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A test statistic is developed for making inference about a block-diagonal

structure of the covariance matrix when the dimensionality, p exceeds n,

where n = N−1 and N denotes the sample size. The suggested procedure

extends the complete independence results derived by Srivastava (2005)

and Schott (2005). Since the classical hypothesis testing methods based

on the likelihood ratio degenerate when p > n, the main idea is to turn

instead to a distance function between the null and alternative hypothesis.

The test statistic is then constructed using a consistent estimator of this

function, where consistency is considered in an asymptotic framework

that allows p to grow together with n. By adapting some technical results

of Srivastava (2005) and Schott (2005), the suggested statistic is also

shown to have an asymptotic normality under the null hypothesis. Some

auxiliary results on the moments of products of multivariate normal ran-

dom vectors and higher order moments of Wishart matrices, important

for our evaluation of the test statistic, are derived. We perform empirical

power analysis for a number of alternative covariance structures.
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1 Introduction

In recent years, a number of statistical methods has been developed to meet the

challenge of analyzing high-dimensional data, such as e.g., DNA microarray gene

expressions, where the number of feature variables, p typically greatly exceeds n.

A particular attention has been paid to estimation of the p × p covariance matrix,

Σ, and its inverse, Σ−1, as they play a major role in many statistical procedures,

examples include e.g., linear and quadratic discriminant analysis, etc.

Because of the difficult nature of the task of reliable estimation of Σ and Σ−1

when p ≫ n, there has been a flurry of recent activity in the literature on deriving

test procedures for rather restrictive covariance structures. Examples include e.g.,

procedures for testing identity (H01 : Σ = Ip), sphericity (H02 : Σ = σ2Ip), diagonal

structure (H03 : Σ = diag(d1, · · · , dp)) and independence of two sub-vectors (H04 :

Σ = diag(Σ1,Σ2)) of the covariance matrix have been developed and studied in a

high-dimensional setting. The problem of testing the hypothesis in H01 is treated

in Ledoit and Wolf (2002), Schott (2005), Srivastava (2005) and Fisher (2012).

Srivastava (2005) also derived distributions of test statistics under H02 and H03,

respectively in a growing dimensions, i.e., assuming that n = O(pδ), 0 < δ ≤ 1.

In addition, Srivastava and Reid (2012) proposed test statistic for H04. Recently,

Srivastava, Kollo and Rosen (2011) discussed H01, H02 and H03 under non-normal

assumptions.

Apparently, testing the above hypotheses can essentially simplify the analyses

of data sets where p ≫ n; for instance, if Σ satisfies either of H01, H02 or H03,

then the univariate statistical approaches are applicable. Observe however, that

many practical real world problems are structured, meaning that the variables can

be clustered or grouped into blocks, which share similar connectivity or correlation

patterns. For instance, genes can be partitioned into pathways, i.e., into blocks

of variables, where the connection within a pathway might be more stronger than

connections between pathways, and where the block-diagonal covariance structure
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naturally comes. Hence, the pathway-level analysis can provide biologically mean-

ingful hypotheses on the block-diagonality, for which it would be desirable obtain

the significance tests that can accommodate p ≫ n settings.

When p ≫ n the verification of the block-diagonal structure is very important;

if the null hypothesis holds then the total number of unknown parameters to be

estimated for Σ reduces to
∑b

i=1 pi(pi + 1)/2 instead of p(p + 1)/2 and, assuming

that the block size pi < n, a local estimation of each block-diagonal entry of Σ or

Σ−1 can be obtained using the standard maximum likelihood approach.

It is also interesting to note, that the block-diagonal covariance structure attracts

much attention across the fields of convex optimization and machine learning, with

the main focus on the Gaussian graph structure learning procedures. With the same

motivation as in parameter estimation, a special attraction in the context of covari-

ance graph structure learning hinges on the essential reduction of the computational

complexity in high dimensions. As it is shown in e.g., Pavlenko et al. (2012) and

Danaher et al. (2014), the decomposition of the sample covariance graphs into a

set of connected components induced by the block-diagonality, makes it possible to

solve otherwise computationally infeasible large-scale problems.

Our objective in this paper is to derive a new test procedure for testing hypothesis

that Σ has a block-diagonal structure. Due to the failure of the classical likelihood

ratio based procedures when p > n, we turn to a distance function between the

null and alternative hypothesis, and suggest a test statistic based on a consistent

estimator of this function where consistency is stated in the asymptotic framework

which allows p to grow to ∞ along with n. To evaluate properties of our test,

we prove a number of important theoretical results. In particular, to prove the

unbiasedness and consistency of the estimator for a distance function, some higher

order moments of Wishart matrix and moments of products of multivariate normal

vectors are established. Further, to derive the asymptotic null distribution, the

martingale difference central limit theorem is proven for the scaled test statistic.
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The rest of the paper is organized as follows. Section 2 provides description

of our new test statistic along with the asymptotic framework, and states main

asymptotic properties of the suggested test statistic. Section 3 provides auxiliary

lemmas followed by proofs of main theorems stated in Section 2. In Section 4, we

provide simulation experiments to study the finite sample test performance with

a variety of alternative covariance structures. At last, we give some concluding

remarks.

2 Description of the test

For the development of the test we have i.i.d. observations, x1, . . . ,xn+1 coming

from Np(µ,Σ), and our goal is to derive a test for a candidate covariance structure

to be block-diagonal, i.e., this test is equivalent to test for mutual independence of

k components of the observed vector x.

