c4α

δ0δ2
a
(11)2

1 .

Proof : The proof of this proposition which we omit, is straightforward applica-

tion of the technique derived in Appendix (A.4).

4 Numerical results

Using Monte Carlo simulations, we compare performance of our new estimators Σ̂∗
1

and Σ̂∗
2 to the shrinkage estimator by Ledoit and Wolf (2004).

The simulation experiment is planned as follows. The data are generated from

the normal model with zero mean vector and covariance matrix

Σ = diag(σ1, σ2, . . . , σp)(ρ
|i−j|)diag(σ1, σ2, . . . , σp),

where σi is a random variable following continuous uniform distribution on the

interval (0, 5). For all simulations we assume N1 = N2 for convenience. We set

p = 100, 150, 200, and for each one consider three different values of ρ = 0.2, 0.5, 0.8

to vary the covariance parameters.

The first setting represents the case when missing part of the data asymptotically

exceeds the complete part. We fix p1 = 10, the size of complete part, and assume

that N1 = N2 = 50. This implies that p2, the dimension of the missing part grows

with p.
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In the second setting, we vary the proportion of the data that are missing. To put

it more precisely, for each p = 100, 150, 200, we set p1 = [q × p], for q = 0.5, 0.7, 0.9,

and

Σ = diag(σ1, σ2, . . . , σp)(0.8
|i−j|)diag(σ1, σ2, . . . , σp),

where σi is a random variable having continuous uniform distribution on the interval

(0, 5). Here, [a] denotes the integer part of a.

Within the first setting, three following estimators are evaluated: Σ̂∗
f , Σ̂∗

1, Σ̂∗
2,

whereas in the second setting we only focus on Σ̂∗
f and Σ̂∗

2.

To evaluate performance accuracy we use the loss function based on normalized

Frobenius norm, L(Σ,∆) = ∥∆−Σ∥2F , and define the risk function as the expected

loss, R(Σ,∆) = E[L(Σ,∆)], when estimating Σ by ∆. We asses the relative risk

rate as follows

RR(∆) = R(Σ,∆)/R(Σ, S(1)),

where S(1) is used reference estimator for all comparisons. For all the settings, the

value of RR is computed by 100,000 replications.

Tables 4.1-4.3 report the risk rates for all three estimators in the for the first

setting, and figures 4.1-4.3 plot the risk rates for Σ̂∗
f and Σ̂∗

2 as functions of p for the

second setting.

Overview through the simulation results reveals that our new estimators provide

significant improvements over Σ̂∗
f for both types of missing scenarios. Although RRs

of Σ̂∗
1 and Σ̂∗

2 are very close to each other for all ρ, Σ̂∗
2 dominates Σ̂∗

1 in the case when

missing part grows. As expected, Σ̂∗
2 yields substantial improvement over Σ̂∗

f even

in the case of fixed missing part. It could be observed that both estimators are

sensitive to the size of ρ ∈ (0, 1) which is naturally expected in a AR(1) model.

In conclusion, both suggested estimators, Σ̂∗
1 and Σ̂∗

2 are shown to have domi-

nance properties over Σ̂∗
f in high-dimensional normal model with 2-step monotone

missing data.

Please insert Tables 4.1–4.3 and Figures 4.1–4.3 around here.
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5 Conclusion

This paper provided the estimators for Σ in the case of 2-step monotone missing data

with high-dimensional setting by extending Ledoit and Wolf’s (2004) estimator. The

result provided a solution to the problem such that the existing MLE on the basis of

2-step monotone missing data is not also applicable in the case of high-dimensional

setting. Further, it could be observed that our estimators were superior to Ledoit and

Wolf’s (2004) estimator in view of the relative risk rate for the performed simulations.

In the future, we may also derive the theoretical results of the procedures with our

estimators which are applicable to the high-dimensional and missing data.

Appendix

To prove propositions 2.1 and 2.2 we need two additional lemmas stated below. For

these proofs we need the some preliminary results formulated in Lemma A.1 and

Lemma A.2.

A.1 Preliminary results

Lemma 5.1. Suppose that A follows Wishart distribution Wp(Σ, n), where A admits

the similar partition as that of Σ in Section 2, and let A22·1 = A22 − A21A
−1
11 A12.

