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Abstract

This paper considers optimization of the ridge parameters in generalized ridge regression (GRR)
by minimizing a model selection criterion. GRR has a major advantage over ridge regression (RR)
in that a solution to the minimization problem for one model selection criterion, i.e., Mallows’Cp

criterion, can be obtained explicitly with GRR, but such a solution for any model selection criteria,
e.g.,Cp criterion, cross-validation (CV) criterion, or generalized CV (GCV) criterion, cannot be
obtained explicitly with RR. On the other hand,Cp criterion is at a disadvantage compared to CV
and GCV criteria because a good estimate of the error variance is required in order forCp criterion
to work well. In this paper, we show that ridge parameters optimized by minimizing GCV criterion
can also be obtained by closed forms in GRR. We can overcome one disadvantage of GRR by using
GCV criterion for the optimization of ridge parameters.
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1. Introduction

Let y = (y1, . . . , yn)′ be ann-dimensional vector of response variables andX be ann× k matrix

of nonstochastic centralized explanatory variables (X ′1n = 0k) with rank(X) = m (≤ min{k,n−1}),
wheren is the sample size,1n is ann-dimensional vector of ones, and0k is ak-dimensional vector of

zeros. We assume a linear relationship betweeny andX, expressed by the liner regression model:

y = µ1n +Xβ + ε, (1.1)

whereµ is an unknown location parameter,β is ak-dimensional vector of unknown regression co-
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efficients, andε is ann-dimensional vector of independent error variables from a distribution with

mean 0 and error varianceσ2.

The ordinary least square (OLS) method is widely used for estimating the unknown parameters

in (1.1). This is because although the OLS estimators ofµ andβ are given by simple forms, they

have several desirable theoretical properties. The OLS estimators ofµ andβ are given by ˆµ = ȳ and

β̂ = (X ′X)+X ′y, respectively, where ¯y is a sample mean of the elements ofy, i.e., ȳ = 1′ny/n,

andA+ is the Moore-Penrose inverse matrix ofA (for details of the Moore-Penrose inverse ma-

trix, see, e.g., Harville, 1997, chap. 20). However, when multicollinearity occurs inX, the OLS

estimator ofβ is not a good estimator in the sense that it has a large variance. The ridge regres-

sion (RR) estimation proposed by Hoerl and Kennard (1970) is one of the methods that avoids the

problems from multicollinearity. The RR estimator is defined by addingθIk to X ′X in β̂, where

θ ∈ R+ = {θ ∈ R| θ ≥ 0} is called a ridge parameter. Since the estimates provided by the RR esti-

mator depend heavily on the value ofθ, the optimization ofθ is a very important problem. One of

the optimization methods is to choose a ridge parameter that minimizes a model selection criterion,

e.g., Mallows’Cp (Mallows, 1973, 1995), cross-validation (CV; Stone, 1974) and generalized CV

(GCV; Craven & Wahba, 1979) criteria (see, e.g., Golubet al., 1979; Yanagihara & Satoh, 2010).

However, an optimal value ofθ cannot be obtained without an iterative computational algorithm.

Hoerl and Kennard (1970) proposed not only the RR but also a generalized ridge regression (GRR)

in their paper. Although GRR estimation was proposed over 40 years ago, even today, many re-

searchers study the theoretical properties of the GRR estimator (e.g., Jimichi, 2008), and use GRR

for real data analysis (e.g., Smythet al., 2011), and for developing new statistical procedures based

on GRR (e.g., Batahet al., 2008; Jensen & Ramirez, 2010; Yanagihara, 2012). The GRR estimator

is defined not by a single ridge parameter but by multiple ridge parametersθ = (θ1, . . . , θk)′ ∈ Rk
+,

i.e., the GRR estimator ofβ is defined by replacingθIk in the RR estimator ofβ with QΘQ′, where

Rk
+ is thekth Cartesian power ofR+, Θ is akth diagonal matrix whosejth diagonal element isθ j ,

andQ is thekth orthogonal matrix that diagonalizesX ′X. Even though the number of ridge pa-

rameters has increased, we can obtainθ minimizingCp criterion by closed form (see, e.g., Lawless,

1981; Walker & Page, 2001; Yanagiharaet al., 2009; Nagaiet al., 2012). However,Cp criterion is

at a disadvantage compared to the CV or GCV criteria because a good estimate of the error variance

σ2 is required in order forCp criterion to work well. In an extended GRR, several authors have tried

solving the minimization problem for a model selection criterion other thanCp criterion by using

the Newton-Raphson method (e.g., Gu & Wahba, 1991; Wood, 2000). In this paper, we show that

ridge parameters optimized by minimizing the GCV criterion can also be obtained by closed forms

in the original GRR. We can overcome one of the disadvantages of GRR by using GCV criterion for

the optimization of the ridge parameters.

This paper is organized as follows: In Section 2, we describe the use of GCV criterion for select-

ing the ridge parameters for GRR, and we present some lemmas to express explicitly the optimal

solution of GCV criterion. In Section 3, we show an explicit solution to the minimization problem of

GCV criterion for GRR, and present additional theorems on GRR after optimizing the ridge param-

eters. In Section 4, we apply GRR to a linear regression model with high-dimensional explanatory
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variables. A numerical examination is conducted at the end of Section 4. Technical details are

provided in the Appendix.