Now suppose that p =
∑k

i=1 pi, where pi is the size of the i-th block and k is the

number of blocks. Let us partition x, µ and Σ into k components, as

x =


x(1)

x(2)

...
x(k)

 , µ =


µ(1)

µ(2)

...
µ(k)

 , Σ =


Σ11 Σ12 · · · Σ1k

Σ21 Σ22 · · · Σ2k
...

...
. . .

...
Σk1 Σk2 · · · Σkk

 ,

where x(i) and µ(i) are pi×1 and Σij is pi×pj, i, j = 1, · · · , k. Then the corresponding

sample estimators

x̄ =
1

n+ 1

n+1∑
i=1

xi, S =
1

n

n+1∑
i=1

(xi − x̄)(xi − x̄)′

can be partitioned accordingly, as

x̄ =


x̄(1)

x̄(2)

...
x̄(k)

 , S =


S11 S12 · · · S1k

S21 S22 · · · S2k
...

...
. . .

...
Sk1 Sk2 · · · Skk

 .

We are interested to test the hypothesis

H0 : Σij = Oij vs. HA : Σij ̸= Oij for at least one pair (i, j), i < j, (2.1)
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where Oij is pi × pj zero matrix for i, j = 1, . . . , k. Note that Σ = Σd if H0 is true,

where Σd = diag(Σ11,Σ22, · · · ,Σkk).

We define the distance measure between Σd and Σ as the normalized Frobenious

matrix norm, which can be re-expressed by

∥Σd − Σ∥2F =
tr(Σd − Σ)(Σd − Σ)′

p
=

2
∑k

j=2

∑j−1
i=1 tr ΣjiΣij

p

=

∑k
j=1

∑k
i=1 tr ΣjiΣij

p
−
∑k

j=1 tr Σ
2
jj

p
= a2 − b2,

where a2 = trΣ2/p, b2 =
∑k

j=1 a
(j)
2 /p, and a

(j)
2 = trΣ2

jj (j = 1, . . . , k).

Under H0, ∥Σd − Σ∥2F equals zero, thus (2.1) is equivalent to the following test

H0 : ∥Σd − Σ∥2F = 0 vs. HA : ∥Σd − Σ∥2F > 0. (2.2)

A test for the above hypothesis H0 vs. HA can be based on the (n, p)-consistent

estimator of ∥Σd −Σ∥2F , where consistency is in high-dimensional framework which

is defined more precisely below.

Let

â2 =
n2

(n− 1)(n+ 2)

1

p

{
trS2 − 1

n
(trS)2

}
, (2.3)

â
(i)
2 =

n2

(n− 1)(n+ 2)

{
trS2

ii −
1

n
(trSii)

2

}
. (2.4)

These estimators are proposed in Bai and Saranadasa (1996) and Srivastava (2005).

By using these estimators, we consider the estimator T of ∥Σd − Σ∥2F by

T = â2 − b̂2, where b̂2 =
1

p

k∑
i=1

â
(i)
2 . (2.5)

We make the following assumptions for deriving the null distribution of T :

(A1) pj (j = 1, 2, . . .) is fixed and k → ∞,

(A2) n = O(kδ) (0 < δ ≤ 1),

(A3)
k∑

i̸=j

a
(i)
2 a

(j)
2 ≍ k2,

(A4)
k∑

j=1

a
(j)
4 = o(k2),

k∑
j=1

a
(j)2

2 = o(k2),
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where a
(j)
4 = trΣ4

jj (j = 1, . . . , k). The assumption “pj is fixed” in (A1) means that

the number of small block size matrix is large. Since p =
∑k

i=1 pi, we note that if

(A1) holds, then it holds that p ≍ k. From Assumption (A2) and p ≍ k, we note

that n = O(pδ).

In the next theorem, we propose an estimator of ∥Σd − Σ∥2F and show that it is

unbiased and consistent.

Theorem 2.1. (Unbiasedness and consistency)

In addition to (A1)-(A4), we assume that

(A5) a2 = O(1), a4 =
trΣ4

p
= O(k),

k∑
i ̸=j

tr ΣjiΣiiΣijΣjj = O(k2),

k∑
i ̸=j

(tr ΣijΣji)
2 = O(k2).

Then for the estimator T it holds that E[T ] = ∥Σd − Σ∥2F and T
P−→ ∥Σd − Σ∥2F .

Proof. See Section 3.

From Theorem 2.1, a test for the block diagonal structure can be based on

the statistic T . In the next theorem we show that the null distribution of T is

asymptotically normal.

Theorem 2.2. (Asymptotic normality)

Under H0 and Assumptions (A1)-(A4),

nT

σ

D−→ N (0, 1),

where

σ2 = lim
k→∞

k∑
j=2

j−1∑
i=1

8(n− 1)(n+ 2)a
(j)
2 a

(i)
2

n2p2
.

Proof. See Section 3.

Clearly, to make T in (2.5) practically workable, we need to estimate its variance,

i.e., we need to estimate quantities a
(j)
2 and a

(i)
2 in σ2 and these estimators must be

consistent under high-dimensionality.
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Lemma 2.3. Suppose that

σ̂2 =
k∑

j=2

j−1∑
i=1

8(n− 1)(n+ 2)â
(j)
2 â

(i)
2

n2p2
.