Then

(i) A22·1 ∼ Wp(Σ22·1, n− p1), and A22·1 is independent of A11 and A12,

(ii) A12|A11 ∼ Np1×p2(V ec(A11Σ
−1
11 Σ12),Σ22·1 ⊗ A11)

Proof. For the proof, see Muirhead (1982) and Siotani et al. (1985).

Now we state Lemma A.2.
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Lemma 5.2. For Σ̂1 defined in Section 2, it holds that

E[tr Σ̂
2
1] =

n1 + 1

n1

tr Σ2 +
1

n1

(tr Σ)2 − N2

nn1

{tr Σ2 + (trΣ)2 − k1 tr Σ
2
22·1

−k2(tr Σ22·1)
2 − 2k3(tr Σ22·1 tr Σ11 + trΣ22Σ21Σ

−1
11 Σ12

+trΣ22 tr Σ21Σ
−1
11 Σ12},

where ki, i = 1, 2, 3 is defined in Lemma 2.2.

Proof. Using the following expression

E[tr Σ̂
2
1] = E[tr(Σ̂

2
1,11 + Σ̂1,12Σ̂1,21)] + E[tr(Σ̂

2
1,22 + Σ̂1,21Σ̂1,12)] (A.1)

and the results of Lemma A.1, we obtain

E[tr(Σ̂
2
1,11 + Σ̂1,12Σ̂1,21)] =

n+ 1

n
tr(Σ2

11 + Σ12Σ21) +
1

n
tr Σ trΣ11

+
N2

n(n1 − p1 − 1)
tr Σ22·1 tr Σ11, (A.2)

For the second term in (A.1) we get

E[tr(Σ̂
2
1,22 + Σ̂1,21Σ̂1,12)] =

1

n2 E[tr Ψ̂21W
2
11Ψ̂12] + b21 E

[
trW

(1)2

22·1

]
+
b1
n
E[tr Ψ̂21W11Ψ̂12W

(1)
22·1]

+
b1
n
E[trW

(1)
22·1Ψ̂21W11Ψ̂12]

+
1

n2 E[tr Ψ̂21W11Ψ̂12Ψ̂21W11Ψ̂12], (A.3)
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where Ψ̂21 = W
(1)
21

(
W

(1)
11

)−1

. From Lemma A.1,

E[tr Ψ̂21W
2
11Ψ̂12] = n(n+ 1) trΣ21Σ12 + n(tr Σ11 tr Σ21Σ

−1
11 Σ12

+trΣ22·1 tr Σ11) +
nN2

(n− p1 − 1)
tr Σ11 tr Σ22·1,

E[trW
(1)2

22·1 ] = (n1 − p1)(n1 − p1 − 1) tr Σ2
22·1

+(n1 − p1)(tr Σ22·1)
2, (A.4)

E[tr Ψ̂21W11Ψ̂12W
(1)
22·1] = (n1 − p1)p1

(
1 +

N2

n1 − p1 − 1

)
tr Σ2

22·1

+n(n1 − p1) tr Σ21Σ
−1
11 Σ12Σ22·1

}
, (A.5)

E[tr(Ψ̂21W11Ψ̂12)
2] =

{
p21 +

2p21N2

n1 − p1 − 1
+ c1(2N2p1 +N2

2p
2
1)

+2c2(N2p1 +N2p
2
1 +N2

2p1)
}
tr Σ2

22·1

+

{
p1 +

2p1N2

n1 − p1 − 1
+ c2(2N2p1 +N2

2p
2
1)

+c2(n1 − p1 − 1)(N2p1 +N2
2p1 +N2p

2
1)
}

+{tr Σ2
22·1 + (trΣ22·1)

2}+ 2
(
n+N2

+
N2

2 +N2p1 +N2

n1 − p1 − 1

)
tr Σ22·1Σ21Σ

−1
11 Σ12

+2np1

(
1 +

N2

n1 − p1 − 1

)
tr Σ22·1 tr Σ21Σ

−1
11 Σ12

+(n2 + n) tr(Σ21Σ
−1
11 Σ12)

2

+n
(
tr Σ21Σ

−1
11 Σ12

)2
. (A.6)

Substituting (A.4)-(A.6) into (A.3), the proof of Lemma A.1 is complete. □

14



A.2 Proof of Lemma 2.1

Using the moment properties of the Wishart distribution and applying Lemma A.1,

we get

E[Σ̂1,11] = E

[
1

N − 1
(W

(1)
11 +W (2))