2. Preliminaries

LetQ be thekth orthogonal matrix that diagonalizesX ′X as

Q′X ′XQ =

 D Om,k−m

Ok−m,m Ok−m,k−m

 , (2.1)

whereOk,m is ak×m matrix of zeros, and

D = diag(d1, . . . ,dm) andd1, . . . , dm are nonzero eigenvalues ofX ′X . (2.2)

We note thatd1, . . . ,dm are positive, because we assume thatX ′X is a positive semidefinite matrix.

Without loss of generality, it assumes thatd1 ≥ · · · ≥ dm. Moreover, letMθ be ak×k matrix defined

by

Mθ =X ′X +QΘQ′,

whereΘ is thekth diagonal matrix given byΘ = diag(θ1, . . . , θk). In particular, we writeMθ with

θ = 0k asM . Then, a GRR estimator ofβ is defined by

β̂θ =M−1
θ X ′y. (2.3)

It is clear that the GRR estimator in (2.3) withθ = 0k coincides with the ordinary least square (OLS)

estimator defined by

β̂ =M+X ′y, (2.4)

whereM+ is the Moore-Penrose inverse matrix ofM , i.e.,

M+ =

 D−1 Om,k−m

Ok−m,m Ok−m,k−m

 .
Equation (2.3) leads to a predictor ofy derived from GRR as

ŷθ = ȳ1n +Xβ̂θ = (Jn +XM−1
θ X ′)y, (2.5)

whereJn is ann× n projection matrix defined byJn = 1n1′n/n.

Notice that tr(Jn +XM−1
θ X ′) = 1 + tr(M−1

θ M ). Thus, according to a general formula of the

GCV criterion provide by Craven and Wahba (1979), the GCV criterion for selectingθ can be

defined by

GCV(θ) =
(y − ŷθ)′(y − ŷθ)

n[1 − {1+ tr(M−1
θ
M )}/n]2

. (2.6)

A main aim of this paper is to obtain the closed form of the minimizers of GCV(θ). Let z1, . . . , zm

be elements of anm-dimensional vector defined by
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(z1, . . . , zm)′ = (D−1/2,Om,k−m)Q′X ′y, (2.7)

and lett j ( j = 1, . . . ,m) be thejth-order statistic ofz2
1, . . . , z

2
m, i.e.,

t j =

 min{z2
1, . . . , z

2
m} ( j = 1)

min{{z2
1, . . . , z

2
m}\{t1, . . . , t j−1}} ( j = 2, . . . ,m− 1)

. (2.8)

The following statistic based ont1, . . . , tm plays a big role in expressing the closed form of the

minimizers of GCV criterion:

s2
0 =

y′(In − Jn −XM+X ′)y
n−m− 1

, s2
α =

(n−m− 1)s2
0 +

∑α
j=1 t j

n−m− 1+ α
(α = 1, . . . ,m). (2.9)

When the sample size is smaller than the number of explanatory variables,m≤ n− 1 holds because

X ′1n = 0k is satisfied. It is also easy to see thats2
0 = 0 holds whenm = n − 1. It should be kept

in mind thats2
0 = 0 holds in most cases of high-dimensional explanatory variables. The terms2

α has

the following property (the proof is given in Appendix A):

Lemma 1. Let a∗ be an integer defined by

a∗ ∈ {0, 1, . . . ,m} s.t. s2
a∗ ∈ Ra∗ , (2.10)

where Rα is a range given by

Rα =


(0, t1] (α = 0)

(tα, tα+1] (α = 1, . . . ,m− 1)

(tm,∞) (α = m)

. (2.11)

Then following properties are satisfied:

(1) Case of s20 , 0: ∃!a∗ ∈ {0,1, . . . ,m} s.t. s2a∗ ∈ Ra∗ . Then s2a∗ ≤ s2
0 is satisfied.

(2) Case of s20 = 0: ¬(∃a∗ ∈ {0,1, . . . ,m} s.t. s2a∗ ∈ Ra∗).

On the other hand, the GRR estimatorβ̂θ in (2.3) and GCV(θ) in (2.6) satisfy the following

property (the proof is given in Appendix B):

Lemma 2. The GRR estimator̂βθ and GCV(θ) are invariant to any changes inθm+1, . . . , θk.

From Lemma 2, we setθm+1 = · · · = θk = ∞ for simplicity. Moreover, Lemma 2 indicates that

GCV(θ) can be regarded as a function with respect toθ1 = (θ1, . . . , θm)′. In particular, the GCV

criterion can be expressed as the following lemma (the proof is given in Appendix C):

Lemma 3. The GCV(θ) can be written as

GCV(θ) = g(θ1) =
{(n−m− 1)s2

0 +
∑m

j=1{θ j/(d j + θ j)}2z2
j }/n

{1− (m+ 1−∑m
j=1 θ j/(d j + θ j))/n}2

. (2.12)
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Notice that whens2
0 , 0,

∂

∂θα
g(θ1)

∣∣∣∣∣
θ1=0m

= −
2s2

0

dα(n−m− 1)
< 0.

This implies thatg(θ1) does not reach a minimum at0m whens2
0 , 0. On the other hand,g(θ1) is

not determinate whens2
0 = 0 andθ1 = · · · = θm = 0. Hence, we search for optimal solutions ofg(θ1)

in θ1 ∈ Rm
+\{0m}.