Then, under H0 and Assumptions (A1)-(A4), σ̂2 P−→ σ2.

Proof. See Section 3.

By using Slutzky’s theorem and the asymptotic set up given in Theorem 2.2 and

Lemma 2.3, we obtain the following theorem.

Theorem 2.4. Under H0 and Assumptions (A1)-(A4), it holds that

nT

σ̂

D−→ N (0, 1).

Thus, by using Theorem 2.4, we propose a test based on the test statistic T and

reject H0 at the approximate level α when

nT

σ̂
> zα,

where zα is the upper critical value of standard normal distribution. Note that

according to (2.1) the test is also one-sided.

We will also consider the special case of H0 in which we set pi = 1. In this case,

a hypothesis H0 reduces to the test of completely independence hypothesis H03, see

Section 1. Srivastava (2005) proposed the test statisticfor testing H03 as

T3 =
n

2

(â2/â20)− 1

{1− (â40/â220)/p}1/2
,

where

â20 =
n

p(n+ 2)

p∑
i=1

s2ii, â40 =
1

p

p∑
i=1

s4ii,

and sij is the (i, j) element of the sample covariance matrix S. The asymptotic

distribution of T3 has been derived under both null and local alternative hypotheses

under assumptions. Observe that our results of Theorem 2.4 allow to derive the

asymptotic null distribution of T3 under weaker assumptions. We relax

(A1)′ p → ∞,

(A2)′ n = O(pδ) (0 < δ ≤ 1),
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and

(A) 0 < lim
k→∞

ai < ∞, i = 1, 2, . . . , 8.

to (A1)′, (A2)′,

(A3)′
p∑

i̸=j

σ2
iiσ

2
jj ≍ p2,

(A4)′ a4 = o(p).

where σij denotes the (i, j) element of sample covariance matrix Σ. Now we see that

under H03 the following holds

nT

σ̂
=

n

2

(â2/â20)− 1

{(n− 1)(n+ 2)/n2 − (n− 1)/(n+ 2)(â40/â220)/p}1/2

= T3 + op(1). (2.6)

Thus, from Theorem 2.4 and (2.4), the asymptotic normality of T3 immediately

follows under H03 and Assumptions (A1)′-(A4)′. We note that Assumptions (A3)′

and (A4)′ are weaker assumption than (A). Thus, (A1)′–(A4)′ is the special case of

our asymptotic framework (A1)–(A4) when pi = 1, i = 1, . . . , k. Using (A1)′–(A4)′,

Theorem 2.4 and (2.6), we observe that the asymptotic normality of T3 immediately

follows.

3 Proofs

For the full proofs of Theorem 2.1, 2.2 and Lemma 2.3, see supplementary material

featured on the Statistica Neerlandica website.

3.1 Preliminary results

To prove Theorems 2.1 and 2.2 and Lemma 2.3, we need to evaluate some moments of

products of multivariate normal vectors and some higher order moments of Wishart

matrix. Our results for these moments are summarized below.
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Lemma 3.1 (Moments of products of multivariate normal random vector). Let

z = (z1, · · · , zp)′ be distributed as Np(0, Ip) and let Ai be an arbitrary p × p non-

random matrix, i = 1, 2, 3. Then, the following assertions hold:

(a) E[zz
′] = Ip,

(b) E[zz
′A1zz

′] = A1 + trA1 · Ip,

(c) E[zz
′A1zz

′A2zz
′] = A1A2 + A2A1 + trA1 · A2 + trA2 · A1

+ {trA1A2 + trA1 · trA2}Ip,

(d) E[zz
′A1zz

′A2zz
′A3zz

′] =
3∑ 3∑

i̸=j ̸=k ̸=i

3∑
AiAjAk

+ trA1 · {A2A3 + A3A2}

+ trA2 · {A3A1 + A1A3}

+ trA3 · {A1A2 + A2A1}

+ {trA1A2 + trA1 · trA2}A3

+ {trA2A3 + trA2 · trA3}A1

+ {trA3A1 + trA3 · trA1}A2

+ {trA1A2A3 + trA1A2 · trA3 + trA2A3 · trA1

+ trA3A1 · trA2 + trA1 · trA2 · trA3}Ip,

where Ai = Ai + A′
i for i = 1, 2, 3.

Proof. Throughout the proof, we use the following property: for ν ∼ N (0, 1),

E[νi] = (i− 1)!!

if i ≥ 2 is an even number, and E[νi] = 0 otherwise. Here,

x!! =

{
x(x− 2) · · · 3 · 1 if x is odd
x(x− 2) · · · 4 · 2 if x is even.

At first, we begin by evaluating E[Bzz′C] where B and C are p× p arbitrary non-
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random matrices. Then for the (i, j)-th element of this matrix:

E [(Bzz′C)ij] = E

[∑
i1,i2

(B)ii1zi1zi2(C)i2j

]
=

∑
i1,i2

(B)ii1(C)i2jE[zi1zi2 ]

=
∑
i1

(B)ii1(C)i1jE(z
2
i1
) +

∑
i1,i2,i1 ̸=i2

(B)ii1(C)i2jE[zi1 ]E[zi2 ]

=
∑
i1

(B)ii1(C)i1j,

where (X)ij is the (i, j)-th element of matrixX from which it follows that E[Bzz′C] =

BC.