]
=

1

N − 1
{(N1 − 1)Σ11 +N2Σ11}

= Σ11, (A.7)

E[Σ̂1,12] =
1

N − 1
E

[
(W

(1)
11 +W (2))

(
W

(1)
11

)−1

W
(1)
12

]
=

1

N − 1
E

[
W

(1)
12 +W (2)

(
W

(1)
11

)−1

W
(1)
12

]
=

1

N − 1
{(N1 − 1)Σ12 +N2Σ12}

= Σ12, (A.8)

E[Σ̂1,22] =
1

N1 − p1 − 1

(
1− p1

N − 1
− N2p1

(N − 1)(N1 − p1 − 2)

)
E[W

(1)
22·1]

+
1

N − 1
E

[
W

(1)
21

(
W

(1)
11

)−1 (
W

(1)
11 +W (2)

)(
W

(1)
11

)−1

W
(1)
12

]
.(A.9)

Then, for the first term of (A.9) we have

1

N1 − p1 − 1

(
1− p1

N − 1
− N2p1

(N − 1)(N1 − p1 − 2)

)
E[W

(1)
22·1]

=

(
1− p1

N − 1
− N2p1

(N − 1)(N1 − p1 − 2)

)
Σ22·1. (A.10)

For the second term of (A.9) we obtain

1

N − 1
E

[
W

(1)
21

(
W

(1)
11

)−1 (
W

(1)
11 +W (2)

)(
W

(1)
11

)−1

W
(1)
12

]
= Σ22 −

(
1− p1

N − 1
− N2p1

(N − 1)(N1 − p1 − 2)

)
Σ22·1. (A.11)

Substituting (A.10) and (A.11) into (A.9), we have

E[Σ̂1,22] = Σ22. (A.12)

Combining (A.7), (A.8) and (A.12), we get E[Σ̂1] = Σ.

The unbiasedness of Σ̂2 is easily shown by calculating the first moment of the

Wishart matrices W (1) and W (2). □
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A.3 Proof of Lemma 2.2

The result in (i) is established in (see, e.g., Ledoit and Wolf (2004)). To show (ii)

we first express it as

E[∥Σ̂1 − Σ∥2F ] = E[tr Σ̂
2
1]/p− a2.

By using Lemma A.2, we can calculate E[tr Σ̂2
1], which gives the statement (ii). It

should be noted that (i) is shown assuming that N2 = 0. Finaly, we give the proof

of (iii), by first expressing

E[∥Σ̂2 − Σ∥2F ] = E[tr Σ̂
2
2]/p− a2 (A.13)

and using the decomposition of Σ̂2 as(
n1

n
S
(1)
11 + N2

n
S(2) S

(1)
12

S
(1)
21 S

(1)
22

)
.

Then

1

p
E[tr Σ̂

2
2] =

1

p

{
E

[
tr

(
n1

n
S
(1)
11 +

N2

n
S(2)

)2
]
+ 2E[trS

(1)
12 S

(1)
21 ]

+ E
[
trS

(1)2

22

]}
=

1

p

{
n1 + 1

n1

tr Σ2 +
1

n1

(tr Σ)2
}
− N2p

nn1

{
tr Σ2

11 + (trΣ11)
2
}
.

(A.14)

Substituting (A.14) into (A.13), we obtain (iii). It should be noted that (i) is shown

assuming that N2 = 0. □

A.4 Proof of Proposition 3.1

Under the conditions C1 and assuming that n1, n2, p1, p → ∞ with p1/n1 → 0

and p/ni → ci ∈ (0,∞), i = 1, 2,

E[∥Σ̂∗
1 − Σ∥2F ] →

αβ1

δ1
and E[∥Σ̂∗

f − Σ∥2F ] →
αβ0

δ0
, (A.15)
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where δ0 = α+β0. By using the continuous mapping theorem and (A.15), we obtain

E[∥Σ̂∗
f − Σ∥2F ]− E[∥Σ̂∗

1 − Σ∥2F ] →
αβ0

δ0
− αβ1

δ1
. (A.16)

On the other hand, under the same assumptions as above,

αβ0

δ0
− αβ1

δ1
=

α

δ0δ1
(β0 − β1) =

α

δ0δ1
m1 →

N2pα

nn1δ0δ1
(a21 − a

(22·1)
1 )2. (A.17)