3. Main Results

3.1. Optimal Solutions of GCV Criterion

The ridge parametersθ1, . . . , θm that minimizeg(θ1) in (2.12) are derived as in the following

theorem (the proof is given in Appendix D):

Theorem 1. Let θ̂1, . . . , θ̂m be optimal solutions ofg(θ1), i.e.,

θ̂1 = (θ̂1, . . . , θ̂m)′ = arg min
θ1∈Rm

+\{0m}
g(θ1).

Then, an explicit form of̂θ j ( j = 1, . . . ,m) is given as follows:

(1) Case of s20 , 0:

θ̂ j =

 ∞ (s2
a∗ > z2

j ),

d j/(z2
j /s

2
a∗ − 1) (s2

a∗ ≤ z2
j ),

(3.1)

where dj , zj , and s2α are given by(2.2), (2.7), and(2.9), respectively, and the integer a∗ is given

by (2.10).

(2) Case of s20 = 0: ∀h ∈ (0, t1],

θ̂ j = d j/(z
2
j /h− 1), (3.2)

where tj is given by(2.8). To minimize the covariance matrix of the GRR estimator, we define

h = t1. Hence

θ̂ j =

 ∞ (z2
j = t1),

d j/(z2
j /t1 − 1) (z2

j , t1).
(3.3)

By using equation (3.1) or (3.3), we can obtain a closed form of the GRR estimator ofβ after

optimizingθ by GCV criterion. However, the expression is somewhat difficult to use in actual data

analysis because equations (3.1) and (3.3) involve∞. Hence, we give another expression of the

GRR estimator after optimizingθ by GCV criterion. LetV be anmth diagonal matrix defined by

V = diag(v1, . . . , vm), where

v j =

 0 (s2
a∗ > z2

j ); 1− s2
a∗/z

2
j (s2

a∗ ≤ z2
j ), (whens2

0 , 0),

0 (t1 = z2
j ); 1− t1/z2

j (t1 , z2
j ), (whens2

0 = 0).
(3.4)

Then, the GRR estimator after optimizingθ by GCV criterion is given by
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β̂θ̂ = Q1V Q′1β̂, (3.5)

whereβ̂ is the OLS estimator ofβ given by (2.4), andQ1 is ak×mmatrix that consists of the first

mcolumns ofQ, which is given by (2.1).

3.2. Relationships between the Optimal Solutions of GCV and the GeneralizedCp Criteria

When s2
0 , 0, Cp and the modifiedCp (MCp; Yanagiharaet al., 2009) criteria can be defined.

Their optimal solutions are also given by closed forms, and they are unified as solutions of the

minimization problem of the following generalizedCp (GCp) criterion:

GCp(θ|λ) = (y − ŷθ)′(y − ŷθ) + 2λtr(M−1
θ M ),

whereŷθ is the predictor ofy given by (2.5) (originally, theGCp criterion for the model (1.1) was

proposed by Atkinson, 1980). Solutions ofGCp(θ|λ) with λ = s2
0 andcM s2

0 correspond to those of

Cp andMCp criteria, respectively, wherecM = 1+ 2/(n−m− 3). Since it follows from Lemma 2

thatGCp(θ|λ) is invariant to any changes inθm+1, . . . , θk, we takeθm+1 = · · · = θk = ∞ for simplicity

as well as the minimization of the GCV criterion. By extending the result in Nagaiet al. (2012), the

optimal solutions ofGCp(θ|λ) are given by

θ̂ j(λ) =

 ∞ (λ > z2
j ),

d j/(z2
j /λ − 1) (λ ≤ z2

j ).
(3.6)

By comparing (3.1) with (3.6), it is clear that the optimal solutions of GCV criterion are a spe-

cial case of those ofGCp criterion with λ = s2
a∗ . Suppose thatλ1 ≤ λ2. Then it is easy to see

that θ̂ j(λ1) ≤ θ̂ j(λ2). Notice thatcM > 1 holds. Moreover, from Lemma 1 (1),s2
a∗ ≤ s2

0 holds.

Consequently, the following theorem is derived:

Theorem 2. The optimal solutions of GCV criterion can be regarded as the special case of those of

GCp criterion withλ = s2
a∗ , where a∗ is the integer defined by(2.10). Let θ̂(C)

j andθ̂(M)
j ( j = 1, . . . ,m)

be optimal solutions of Cp and MCp criteria, respectively, when s2
0 , 0. Then, the following in-

equality always holds:

θ̂ j ≤ θ̂(C)
j ≤ θ̂

(M)
j .

Theorem 2 indicates that even though GCV criterion does not require an estimator ofσ2, it estimates

σ2 automatically bys2
a∗ . Furthermore,s2

a∗ always underestimatesσ2. This results in less shrinkage

of the OLS estimator with the GRR optimized by GCV criterion than it does byCp criterion orMCp

criterion.

Additionally, we consider choosing a threshold valueλ in (3.6) by minimizing the GCV(̂θ(λ)),

where θ̂(λ) = (θ̂1(λ), . . . , θ̂m(λ),∞, . . . ,∞)′, and θ̂ j(λ) is given by (3.6). It is obviously that

minθ∈Rk
+

GCV(θ) ≤ minλ∈R+ GCV(θ̂(λ)). From Theorem 1, the ridge parameters that minimize

GCV(θ) can be expressed asθ̂(a∗). Hence, we derive the following theorem:

Theorem 3. An explicit solution to the minimization problem ofGCV(θ̂(λ)) can be obtained as

6



Hirokazu Yanagihara

s2
a∗ , i.e.,

s2
a∗ = arg min

λ∈R+
GCV(θ̂(λ)).