Now by applying the same technique to the (i, j)-th element of Bzz′A1zz
′C in

(b), we obtain

E[(Bzz′A1zz
′C)ij]

= E[
∑

i1,i2,i3,i4

(B)ii1zi1zi2(A1)i2i3zi3zi4(C)i4j]

=
∑

i1,i2,i3,i4

(B)ii1(A1)i2i3(C)i4jE[zi1zi2zi3zi4 ]

= 3
∑
i1

(B)ii1(A1)i1i1(C)i1j

+
∑

i1,i2,i1 ̸=i2

[
(B)ii1

{
(A1)i1i2 + (A1)i2i1

}
(C)i2j + (A1)i2i2(B)ii1(C)i1j

]
=

∑
i1,i2

[
(B)ii1

{
(A1)i1i2 + (A1)i2i1

}
(C)i2j + (A1)i2i2(B)ii1(C)i1j

]
,

which implies that E[Bzz′A1zz
′C] = BA1C + trA1 ·BC.

Proceeding in the same way for (c) and (d) and setting B = C = Ip completes

the proof. □
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By using Lemma 3.1, we provide results on the higher order moments of Wishart

matrix.

Lemma 3.2 (Higher moments of Wishart matrix). Let W ∼ Wp(n,Σ), where

Wp(n,Σ) denotes Wishart distribution with n degrees of freedom and the scale pa-

rameter Σ. Let G, H be any non-random p × p symmetric matrices. Then the

following assertions hold:

(i) E[tr(GW )2] = n(n+ 1) tr(GΣ)2 + n(trGΣ)2,

(ii) E[(trGW )2] = n2(tr ΣG)2 + 2n tr(ΣG)2,

(iii) E[tr(GW )2 tr(HW )2] = n2(n+ 1)2 tr(ΣG)2 tr(ΣH)2

+n2(n+ 1) tr(ΣG)2(tr ΣH)2

+n2(n+ 1)(tr ΣG)2 tr(ΣH)2

+n2(tr ΣG)2(tr ΣH)2

+8n(n+ 1)2 tr(ΣG)2(ΣH)2

+4n(n+ 1)(tr ΣGΣH)2

+8n(n+ 1) trΣH tr(ΣG)2ΣH

+8n(n+ 1) trΣG tr ΣG(ΣH)2

+8n tr ΣG tr ΣH tr ΣGΣH

+4n(n+ 3) tr(ΣGΣH)2,

(iv) E[(trGW )2 tr(HW )2] = n3(tr ΣG)2(tr ΣH)2

+(n+ 1)n3(tr ΣG)2 tr(ΣH)2

+2n2 tr(ΣG)2(tr ΣH)2

+8n2 tr ΣG tr ΣH tr ΣGΣH

+2(n+ 1)n2 tr(ΣG)2 tr(ΣH)2

+8(n+ 1)n2 tr ΣG tr ΣG(ΣH)2

+8n(tr ΣGΣH)2
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+16n tr ΣH tr(ΣG)2ΣH

+16(n+ 1)n tr(ΣG)2(ΣH)2

+8(n+ 1)n tr(ΣGΣH)2,

(v) E[(trGW )2(trHW )2] = n4(tr ΣG)2(tr ΣH)2

+2n3 tr(ΣG)2(tr ΣH)2

+8n3 tr ΣG tr ΣH tr ΣGΣH

+2n3(tr ΣG)2 tr(ΣH)2

+8n2(tr ΣGΣH)2

+4n2 tr(ΣG)2 tr(ΣH)2

+16n2 tr ΣH tr(ΣG)2ΣH

+16n2 tr ΣG tr ΣG(ΣH)2

+32n tr(ΣG)2(ΣH)2

+16n tr(ΣGΣH)2.

Proof. Let U = (u1 u2 . . . un), where ui are iid Np(0, Ip). By re-writing W =

Σ1/2UU′Σ1/2, we obtain

E[(GW )2] = E[GΣ1/2UU′Σ1/2GΣ1/2UU′Σ1/2]

= E

[
GΣ1/2

(
n∑

i=1

uiu
′
i

)
Σ1/2GΣ1/2

(
n∑

i=1

uiu
′
i

)
Σ1/2

]

= GΣ1/2

(
n∑

i=1

E
[
uiu

′
iΣ

1/2GΣ1/2uiu
′
i

]
+

n∑
i̸=j

E [uiu
′
i] Σ

1/2GΣ1/2
E
[
uju

′
j

])
Σ1/2. (3.1)

By applying the technique derived in Lemma 3.1 to the moments E
[
uiu

′
iΣ

1/2GΣ1/2uiu
′
i

]
and E [uiu

′
i] in (3.1), we obtain

E
[
uiu

′
iΣ

1/2GΣ1/2uiu
′
i

]
= 2Σ1/2GΣ1/2 + (trΣ1/2GΣ1/2)Ip, (3.2)

E [uiu
′
i] = Ip. (3.3)
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By inserting (3.2) and (3.3) into (3.1), we have

E[(GW )2] = n(n+ 1)(GΣ)2 + n(trGΣ)GΣ,

which gives claim (i).

