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Abstract

This paper considers optimization of the ridge parameters in generalized ridge regression (GRR)
by minimizing a model selection criterion. GRR has a major advantage over ridge regression (RR)
in that a solution to the minimization problem for one model selection criterion, i.e., MallGys’
criterion, can be obtained explicitly with GRR, but such a solution for any model selection criteria,
e.g.,C, criterion, cross-validation (CV) criterion, or generalized CV (GCV) criterion, cannot be
obtained explicitly with RR. On the other har@, criterion is at a disadvantage compared to CV
and GCV criteria because a good estimate of the error variance is required in or@grciaterion
to work well. In this paper, we show that ridge parameters optimized by minimizing GCV criterion
can also be obtained by closed forms in GRR. We can overcome one disadvantage of GRR by using
GCV criterion for the optimization of ridge parameters.
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1. Introduction

Lety = (y1,...,yn) be ann-dimensional vector of response variables &dbe ann x k matrix
of nonstochastic centralized explanatory variablésl(, = 0x) with rank(X) = m(< min{k, n—1}),
wherenis the sample sizd,, is ann-dimensional vector of ones, afgis ak-dimensional vector of
zeros. We assume a linear relationship betwmgand X, expressed by the liner regression model:

y=ul,+ X3 +e¢, (1.1)

whereu is an unknown location parametgt,is ak-dimensional vector of unknown regression co-
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efficients, ance is ann-dimensional vector of independent error variables from a distribution with
mean 0 and error variance.

The ordinary least square (OLS) method is widely used for estimating the unknown parameters
in (1.1). This is because although the OLS estimatons afid3 are given by simple forms, they
have several desirable theoretical properties. The OLS estimatomf3 are given by."= y and
B = (X’ X)* X'y, respectively, wherg is a sample mean of the elementsyofi.e.,y = 1/ y/n,
and A* is the Moore-Penrose inverse matrix 4f (for details of the Moore-Penrose inverse ma-
trix, see, e.g., Harville, 1997, chap. 20). However, when multicollinearity occuP§,ithe OLS
estimator of3 is not a good estimator in the sense that it has a large variance. The ridge regres-
sion (RR) estimation proposed by Hoerl and Kennard (1970) is one of the methods that avoids the
problems from multicollinearity. The RR estimator is defined by addifgto X’ X in B where
0 eR, ={0 €R|6 > 0}is called a ridge parameter. Since the estimates provided by the RR esti-
mator depend heavily on the value@fthe optimization of is a very important problem. One of
the optimization methods is to choose a ridge parameter that minimizes a model selection criterion,
e.g., Mallows'C, (Mallows, 1973, 1995), cross-validation (CV, Stone, 1974) and generalized CV
(GCV; Craven & Wahba, 1979) criteria (see, e.g., Gadtilal, 1979; Yanagihara & Satoh, 2010).
However, an optimal value @éfcannot be obtained without an iterative computational algorithm.

Hoerl and Kennard (1970) proposed not only the RR but also a generalized ridge regression (GRR)
in their paper. Although GRR estimation was proposed over 40 years ago, even today, many re-
searchers study the theoretical properties of the GRR estimator (e.g., Jimichi, 2008), and use GRR
for real data analysis (e.g., Smyhal., 2011), and for developing new statistical procedures based
on GRR (e.g., Bataht al., 2008; Jensen & Ramirez, 2010; Yanagihara, 2012). The GRR estimator
is defined not by a single ridge parameter but by multiple ridge parantter, ..., 6 ) € RX,

i.e., the GRR estimator ¢ is defined by replacingly in the RR estimator g8 with Q©®Q’, where

RX is thekth Cartesian power d&,, ® is akth diagonal matrix whosgth diagonal element i8;,

andQ is thekth orthogonal matrix that diagonalizés’ X. Even though the number of ridge pa-
rameters has increased, we can obéaminimizing C,, criterion by closed form (see, e.g., Lawless,
1981; Walker & Page, 2001; Yanagihargal., 2009; Nagaket al., 2012). HoweverC, criterion is

at a disadvantage compared to the CV or GCV criteria because a good estimate of the error variance
o? is required in order fo€,, criterion to work well. In an extended GRR, several authors have tried
solving the minimization problem for a model selection criterion other tBaweriterion by using

the Newton-Raphson method (e.g., Gu & Wahba, 1991; Wood, 2000). In this paper, we show that
ridge parameters optimized by minimizing the GCV criterion can also be obtained by closed forms
in the original GRR. We can overcome one of the disadvantages of GRR by using GCV criterion for
the optimization of the ridge parameters.