Theorem 3 indicates that the GRR withθ optimized by the GCV criterion is equivalent to the GRR

with θ optimized byGCp criterion after choosing the threshold valueλ by GCV criterion.

3.3. Generalized Degrees of Freedom in the Optimized GRR

In this subsection, we derive an estimate for the generalized degrees of freedom (GDF), as pro-

posed by Ye (1998), for the GRR after optimizingθ by GCV criterion under the normal distributed

assumption. Suppose thatε ∼ Nn(0n, σ
2In). From Efron (2004), the GDF of the GRR after opti-

mizingθ is given by

γ = E

 n∑
i=1

∂µ̂i

∂yi

 ,
whereµ̂i (i = 1, . . . , n) is the ith element of ˆyθ̂ = ȳ1n +Xβ̂θ̂, andβ̂θ̂ is the GRR estimator ofβ

after optimizing GCV, which is given by (3.5). Hence, we can see that the GDF is estimated by

γ̂ =
∑n

i=1 ∂µ̂i/∂yi . After a simple calculation, we obtain the explicit form of ˆγ as in the following

theorem (the proof is given in Appendix E):

Theorem 4. Suppose thatε ∼ Nn(0n, σ
2In). Letw j = I (v j , 0) ( j = 1, . . . , ), where I(x , 0) is

the indicator function, i.e., I(x , 0) = 1 if x , 0 and I(x , 0) = 0 if x = 0, V = diag(v1, . . . , vm)

is given by(3.4), and letW be an mth diagonal matrix whose jth diagonal element isw j . Then, an

estimator of the GDF is derived as

γ̂ = 1+ 2tr(W ) − tr(V ). (3.7)

In particular tr(W ) = m− a∗ holds when s20 , 0 and tr(W ) = m− 1 holds when s20 = 0, where the

integer a∗ is given by(2.10).

4. Application to the Case of High-Dimensional Explanatory Variables

4.1. Principle Component Regression Hybridized with the GRR

In this section, we consider the case of high-dimensional explanatory variables, i.e., the case of

n ≤ k, which has been studied by, e.g., Srivastava and Kubokawa (2007), and Fan and Lv (2010).

In this paper, the case ofm = n − 1 is considered. Even whenm = n − 1, GRR can work, and the

optimal solutions of GCV criterion can be obtained by the closed forms, as in Theorem 1. However,

it seems from Theorem 1 that the optimalθ1 will become very small. Thus, there is a possibility

that GRR cannot work effectively. In order to avoid such a risk, we apply GRR to a regression

model in which the various small singular values ofX are eliminated, i.e., the GRR is applied to a

principal component regression (PCR; see, e.g., Draper & Smith, 1981, chap. 6.9; Liuet al., 2003).

Let Dr = (d1, . . . ,dr ) (r < m) be arth diagonal matrix, whered j is the jth largest eigenvalue of

X ′X defined by (2.2), and letXr be ann× k matrix defined by
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Xr = P

 D1/2
r Or,k−r

On−r,r On−r,k−r

Q′.
After eliminatingm− r principal components and replacingX with Xr , the reduced model, called

ther-PCR model, can be expressed. It is equivalent to the following liner regression model:

y = µ1n +Xrβ + ε. (4.1)

We know that a predictor ofy derived from the model (4.1) withr = m corresponds toy. Thus, we

do not consider the case ofr = m. Let GCV(θ|r) be the GCV criterion for selectingθr in ther-PCR

model (4.1) to which the GRR is applied, and letθ̂r be the minimizer of GCV(θ|r). Then,θ̂r can be

also obtained in closed form from Theorem 1.

The most important choice in PCR is to determine how many singular values are eliminated, i.e.,

it is important to choose the optimalr. We can use the estimate of the GDF calculated in Theorem

4 with the new GCV criterion for selectingr for the PCR hybridized with the GRR. For ther-PCR

model (4.1) derived from the GRR after optimizingθr , let ŷr,θ̂r
be a predictor ofy and letγ̂r be the

estimator of GDF. As in Ye (1998), we propose a new GCV criterion for selectingr as

GCV#(r) =
(y − ŷr,θ̂r

)′(y − ŷr,θ̂r
)

n(1− γ̂r/n)2
. (4.2)

Unfortunately, there is a possibility that 1− γ̂r/n ≤ 0, in which case, we rejectr. Let S be a set

of integers defined byS = {r ∈ {0,1, . . . ,m− 1}| 1 − γ̂r/n > 0}. Then, an optimalr is found by

minimizing the GCV criterion in (4.2) is as follows:

r̂ = arg min
r∈S

GCV#(r).

4.2. Numerical Study

We evaluated the proposed method by applying it to data fromNn(Xβ, In), whereX =

(In − Jn)X0Φ(ρ)1/2 andβ = M+X ′η. Here,X0 is ann × k matrix whose elements are iden-

tically and independently distributed according toU(−1,1),Φ(ρ) is ak×k symmetric matrix whose

(a,b)th element isρ|a−b|, andη is ann-dimensional vector whosejth element is given by√
12n(n− 1)

4n2 + 6n− 1

{
(−1) j−1

(
1− j − 1

n

)
− 1

2n

}
.