To show (ii), we consider

E[(trGW )2] = E[(trGΣ1/2UU′Σ1/2)2]

= E

( n∑
i=1

trGΣ1/2uiu
′
iΣ

1/2

)2


=
n∑

i=1

E
[(
trGΣ1/2uiu

′
iΣ

1/2
)2]

+
n∑

i ̸=j

E
[
trGΣ1/2uiu

′
iΣ

1/2
]
E
[
trGΣ1/2uju

′
jΣ

1/2
]
. (3.4)

In the same way as in (i), we use (a) and (b), Lemma 3.1 which yields

E
[(
trGΣ1/2uiu

′
iΣ

1/2
)2]

= E[tr(uiu
′
iΣ

1/2GΣ1/2)2]

= 2 tr(ΣG)2 + (trΣG)2, (3.5)

E
[
trGΣ1/2uiu

′
iΣ

1/2
]

= trGΣ. (3.6)

By inserting (3.5) and (3.6) into (3.4), we have

E[(trGW )2] = n2(tr ΣG)2 + 2n tr(ΣG)2,

which gives claim (ii). Proceeding in the same way , with applying correspondent

results of Lemma 3.1, we obtain claims (iii)-(v). □

3.2 Proof of Theorem 2.1

We prove consistency and unbiasedness of the suggested estimator T .

We begin by proving unbiasedness of T . Using Lemma 3.2 with G = H = Ip,

we get E[â2] = a2. Denote Pi = diag(0′
p1
, · · · ,0′

pi−1
,1′

pi
,0′

pi+1
, · · · ,0′

pk
), and re-write

â
(i)
2 as

â
(i)
2 =

n2

(n− 1)(n+ 2)

{
tr(PiSPi)

2 − 1

n
(tr(PiSPi))

2

}
.
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Then by using Lemma 3.2 and setting Pi = G = H, we get E[â
(i)
2 ] = a

(i)
2 and

E[b̂2] = b2. This proves unbiasedness of T .

Next, we prove consistency of T under Assumptions (A1)-(A5). From Cheby-

chev’s inequality, for any ε > 0

Pr
(
|T − ∥Σd − Σ∥2| ≥ ε

)
≤ σ2

T

ε2
,

where σ2
T = Var[T ]. σ2

T can be expressed as

σ2
T = Var[â2] + Var[b̂2]− 2Cov(b̂2, â2)

≤ Var[â2] + Var[b̂2] + 2

√
Var[â2] Var[b̂2],

and it is now sufficient to show that

Var[â2] → 0, Var[b̂2] → 0

under Assumptions (A1)-(A5). By Lemma 3.2, it follows that

Var[â2] =
4a22

(n− 1)(n+ 2)
+

4 (2n2 + 3n− 6)

n(n− 1)(n+ 2)

a4
p

= O
(
n−1
)
,

Var[b̂2] =
4

(n− 1)(n+ 2)

∑k
i=1 a

(i)2

2

p2
+

4 (2n2 + 3n− 6)

n(n− 1)(n+ 2)

∑k
i=1 a

(i)
4

p2

+
8

n

∑k
i̸=j tr ΣjiΣiiΣijΣjj

p2
+

4

(n+ 2)(n− 1)

∑k
i̸=j(tr ΣijΣji)

2

p2

+
4(n− 2)

n(n+ 2)(n− 1)

∑k
i̸=j tr(ΣijΣji)

2

p2

= O(n−1).

By combining the last two results, gives σ2
T → 0 under Assumptions (A1)-(A5).

This proves the consistency claim. □

3.3 Proof of Theorem 2.2

Let Γ = diag(Γ1, · · · ,Γk) such that ΓiΣiiΓ
′
i = Λi, ΓiΓ

′
i = Ipi (i = 1, 2, · · · , k), Λi =

diag(λ
(i)
1 , λ

(i)
2 , · · · , λ(i)

pi ). Under H0, Γ(nS)Γ
′ ∼ Wp(n, diag(Λ1, · · · ,Λk)). Then we
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can write

Γ(nS)Γ′

= diag(Λ
1/2
1 , · · · ,Λ1/2

k )


u

(1)
1 · · ·u(1)

n

u
(2)
1 · · ·u(2)

n

...

u
(k)
1 · · ·u(k)

n



u

(1)′

1 · · ·u(k)′

1

u
(1)′

2 · · ·u(k)′

2
...

u
(1)′
n · · ·u(k)′

n

 diag(Λ
1/2
1 , · · · ,Λ1/2

k ),

where u
(j)
i ∼ Npj(0, Ipj). Denote Ui = (u

(i)
1 · · · u(i)

n )′. Then the statistic nT can be

expressed as

nT =
k∑

j=1

εj + op(1),

where

εj =

j−1∑
i=0

ηij,

ηij =
2

n
√
np

{
tr(Λ

1/2
i U ′

iUjΛ
1/2
j )(Λ

1/2
j U ′

jUiΛ
1/2
i )

− 1

n
(tr Λ

1/2
i U ′

iUiΛ
1/2
i )(tr Λ

1/2
j U ′

jUjΛ
1/2
j )

}
.

Here, Λ0 = O.

Now we prove the normality of T under H0 by applying the martingale central

limit theorem to
∑k

j=1 εj. Let Fj be the σ-algebra generated by the sequence of

random matrices U0, · · · , Uj. Then by letting U0 = O, and F0 = (∅,Ω), where ∅ is

the empty set and Ω is the entire space, we find F0 ⊂ F1 ⊂ · · · ⊂ F∞. Also, we

have

E [εj|Fj−1] = E [εj|U0, . . . , Uj−1] = 0, (j = 1, 2, · · · ).