This paper is organized as follows: In Section 2, we describe the use of GCV criterion for select-
ing the ridge parameters for GRR, and we present some lemmas to express explicitly the optimal
solution of GCV criterion. In Section 3, we show an explicit solution to the minimization problem of
GCV criterion for GRR, and present additional theorems on GRR after optimizing the ridge param-
eters. In Section 4, we apply GRR to a linear regression model with high-dimensional explanatory
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variables. A numerical examination is conducted at the end of Section 4. Technical details are
provided in the Appendix.

2. Preliminaries
Let @ be thekth orthogonal matrix that diagonalizéé’ X as

D Ok
QX'XQ-= mem @2.1)
Ok—mm Ok—m,k—m

whereOy , is ak x mmatrix of zeros, and
D =diag(,...,dy) anddy,. .., dy are nonzero eigenvalues &' X . (2.2)

We note thatl, . . ., dy are positive, because we assume tKaX is a positive semidefinite matrix.
Without loss of generality, it assumes tldlat> - - - > dr,. Moreover, letM be akx k matrix defined
by

My=X'X +Q0OQ’,

where® is thekth diagonal matrix given by = diag@, ..., 6). In particular, we writeMy with
0 = 0 asM. Then, a GRR estimator ¢f is defined by

Bo = My*X'y. (2.3)

Itis clear that the GRR estimator in (2.3) with= 0y coincides with the ordinary least square (OLS)
estimator defined by
B=M*X'"y, (2.4)

whereM ™ is the Moore-Penrose inverse matrix®f, i.e.,

MJr _ D_l Omk_m
Ok—m,m Ok—mk—m

Equation (2.3) leads to a predictorgfderived from GRR as
G0 = yln+ XBo = (Jo + XM, X")y, (2.5)

whereJ, is ann x n projection matrix defined by, = 1,1;,/n.

Notice that tr(7,, + XM;lX’) =1+ tr(MglM). Thus, according to a general formula of the
GCV criterion provide by Craven and Wahba (1979), the GCV criterion for seleéingn be
defined by

(Y —Ye)' (y — Uo)
n[1 — {1+ tr(M 1 M)}/n]?
A main aim of this paper is to obtain the closed form of the minimizers of GQM(et z, ..., 7z
be elements of am-dimensional vector defined by

GCV(9) = (2.6)
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-1/2
(217 LY zm)/ = (D / ) Om,k—m)Q,X/y’ (2'7)

and lettj (j = 1,..., m) be thejth-order statistic of, ..., 7, i.e.,

t,—:{ min(Z,...,2) (i=1)

) 2.8
min{{Z, ..., 2N\ t,.... -1} (j=2...,m=1) 28)

The following statistic based on,...,t, plays a big role in expressing the closed form of the
minimizers of GCV criterion:

In-Jo- XM*X’ (n-m-1)s5+ Xi t
g-YUn=Jn W 9 S @=1...,m. (2.9
n-m-1 n-m-1+a
When the sample size is smaller than the number of explanatory variabtes,— 1 holds because
X'1, = 0O is satisfied. Itis also easy to see tlsétz 0 holds wherm = n - 1. It should be kept
in mind that% = 0 holds in most cases of high-dimensional explanatory variables. Thesfenas

the following property (the proof is given in Appendix A):

Lemma 1. Leta, be an integer defined by

a, €{0,1,...,mst s eR,, (2.10)
where R is a range given by
(O.t)]  (a=0)
Ry =9 (terter1] (@=1,....m-1) . (2.11)

(tm,0)  (@=m)
Then following properties are satisfied
(1) Caseof§+0:"a, €{0,1,...,ms.t. § € Ry. Then § < is satisfied.
(2) Caseof§=0:-(7a. €{0,1,...,mst § €Ry).