In this setting, it should be emphasized that∥β∥ does not become large even whenk is increased.

If ∥β∥ becomes large ask is increased, a value close to0m is frequently chosen as the optimalθ.

Needless to say, such a situation is meaningless in applications of GRR. Therefore, we avoid such a

situation by controlling the elements ofβ.

The following three methods were applied to simulated data:

Method 1: ordinary GRR (GRR with all of the principle components).

Method 2: PCR hybridized with GRR (i.e., the proposed method).
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Table 1. MSEs of coefficients and a predictor in each method

MSE of Coefficients (%) MSE of Predictor (%)

n k ρ Method 1 Method 2 Method 3Method 1 Method 2 Method 3

20 20 0.80 95.69 29.28 29.30 98.72 96.39 101.82

0.90 98.10 29.20 29.22 98.77 95.19 101.80

0.99 100.63 29.14 29.17 99.10 94.71 101.85

40 0.80 98.06 63.29 63.87 98.93 94.63 100.27

0.90 99.25 63.35 63.37 99.73 95.22 100.90

0.99 97.84 63.32 63.08 98.60 95.44 100.86

100 0.80 99.15 93.76 94.13 99.04 95.41 99.94

0.90 99.01 96.60 97.15 99.12 97.20 102.77

0.99 99.03 99.33 100.02 98.80 96.79 103.60

200 0.80 98.55 87.53 90.82 98.32 92.20 98.91

0.90 98.92 85.91 91.02 98.55 90.30 101.48

0.99 98.88 86.48 92.37 98.51 87.80 101.35

50 50 0.80 100.24 77.08 77.06 99.69 96.51 99.33

0.90 100.91 77.42 77.29 99.97 97.01 99.38

0.99 100.15 77.32 77.51 99.81 97.36 99.08

100 0.80 100.30 75.76 74.62 99.57 90.22 89.28

0.90 99.94 75.61 73.96 99.77 91.39 92.40

0.99 100.08 75.15 73.79 99.84 86.65 92.24

250 0.80 99.72 78.76 77.62 99.69 86.64 88.70

0.90 99.90 78.83 77.80 99.74 91.84 95.19

0.99 100.26 78.52 77.90 100.02 89.30 98.42

500 0.80 99.46 86.05 87.77 99.59 92.65 97.63

0.90 99.56 87.51 89.43 99.47 91.99 98.90

0.99 99.68 90.53 92.37 99.88 95.59 100.85

Method 3: ordinary PCR (PCR without GRR) with an optimalr (r = 0,1, . . . ,m− 1) chosen by

minimizing GCV criterion as

GCV#
P(r) =

(y − ŷr )′(y − ŷr )
n{1− (1+ r)/n}2 ,

whereŷr = {Jn +XrM
+
r X

′
r }y.

Let β̂ j be an estimator ofβ andŷ j be a predictor ofy, as derived from Methodj ( j = 1,2,3). We

compared the following two characteristics of each method, based on 10,000 iterations:

• MSE of coefficients (%): 100× E[(β̂ j − β)′(β̂ j − β)]/tr(M+), tr(M+) is the MSE of the OLS

estimator ofβ.

• MSE of predictor (%): 100× E[(ŷ j −Xβ)′(ŷ j −Xβ)]/(n− 1), where (n− 1) is the MSE of a

predictor ofy derived from the OLS estimation.

Table 1 shows the two characteristics forn = 20,100, k = n,2n,5n,10n andρ = 0.8,0.9,0.99.

When the characteristic is less than 100, it means that the method used improved the performance

of the OLS estimation, as measured by the MSE. From the table, we can see that in most cases

9



Explicit Optimal Solution of GCV Criterion in Generalized Ridge Regression

and for both MSEs Method 2 resulted in the smallest (best) values. Those of Method 1 were the

worst. These results indicate that GRR does not work effectively whenk is larger thann. If PCR is

used instead of GRR, although the result is improved, it is still insufficient. Using GRR and PCR

simultaneously is expected to improve the results more than using either one alone.
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Appendix

A. Proof of Lemma 1

In order to prove Lemma 1 (1), we show that if the integera∗ in (2.10) exists, it is unique. Later,

we will use reductio ad absurdum to prove the existence of the integera∗. Notice that the following

equation is satisfied for any integersα ∈ {0,1, . . . ,m− 1}:

s2
α+1 =

(n−m− 1+ α)s2
α + tα+1

n−m+ α
=

n−m− 1+ α
n−m+ α

(s2
α − tα+1) + tα+1,

wheret j ands2
α are given by (2.8) and (2.9), respectively. This implies that

s2
α+1 − tα+1 =

n−m− 1+ α
n−m+ α

(s2
α − tα+1) (∀α ∈ {0,1, . . . ,m− 1}).