Combining (A.16) and (A.17), Proposition 3.1 follows. □

Acknowledgments

The authors would like to extend their sincere gratitude to the referee who gave

invaluable comments and suggestions, which have greatly enhanced this paper. Any

remaining errors are the authors’ responsibility. This research was in part supported

by grants from the Forum for Asian Studies (4440101-2010), Stockholm University,

Sweden. M.Hyodo’s research was in part supported by Grant-in-Aid for JSPS Fellow

(23-9731). T. Seo’s research was in part supported by Grant-in-Aid for Scientific

Research (C) (23500360). T. Pavlenko’s research was in part supported by grants

from Swedish Research Council (421-2008-1966).

References

Anderson, T. W. (1957). Maximum likelihood estimates for multivariate normal dis-

tribution when some observations are missing. Journal of the American Statistical

Association, 52, 200-203.

Anderson, T.W. and Olkin, I. (1985). Maximum likelihood estimation of the param-

eters of multivariate normal distribution. Linear Algebra and Its Applications, 70,

147-171.

Bhargava, R. P. (1975). Some one-sample hypothesis testing problems when there is

monotone sample from a multivariate normal population. Annals of the Institute

of Statistical Mathematics, 27, 327-339.

17



Fujikoshi, Y. and Seo, T. (1998). Asymptotic approximations for EPMC’s of the

linear and the quadratic discriminant function when the sample size and the

dimension are large. Random Operators and Stochastic Equations, 6, 269-280.

Jinadasa, K. G. and Tracy, D. S. (1992). Maximum likelihood estimation for multi-

variate normal distribution with monotone sample. Communications in Statistics

A, Theory and Methods, 21, 41-50.

Kanda, T. and Fujikoshi, Y. (1998). Some basic properties of the MLE’s for a mul-

tivariate normal distribution with monotone missing data. American Journal of

Mathematical and Management Sciences, 18, 161-190.

Kubokawa, T. and Srivastava, M. S. (2008). Estimation of the precision matrix

of a singular Wishart distribution and its application in high-dimensional data.

Journal of Multivariate Analysis, 99, 1906-1928.

Little, R. J. A. and Rubin, D. R. (1987). Statistical Analysis with Missing Data,

Wiley, New York.

Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large dimensional

covariance matrices. Journal of Multivariate Analysis, 88, 365–411.

Muirhead, R. J. (1982). Aspects of multivariate statistical theory, Wiley, New York.

Shutoh, N., Hyodo, M. and Seo, T. (2011). An asymptotic approximation for EPMC

in linear discriminant analysis based on two-step monotone missing samples. Jour-

nal of Multivariate Analysis, 102, 252–263.

Siotani, M., Hayakawa, T. and Fujikoshi, Y. (1985). Modern Multivariate Statistical

Analysis, A Graduate Course and Handbook. Ohio:American Science Press.

18



Table 4.1: The risk rates when ρ = 0.2
p = 100 p = 150 p = 200

RR(Σ̂∗
f ) 0.1968 0.1347 0.1050

RR(Σ̂∗
1) 0.1946 0.1336 0.1044

RR(Σ̂∗
2) 0.1942 0.1336 0.1044

Table 4.2: The risk rates when ρ = 0.5
p = 100 p = 150 p = 200

RR(Σ̂∗
f ) 0.3392 0.2550 0.2161

RR(Σ̂∗
1) 0.3319 0.2511 0.2135

RR(Σ̂∗
2) 0.3309 0.2507 0.2134

Table 4.3: The risk rates when ρ = 0.8
p = 100 p = 150 p = 200

RR(Σ̂∗
f ) 0.6821 0.5826 0.5039

RR(Σ̂∗
1) 0.6574 0.5634 0.4895

RR(Σ̂∗
2) 0.6508 0.5625 0.4890
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N1 N2

p1

p2

p

missing data

Figure 1.1: 2-step monotone missing data

RR(∆) plotted as a function of the number of variables for ∆ = Σ̂∗
f (solid) and

∆ = Σ̂∗
2(dashed).
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Fig.4.1. q = 0.5.
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Fig.4.2. q = 0.7.
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Fig.4.3. q = 0.9.
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