On the other hand, the GRR estimaﬁx; in (2.3) and GCV@) in (2.6) satisfy the following
property (the proof is given in Appendix B):

Lemma?2. The GRR estimatqég and GC\{0) are invariant to any changes .1, .. ., 6.

From Lemma 2, we sén1 = --- = ¢ = oo for simplicity. Moreover, Lemma 2 indicates that
GCV(0) can be regarded as a function with respedfto= (61,...,6y)’. In particular, the GCV
criterion can be expressed as the following lemma (the proof is given in Appendix C):

Lemma 3. The GC\®) can be written as

{(n—m- 1)+ XT,{6/(d; + 6;)°Z}/n
{1-(m+1-3%1,0;/(dj +6y))/n)?

GCV(8) = g(61) = (2.12)
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Notice that whers # 0,

2%
This implies thay(8,) does not reach a minimum @, when% # 0. On the other handy(6,) is
not determinate whe«% =0andf, = --- = 6, = 0. Hence, we search for optimal solutionsy(#,)
in 0; € RT\{0p).

0
%g(gl) 0.

3. Main Results

3.1. Optimal Solutions of GCV Criterion

The ridge parameter, ..., 0, that minimizeg(6;) in (2.12) are derived as in the following
theorem (the proof is given in Appendix D):

Theorem 1. Letés, ..., 6y, be optimal solutions af(6y), i.e.,

0, =(0,...,6,) =arg min g(6y).
1= (61, m) geleRT\gomag( 1)

Then, an explicit form (ﬁj (j=1,...,m)is given as follows:

(1) Caseof§+0:
. [ e (& > ),
6 = i 3.1
: { d/Z/€ -1) (£ <), Gy
where g, zj, and § are given by(2.2), (2.7), and(2.9), respectively, and the integer & given
by (2.10.

(2) Caseof §=0:"he (0,t4],
0; =dj/(Z/h-1), (3.2)

where t is given by(2.8). To minimize the covariance matrix of the GRR estimator, we define
h =t;. Hence

a={“ (@ =), (339

di/(Z/t-1) & #t)

By using equation (3.1) or (3.3), we can obtain a closed form of the GRR estimatafiér
optimizing @ by GCV criterion. However, the expression is somewh#idailt to use in actual data
analysis because equations (3.1) and (3.3) invedveHence, we give another expression of the
GRR estimator after optimizing by GCV criterion. LetV be annth diagonal matrix defined by
V =diag(y,...,vm), where

J 0 &>2) 1-5/Z4 (£ <Z). (whens)#0),

= { 0 1=2) 1-4/Z (u#2Z), (whens=0). S

Then, the GRR estimator after optimiziAdyy GCV criterion is given by
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Bs = LV Q4. (35)

whereﬁ is the OLS estimator 8 given by (2.4), and); is ak x m matrix that consists of the first
m columns of@, which is given by (2.1).

3.2. Relationships between the Optimal Solutions of GCV and the Generalize@, Criteria

Whensi # 0, Cp, and the modifiedC, (MCy; Yanagiharaet al., 2009) criteria can be defined.
Their optimal solutions are also given by closed forms, and they are unified as solutions of the
minimization problem of the following generaliz€, (GC,) criterion:

GCp(61) = (y — F6)' (y — Jo) + 22tr(M,* M),

whereyp is the predictor oly given by (2.5) (originally, th&C,, criterion for the model (1.1) was
proposed by Atkinson, 1980). Solutions®Cy(8|1) with A = % anch% correspond to those of
C, andMC,, criteria, respectively, whergy = 1+ 2/(n— m— 3). Since it follows from Lemma 2
thatGCp(012) is invariant to any changes ti. 1, . . ., 6, We takéfm,1 = - - - = 6 = oo for simplicity
as well as the minimization of the GCV criterion. By extending the result in Netgai (2012), the
optimal solutions of5Cy(0|1) are given by