From the above equation, we can see that the following statements are true:

s2
α − tα+1 ≤ 0⇒ s2

α+1 − tα+1 ≤ 0, s2
α − tα > 0⇒ s2

α−1 − tα > 0. (A.1)

Moreover, the following statements are also true becauset1 ≤ · · · ≤ tm holds:

s2
α − tα ≤ 0⇒ s2

α − tα+1 ≤ 0, s2
α − tα+1 > 0⇒ s2

α − tα > 0. (A.2)

Suppose that an integera∗ exists. Combining (A.1) and (A.2) yields

s2
a∗ − ta∗+1 ≤ 0⇒ s2

a∗+1 − ta∗+1 ≤ 0⇒ s2
a∗+1 − ta∗+2 ≤ 0⇒ · · · ⇒ s2

m − tm ≤ 0,

and

s2
a∗ − ta∗ > 0⇒ s2

a∗−1 − ta∗ > 0⇒ s2
a∗−1 − ta∗−1 > 0⇒ · · · ⇒ s2

0 − t1 > 0.

Hence, we find

s2
α ≤ tα (∀α ∈ {a∗ + 1, . . . ,m}), s2

α > tα+1 (∀α ∈ {0,1, . . . ,a∗ − 1}).

These equations indicate thats2
α < Rα whenα , a∗, whereRα is given by (2.11). Consequently, the

integera∗ is uniquely determined ifa∗ exists. Next we show the existence of the integera∗. Since

Rc
α = (0, tα]

∪
(tα+1,∞), we can see that the following statement is true:

{s2
α − tα > 0}∩{s2

α < Rα} ⇒ s2
α − tα+1 > 0. (A.3)

Suppose that the integera∗ does not exist, i.e.,s2
α < Rα holds∀α = {0,1, . . . ,m}. This implies that
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s2
0 > t1. Combining (A.1) and (A.3) yields

s2
0 − t1 > 0⇒ s2

1 − t1 > 0⇒ s2
1 − t2 > 0⇒ · · · ⇒ s2

m − tm > 0.

However,s2
m− tm > 0 contradicts the assumptions2

m < Rm. Consequently, by reductio ad absurdum,

the integera∗ exists.

Next, we derive an upper bound fors2
a∗ . Let x1 = · · · = xn−m−1 = s2

0 and xn−m−1+ j = t j

( j = 1, . . . ,m). Then s2
α is regarded as the sample mean ofx1, . . . , xn−m−1+α. It follows from a

property of the sample mean that

s2
α ≤ max

j∈{1,...,n−m−1+α}
x j = max{s2

0, tα} (∀α ∈ {1, . . . ,m}). (A.4)

Sinces2
0 > 0 and

∪m
j=0 Rj = (0,∞] hold, an integerb ∈ {0,1, . . . ,m} exists such thats0 ∈ Rb. When

b = m, it follows from the inequalitys2
0 > tm and (A.4) that

s2
α ≤ max{s2

0, tα} ≤ max{s2
0, tm} = s2

0 (∀α ∈ {1, . . . ,m}).

Whenb ≤ m− 1, inequalitiess2
0 ≤ tα ∀α ∈ {b+ 1, . . . ,m} ands2

0 > tα ∀α ∈ {1, . . . , b} are satisfied,

becauses2
0 ∈ Rb. It follows from these results and (A.4) that

s2
α ≤ max{s2

0, tα} =
 tα (∀α ∈ {b+ 1, . . . ,m}),

s2
0 (∀α ∈ {1, . . . ,b}).

(A.5)

The upper equation on the right side of (A.5) indicates thats2
α < Rα holds∀α ∈ {b+1, . . . ,m}. Hence

it seems that the integera∗ is less than or equal tob. This result and the lower equation on the right

side of (A.5) lead us to the conclusion thats2
a∗ ≤ s2

0.

Finally, we give the proof of Lemma 1 (2). Whens2
0 = 0, s2

α is expressed as the sample mean of

t1, . . . , tm, i.e.,s2
α = α

−1 ∑α
j=1 t j (α = 1, . . . ,m). It is clear thats2

0 < R0. Moreover, from a property of

the sample mean and the inequalityt1 ≤ · · · ≤ tm, we derive

s2
α ≤ max

j∈{1,...,m}
t j = tα (∀α ∈ {1, . . . ,m}).

The above equation indicates thats2
α < Rα holds∀α ∈ {1, . . . ,m}. Therefore, Lemma 1 (2) is proved.

B. Proof of Lemma 2

LetP be annth orthogonal matrix that diagonalizesXX ′ as

P ′XX ′P =

 D Om,n−m

On−m,m On−m,n−m

 , (B.1)

whereD is an mth diagonal matrix given by (2.2). The singular value decomposition ofX is

expressed as

X = P

 D1/2 Om,k−m

On−m,m On−m,k−m

Q′, (B.2)

12
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whereQ is given by (2.1). LetΘ1 = diag(θ1, . . . , θm) andΘ2 = diag(θm+1, . . . , θk). It follows from

(B.2) that

M−1
θ X ′y = Q

 (D +Θ1)−1D1/2 Om,n−m

Ok−m,m Ok−m,n−m

P ′y. (B.3)

Moreover, the equations (B.2) and (B.3) imply that

XM−1
θ X ′ = P

 D1/2(D +Θ1)−1D1/2 Om,n−m

On−m,m On−m,n−m

P ′. (B.4)

The results in (B.3) and (B.4) indicate thatβ̂θ in (2.3) and tr(M−1
θ M ) in (2.6) are independent of

Θ2. Consequently, Lemma 2 is proved.