By applying Lemma 3.1 to E[ε2j ], we obtain

0 < σ2 = lim
k→∞

k∑
j=1

E[ε2j ] = lim
k→∞

k∑
j=2

j−1∑
i=1

8(n− 1)(n+ 2)a
(i)
2 a

(j)
2

n2p2
< ∞

under Assumptions (A1)-(A4). To apply the theorem, we need to check the following

15



two conditions:

(I)
k∑

j=1

E[ε2j |Fj−1]
P→ σ2 as k → ∞,

(II)
k∑

j=1

E[ε2j I(|εj| > δ)|Fj−1]
P→ 0 as k → ∞ for any δ > 0.

At first, check (I). Now we can rewrite

E
[
ε2j |Fj−1

]
− 8(n− 1)(n+ 2)a

(i)
2 a

(j)
2

n2p2
=

8 trΛ2
j

n2p2

j−1∑
i=0

y
(1)
i +

8 trΛ2
j

n2p2

j−1∑
i̸=i′

y
(2)
ii′ , (3.7)

where

y
(1)
i = tr(UiΛiU

′
i)

2 − 1

n
(trUiΛiU

′
i)

2 − (n− 1)(n+ 2) tr Λ2
i ,

y
(2)
ii′ =

{
trUiΛiU

′
iUi′Λi′U

′
i′ −

1

n
trUiΛiU

′
i trUi′Λi′U

′
i′

}
.

Here, Λ0 = O. By using (3.7) and Cauchy-Schwarz inequality, we obtain that

E

( k∑
j=1

E
[
ε2j |Fj−1

]
− σ2

)2
 = E

[
(v1 + v2)

2] ≤ 2∑
i=1

E[v
2
i ] + 2

√
E[v21] E[v

2
2],

where

v1 =
k∑

j=2

8 tr Λ2
j

n3p

j−1∑
i=1

y
(1)
i , v2 =

k∑
j=3

16 tr Λ2
j

n3p

j−1∑
i=2

i−1∑
i′=1

y
(2)
ii′ .

Under H0 and Assumptions (A1)-(A4), it holds that E[v21] → 0 and E[v22] → 0,

which completes the proof of (I). (See details of evaluation of E[v21] and E[v22] in

supplementary material featured on the Statistica Neerlandica website.)

Next, we check (II), for which it is sufficient to show that

k∑
j=1

E[ε4j ] → 0

for the proof of (II). We first note that

k∑
j=1

E[ε
4
j ] =

k∑
j=2

(
j−1∑
i=1

E[η
4
ij] +

∑
i1 ̸=i2

E[η
2
i1j
η2i2j]

)
.

From the evaluation of E[η2i1jη
2
i2j
] and E[η4ij], we get

k∑
j=1

E[ε4j ] = o(1),
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which completes the proof of (II). (See details of evaluation of
∑k

j=1 E[ε
4
j ] in supple-

mentary material featured on the Statistica Neerlandica website.)

By combining conditions (I) and (II), the normal convergence of
∑k

j=1 εj follows,

which in turn provides the normal convergence of nT . □

3.4 Proof of Lemma 2.3

We note that

σ̂2 − σ2 =
4

p2

k∑
j=2

j−1∑
i=1

(â
(i)
2 â

(j)
2 − a

(i)
2 a

(j)
2 ) + op(1).

By using Lemma 3.2, under H0, we obtain

E[(σ̂
2 − σ2)2] → 0. (3.8)

(See details of evaluation of E[(σ̂2−σ2)2] in supplementary material featured on the

Statistica Neerlandica website.) From (3.8) and Chebyshev’s inequality, we obtain

that σ̂2 p−→ σ2 under H0 and Assumptions (A1)-(A4). □

4 Simulation study

We now turn to the numerical evaluation of the properties of the new test procedure.

The goal of the simulation study is threefold: to investigate the effect of large p on the

size of the test, to investigate power of the test under certain alternative hypotheses,

and to evaluate the effect of the block size, pi and covariance parameter on the test

accuracy.

Monte Carlo simulation are used to find the size and power of T for sample size

fixed to n = 100 and the dimensionality p = cn where c = 1, . . . , 4. An assortment

of pi’s is considered for each p, which qualitatively represents “small-”, “large-” and

“mix-”size blocks cases.

“small-” and “large-” size blocks cases, i.e., all the Σii’s (p/pi blocks) have

equal order pi = 5, 10 or 25, respectively.
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“mix-” size blocks cases, i.e., two types of order are included in Σ11, . . . ,Σkk:

p/(2pi) blocks have equal order pi = 5 or 10, and p/(2pj) block(s) have equal

order pj = 25 or 50.

We test with the nominal level α = 0.05 and reject H0 when the test statistics

exceeds (σ̂/n)zα, where zα is the upper 100α% critical point of the standard nor-

mal distribution. All the results reported are based on r = 10, 000 Monte Carlo

simulations.

To evaluate the size of the proposed test we calculate the empirical Type I error

or empirical power as follows: draw a sample of N independent observations from p-

dimensional normal distribution under the null hypothesis or alternative hypotheses.

Replicate this r times, and using T from (2.4) calculate

# (T > (σ̂/n)zα)

r
,

where σ̂ is defined in (2.5).