C. Proof of Lemma 3

Let u be ann-dimensional vector derived by centralizingy, i.e.,u = (In − Jn)y. Moreover, let

us decomposeP in (B.1) to

P = (P1,P2), (C.1)

whereP1 andP2 aren × m andn × (n − m) matrices, respectively. It follows from the equation

X ′1n = 0k and (B.2) that

P ′1u = (D−1/2,Om,k−m)Q′Q

 D1/2 Om,n−m

Ok−m,m Ok−m,n−m

P ′u = (D−1/2,Om,k−m)Q′X ′y.

SinceP ′1u is equal to (z1, . . . , zm)′ in (2.7), we write the followingn-dimensional vector asz:

z = (z1, . . . , zn)′ =

 z1

z2

 =  P ′1u

P ′2u

 . (C.2)

Notice thatP2P
′
2 = In −XM+X ′ andX ′Jn = Ok,n. Thus, we have

z′2z2 = u′(In −XM+X)u = y′(In − Jn)(In −XM+X)(In − Jn)y = (n−m− 1)s2
0, (C.3)

wheres2
0 is given by (2.9). By using the equationX ′1n = 0k, and (B.4) and (C.3), the residual sum

of squares in (2.6) can be rewritten as

(y − ŷθ)′(y − ŷθ) = u′(In −XM−1
θ X ′)2u

= u′P

In −
 D1/2(D +Θ1)−1D1/2 Om,n−m

On−m,m On−m,n−m




2

P ′u

= z′1{Im −D1/2(D +Θ1)−1D1/2}2z1 + z
′
2z2

= (n−m− 1)s2
0 +

m∑
j=1

(
θ j

d j + θ j

)2

z2
j . (C.4)

Moreover, from (B.4), tr(M−1
θ M ) can be rewritten as

13
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tr(M−1
θ M ) = tr


 D1/2(D +Θ1)−1D1/2 Om,n−m

On−m,m On−m,n−m




= tr
{
(D +Θ1)−1D

}
= m−

m∑
j=1

(
θ j

d j + θ j

)
. (C.5)

By substituting (C.4) and (C.5) into (2.6), GCV(θ) is expressed as (2.12).

D. Proof of Theorem 1

Let δ = (δ1, . . . , δm)′ be anm-dimensional vector whosejth elementδ j ∈ [0,1] ( j = 1, . . . ,m) is

defined by

δ j =
θ j

d j + θ j
.

From Lemma 3,g(θ1) in (2.12) is expressed as the following function with respect toδ:

g(θ1) = f (δ) =
r(δ)
c(δ)2

, (D.1)

where

r(δ) =
1
n

(n−m− 1)s2
0 +

m∑
j=1

δ2j z
2
j

 , c(δ) = 1− 1
n

m+ 1−
m∑
j=1

δ j

 ,
andzj ands2

0 are given by (2.7) and (2.9), respectively. Letδ̂ = (δ̂1, . . . , δ̂m)′ be a minimizer off (δ)

in (D.1), i.e.,

δ̂ = arg min
δ∈[0,1]m

f (δ),

where [0,1]m is themth Cartesian power of the set [0,1]. Notice that

∂

∂δα
f (δ) =

2
nc(δ)3

{
c(δ)δαz

2
α − r(δ)

}
.

Hence, we find that a necessary condition ofδ̂ is

δ̂ j =

 1 (if h(δ̂) > z2
j ),

h(δ̂)/z2
j (if h(δ̂) ≤ z2

j ),
(D.2)

whereh(δ̂) = r(δ̂)/c(δ̂).

Suppose thath(δ̂) ∈ Ra, wherea ∈ {0,1, . . .m}, andRα is a range defined by (2.11). Then the

equation (D.2) leads us to the result thatδ̂ j = 1 when j ∈ Ja = { j ∈ {1, . . . ,m}| z2
j ≤ ta} and

δ̂ j = h(δ̂)/z2
j when j ∈ Jc

a = { j ∈ {1, . . . ,m}| z2
j ≥ ta+1}, wheret j is given by (2.8). Notice that

m∑
j=1

δ̂ j =
∑
j∈Ja

1+
∑
j∈Jc

a

h(δ̂)

z2
j

= a+ h(δ̂)
m∑

j=a+1

1
t j
,

m∑
j=1

δ̂2j z
2
j =

∑
j∈Ja

z2
j +

∑
j∈Jc

a

h(δ̂)2

z4
j

z2
j =

a∑
j=1

t j + h(δ̂)2
m∑

j=a+1

1
t j
.
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These imply

r(δ̂) =
1
n

(n−m− 1+ a)s2
a + h(δ̂)2

m∑
j=a+1

1
t j

 , c(δ̂) =
1
n

n−m− 1+ a+ h(δ̂)
m∑

j=a+1

1
t j

 ,
wheres2

α is given by (2.9). It follows from the above equation and the definition ofh(δ) that

h(δ̂) =
(n−m− 1+ a)s2

a + h(δ̂)2 ∑m
j=a+1 1/t j

n−m− 1+ a+ h(δ̂)
∑m

j=a+1 1/t j

.

By solving the above equation, an explicit form ofh(δ̂) is given as

h(δ̂) =

 s2
a; (whens2

0 , 0)
∀h ∈ (0, t1] (a = 0); s2

a (a = 1, . . . ,m); (whens2
0 = 0).