The simulation study analyzes the empirical Type I error of T under the following

within-block structures: Σ = diag(Σ11, . . . ,Σkk), Σii = Σi(ω
2, ρ0) has an intraclass

structure, i.e.,

Σi(ω
2, ρ0) = ω2[(1− ρ0)Ipi + ρ01pi1

′
pi
],

and a special case for Σi(ω
2, ρ0) with ω2 = 1 and ρ0 = 0 turns out to be an identity

matrix. Further, ρ0’s are chosen so that Σii is positive definite. On the other

hand, the empirical power of T is similarly calculated for the block structures Σ =

diag(Σ11, . . . ,Σkk) with some contamination.

4.1 The empirical Type I error rate

Tables 1 and 2 present the empirical type I error rate with “small-” and “large-

” size blocks case and the same with “mix-” size blocks cases, respectively. The

parameters for the covariance matrix are set as ω2 = 1.0, 5.0 and ρ0 = 0.1, 0.5, 0.9.

Although we note that most cases of the empirical Type I error rate are close to 0.05,
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unfortunately, in the few cases in Tables 1 and 2, we observe that the empirical type

I error rate is slightly higher than the desired level of 0.05. This can be explained

by the sensitivity of the test to the choice of model parameter: the empirical type I

error rate becomes higher for large values of ρ0, and this effect is most pronounced

for blocks of both sizes with large pi or pj, see Tables 1 and 2. However, we also

observe that the empirical type I error rate becomes close to the significance level

when p grows. Further it can be observed that ω2 does not depend on the empirical

type I error rate for both size blocks cases.

Please insert Tables 1 and 2 around here.

4.2 The empirical power

A number of simulations are performed to analyze power of the test under certain

alternative structures of Σ. We use the notations of (2.1) and consider the following

local alternatives:

Σ has ν-contaminated block structure, i.e.,

HA1 : Σii = Ipi , Σij = [ωℓm], ωℓm = ρ1 ̸= 0

for ν pairs of (ℓ,m) and otherwise ωℓm = 0 where ℓ = 1, . . . , pi, m = 1, . . . , pj,

i, j = 1, . . . , k, and locations of ρ1 are chosen at random under the constraint

that Σ is symmetric.

Σ has pi-banded structure, i.e.,

HA2 : Σ = Σ(ρ0, ρ1)

where the elements of Σ(ρ0, ρ1) are defined as follows: |ℓ − m| > pi implies

that ωij = 0, the within-band structure is designed so that pi × pi blocks are

represented by intraclass correlation model with ω2 = 1, i.e., (1 − ρ0)Ipi +

ρ01pi1
′
pi
, and the remaining off-blocks elements are set to ρ1.
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HA1 is designed to challenge the test procedure for some near block-diagonal struc-

tures with sparsely distributed non-zero off-blocks entries, whereas HA2 represents

a dense alternative.

Under the ν-contaminated block structure for ν = 50, 100, 150, 200, 250, 300 and

ρ1 = 0, 0.02, 0.04, 0.06, 0.08, 0.1, all the simulation results in this simulation study

are summarized in Figures 1–5 in order to investigate the empirical power.

For a fixed dimensionality p = 100, Figures 1 and 2 shows the power in each

pi = 5, 10, 25. ν is set as 100 and 300 in Figures 1 and 2, respectively. In the both

figures, it could be observed that the power for the large size blocks was slightly

higher than the same for the small size blocks. The power turns out to be higher

when ν, i.e., the number of the pairs of contamination grows. Further, Figure 3

describes the relation between the empirical power and ρ1, and it implies that the

larger ρ1 makes the power higher. The effect is obviously observed for the larger ν.

Please insert Figures 1–3 around here.

The simulation results for a fixed pi = 10 and p = 100, 200, 300, 400 are described

in Figures 4 and 5. ν is set as 100 and 300 in Figures 4 and 5, respectively. Similarly

to Figures 1 and 2, the higher power is also observed when p = 100 and ρ1 grows.

This effect is most pronounced for ν = 300, refer to Figure 5.

Please insert Figures 4 and 5 around here.

Next, we investigate the power of T for pi-banded structure. The parameters in

covariance structure are set as ρ0 = 0, 0.1, 0.3, 0.5, 0.7 and ρ1 = 0, 0.02, 0.04, 0.06, 0.08

except for some cases such that Σ is not positive definite. All the simulation results

we conducted are summarized in the rest of the figures in order to analyze the power

of T for pi-banded structure.

Figure 6 shows the empirical power of T for a fixed ρ0 = 0.1, pi = 5, 10, 25

and p = 100. It implies that the large pi increases the number of ρ1 in pi-banded

structure and the empirical power grows. This effect could be also observed for

p = 200, 300, 400.
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Please insert Figure 6 around here.

Further, Figures 7 and 8 and Figures 9 and 10 are drawn in order to investigate

the relation between ρ0 and the power of T in each pi = 5 and pi = 10. In two

sets of the two figures, ρ0 is set as 0.1 and 0.5, respectively. It could be observed

that the larger ρ0 makes the power of T lower in Figures 7 and 8 and Figures 9

and 10. By setting the horizontal axis as ρ0 and plotting the empirical power for

ρ0 = 0, 0.1, 0.3, 0.5, 0.7, the effect is obviously observed and is most pronounced for

the large ρ1 in Figure 11 which shows the empirical power of T for p = 100 and

pi = 10. It seems that the reason why the procedure does not work well for large ρ0

is related to Assumptions (A3)-(A5). In fact, we observed that a4 obviously grows

as ρ0 is larger (For example, a4/k equals 0.316135 for p = 100, pi = 10, ρ0 = 0.1

and a4/k equals 10.021735 for p = 100, pi = 10, ρ0 = 0.5). Further, it could be also

observed that the effects of value of p are little under the fixed pi’s.

Please insert Figures 7–11 around here.

5 Conclusion

We have proposed a new test statistic for testing hypothesis that the covariance ma-

trix has a block-diagonal structure. We have also presented higher order moments

of multivariate normal random vector which are needed for the derivation of the

proposed test statistic. Simulation results indicate that the proposed test statistic

has good performance in a sense of detecting deviation from block-diagonal covari-

ance structure. In conclusion, the test can be recommended when p is much larger

than n and when a small deviation from H0 is suspected.

Finally, we address the future works related to the proposed test in this paper.

Unfortunately, we also observed that one of the assumptions stated in (A5) was not

realistic under the strong correlations in block-diagonal structure. Therefore, the

assumption should be relaxed in order to modify the testing procedure. Further,

we derived only the null distribution of the test statistic in this paper. Thus, the
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discussion for the unbiasedness of the test statistic should be also noted as one of

the important problems.
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Figure 1: The empirical power of T for p = 100 and ν = 100 under ν-contaminated
block structure

Figure 2: The empirical power of T for p = 100 and ν = 300 under ν-contaminated
block structure
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Figure 3: The empirical power of T for p = 100 and pi = 10 under ν-contaminated
block structure

Figure 4: The empirical power of T for pi = 10 and ν = 100 under ν-contaminated
block structure

Figure 5: The empirical power of T for pi = 10 and ν = 300 under ν-contaminated
block structure
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Figure 6: The empirical power of T for p = 100 and ρ0 = 0.1 under pi-banded block
structure

Figure 7: The empirical power of T for pi = 5 and ρ0 = 0.1 under pi-banded block
structure

Figure 8: The empirical power of T for pi = 5 and ρ0 = 0.5 under pi-banded block
structure
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Figure 9: The empirical power of T for pi = 10 and ρ0 = 0.1 under pi-banded block
structure

Figure 10: The empirical power of T for pi = 10 and ρ0 = 0.5 under pi-banded block
structure

Figure 11: The empirical power of T for p = 100 and pi = 10 under pi-banded block
structure
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Table 1: The empirical type I error rate for “small-” and “large-” size blocks cases
pi σ2 ρ0 p = 100 p = 200 p = 300 p = 400
5 1.0 0.1 0.0506 0.0492 0.0473 0.0507

0.5 0.0547 0.0550 0.0490 0.0515
0.9 0.0539 0.0532 0.0538 0.0491

5.0 0.1 0.0506 0.0492 0.0473 0.0507
0.5 0.0547 0.0550 0.0490 0.0515
0.9 0.0539 0.0532 0.0538 0.0491

10 1.0 0.1 0.0496 0.0502 0.0498 0.0519
0.5 0.0590 0.0560 0.0552 0.0527
0.9 0.0584 0.0510 0.0540 0.0531

5.0 0.1 0.0496 0.0502 0.0498 0.0519
0.5 0.0590 0.0560 0.0552 0.0527
0.9 0.0584 0.0510 0.0540 0.0531

25 1.0 0.1 0.0527 0.0505 0.0489 0.0461
0.5 0.0642 0.0581 0.0504 0.0500
0.9 0.0668 0.0566 0.0540 0.0509

5.0 0.1 0.0527 0.0505 0.0489 0.0461
0.5 0.0642 0.0581 0.0504 0.0500
0.9 0.0668 0.0566 0.0540 0.0509
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Table 2: The empirical type I error rate for “mix-” size blocks cases
(pi, pj) σ2 ρ0 p = 100 p = 200 p = 300 p = 400
(5, 25) 1.0 0.1 0.0506 0.0492 0.0470 0.0474

0.5 0.0621 0.0542 0.0530 0.0488
0.9 0.0641 0.0608 0.0562 0.0549

5.0 0.1 0.0506 0.0492 0.0470 0.0474
0.5 0.0621 0.0542 0.0530 0.0488
0.9 0.0641 0.0608 0.0562 0.0549

(5, 50) 1.0 0.1 0.0519 0.0515 0.0512 0.0504
0.5 0.0636 0.0615 0.0592 0.0621
0.9 0.0666 0.0626 0.0645 0.0591

5.0 0.1 0.0519 0.0515 0.0512 0.0504
0.5 0.0636 0.0615 0.0592 0.0621
0.9 0.0666 0.0626 0.0645 0.0591

(10, 25) 1.0 0.1 0.0501 0.0507 0.0485 0.0481
0.5 0.0640 0.0535 0.0531 0.0507
0.9 0.0659 0.0565 0.0550 0.0536

5.0 0.1 0.0501 0.0507 0.0485 0.0481
0.5 0.0640 0.0535 0.0531 0.0507
0.9 0.0659 0.0565 0.0550 0.0536

(10, 50) 1.0 0.1 0.0507 0.0518 0.0529 0.0479
0.5 0.0656 0.0632 0.0573 0.0603
0.9 0.0693 0.0588 0.0614 0.0574

5.0 0.1 0.0507 0.0518 0.0529 0.0479
0.5 0.0656 0.0632 0.0573 0.0603
0.9 0.0693 0.0588 0.0614 0.0574
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