From Lemma 1, we find that the integera ∈ {0,1, . . .m} such thats2
a ∈ Ra is uniquely determined as

a∗ whens2
0 , 0, wherea∗ is defined by (2.10), and the integera ∈ {1, . . .m} such thats2

a ∈ Ra does

not exist whens2
0 = 0. Therefore, we derive

h(δ̂) =

 s2
a∗ (s2

0 , 0),
∀h ∈ (0, t1] (s2

0 = 0).
(D.3)

Recall that̂δ j = θ̂ j/(d j + θ̂ j). By using (D.2) and (D.3), the equations (3.1) and (3.2) are obtained.

Finally, from the same calculation as in (B.4), the covariance matrix ofβ̂θ is derived as

Cov[β̂θ] = σ2M−1
θ MM−1

θ = Q

 (D +Θ1)−1D(D +Θ1)−1 Om,k−m

Ok−m,m Ok−m,k−m

Q′.
The equation indicates that a largerθ j reduces the covariance matrix ofβ̂θ. Since the largesth is t1,

equation (3.3) is obtained.

E. Proof of Theorem 4

SinceV given in (3.4) andD given in (2.2) are diagonal matrices,D1/2V D−1/2 = V holds. By

using this result, the definition of̂βθ̂ in (3.5), and the singular value decomposition ofX in (B.2),

we derive

Xβ̂θ̂ = P

 D1/2 Om,k−m

On−m,m On−m,k−m

Q′Q1V Q′1Q

 D−1/2 Om,n−m

Ok−m,m Ok−m,n−m

P ′y = P1V P ′1y,

whereP1 is given by (C.1). This equation leads to another expression of the predictor of ˆyθ̂ as

ŷθ̂ = (Jn + P1V P ′1)y.

It follows from the above equation and the resultP ′1P1 = Im that
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γ̂ =
∂

∂y′
(Jn + P1V P ′1)y = tr(Jn + P1V P ′1) +

n∑
i=1

e′iP1

(
∂

∂yi
V

)
P ′1y

= 1+ tr(V ) +
n∑

i=1

m∑
j=1

e′ip j

(
∂v j

∂yi

)
p′jy = 1+ tr(V ) +

m∑
j=1

(
∂v j

∂y′

)
p jp

′
jy, (E.1)

whereei is ann-dimensional vector such that theith element is 1 and the others are 0, andp j is the

jth column vector ofP1, i.e.,P1 = (p1, . . . ,pm).

At first, we consider the case ofs2
0 , 0. Recall that the number ofv js that are zero isa∗, where

a∗ is given by (2.10). Thus, tr(W ) = m− a∗ is satisfied, whereW = diag(w1, . . . , wm) is given in

Theorem 4. LetL be anmth diagonal matrix defined byL = diag(z2
1, . . . , z

2
m), wherezj is given by

(2.7). Then, we have

m∑
j=1

w j

z2
j

p jp
′
jy = P1WL−1P ′1y,

w j s2
a∗

z2
j

= w j − v j , (E.2)

wheres2
α is given by (2.9). Notice that

∂v j

∂y
= −
w j

z4
j


∂s2

a∗

∂y

 z2
j − s2

a∗

∂z2
j

∂y


 , (E.3)

and∂s2
a∗/∂y does not depend onj. From the above results and (E.2), the last part of (E.1) is ex-

pressed as

m∑
j=1

(
∂v j

∂y′

)
p jp

′
jy = −

m∑
j=1

w j

z4
j


∂s2

a∗

∂y′

 z2
j − s2

a∗

 ∂z2
j

∂y′


p jp

′
jy

= −
∂s2

a∗

∂y′

P1WL−1P ′1y +
m∑
j=1

w j − v j

z2
j

 ∂z2
j

∂y′

p jp
′
jy. (E.4)

On the other hand, by using the same method as in Appendix C,s2
a∗ andz2

j are rewritten as

s2
a∗ =

1
n−m− 1+ a∗

y′{P2P
′
2 + P1(Im −W )P ′1}y, z2

j = (p′jy)2,

whereP2 is given by (C.1). These equations imply that

∂s2
a∗

∂y
=

2
n−m− 1+ a∗

{P2P
′
2 + P1(Im −W )P ′1}y,

∂z2
j

∂y
= 2p jp

′
jy. (E.5)

It follows fromP ′1P1 = Im, P ′2P1 = On−m,m, W 2 =W , andzj = p′jy that

y′{P2P
′
2 + P1(Im −W )P ′1}P1WL−1P ′1y = 0,

1

z2
j

y′p jp
′
jp jp

′
jy = 1. (E.6)

By using (E.6) after substituting (E.5) into (E.4), we derive

m∑
j=1

(
∂v j

∂y′

)
p jp

′
jy = 2

m∑
j=1

(w j − v j) = 2{tr(W ) − tr(V )}. (E.7)
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Next, we consider the case ofs2
0 = 0. In order to give the proof, it is only necessary to replace

∂s2
a∗/∂y in (E.3) with∂t1/∂y, wheret j is given by (2.8). Notice thatt j = y′P1(Im−W )P ′1y. Thus,

by using the same method that was used in the proof of the cases2
0 , 0, we can see that the equation

(E.7) is satisfied even whens2
0 = 0. Consequently, equation (3.7) is derived from (E.1) and (E.7).
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