3.6
di/(Z/A-1) (A<7). 3

0;() = {
By comparing (3.1) with (3.6), it is clear that the optimal solutions of GCV criterion are a spe-
cial case of those o&C, criterion with A = % Suppose that; < 1. Then it is easy to see
thatd;(11) < 6j(12). Notice thatcy > 1 holds. Moreover, from Lemma 1 (132 < < holds.
Consequently, the following theorem is derived:

Theorem 2. The optimal solutions of GCV criterion can be regarded as the special case of those of
GC, criterion with A = s , where a is the integer defined t2.10). Letd andé™ (j=1,...,m)
be optimal solutions of gand MG, criteria, respectively, whengs;t 0. Then, the following in-
equality always holds:

0y <69 <M.

Theorem 2 indicates that even though GCV criterion does not require an estimafoitafstimates
0% automatically bys2 . Furthermores? always underestimates?. This results in less shrinkage
of the OLS estimator with the GRR optimized by GCV criterion than it doe§ pgriterion orMC,
criterion.

Additionally, we consider choosing a threshold valua (3.6) by minimizing the GC\A@(/l)),
where (1) = (61(A),...,0m(1), ,..., ), and 6;(1) is given by (3.6). It is obviously that
MiNgezx GCV(0) < Mingeg, GCV(@(A)). From Theorem 1, the ridge parameters that minimize
GCV(0) can be expressed és;a*). Hence, we derive the following theorem:

Theorem 3. An explicit solution to the minimization problem @CV(@(/I)) can be obtained as
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s, ie.,

g = argl?RipGCV(é(/l)).

Theorem 3 indicates that the GRR wi#toptimized by the GCV criterion is equivalent to the GRR
with @ optimized byGC, criterion after choosing the threshold valuby GCV criterion.

3.3. Generalized Degrees of Freedom in the Optimized GRR

In this subsection, we derive an estimate for the generalized degrees of freedom (GDF), as pro-
posed by Ye (1998), for the GRR after optimizidyy GCV criterion under the normal distributed
assumption. Suppose that~ N,(0,, 021,)). From Efron (2004), the GDF of the GRR after opti-

mizing @ is given by
n ~

6.
7=E[Za—/;'

i=1

whereyi (i = 1,...,n) is theith element ofy} = y1, + X 35, and3; is the GRR estimator of

after optimizing GCV, which is given by (3.5). Hence, we can see that the GDF is estimated by
y = XL, 61 /dyi. After a simple calculation, we obtain the explicit formyp&s in the following
theorem (the proof is given in Appendix E):

Theorem 4. Suppose tha¢ ~ Ny(On, 0°Iy). Letw; = I(vj # 0) (j = 1,...,), where [x # 0) is

the indicator function, i.e.,(k # 0) = Lif x # Oand I(x # 0) = 0if x = 0, V' = diag@s, - .., m)

is given by(3.4), and letW be an mth diagonal matrix whose jth diagonal element;isThen, an
estimator of the GDF is derived as

5= 14 2tr(W) — tr(V). (3.7)

In particular tr(W) = m— a, holds when $# 0 andtr(W) = m - 1 holds when $= 0, where the
integer a is given by(2.10.

4. Application to the Case of High-Dimensional Explanatory Variables

4.1. Principle Component Regression Hybridized with the GRR

In this section, we consider the case of high-dimensional explanatory variables, i.e., the case of
n < k, which has been studied by, e.g., Srivastava and Kubokawa (2007), and Fan and Lv (2010).
In this paper, the case of = n— 1 is considered. Even when = n— 1, GRR can work, and the
optimal solutions of GCV criterion can be obtained by the closed forms, as in Theorem 1. However,
it seems from Theorem 1 that the optingal will become very small. Thus, there is a possibility
that GRR cannot workfBectively. In order to avoid such a risk, we apply GRR to a regression
model in which the various small singular valuesXfare eliminated, i.e., the GRR is applied to a
principal component regression (PCR; see, e.g., Draper & Smith, 1981, chap. 6e9alji2003).
Let D; = (dy,...,d) (r < m) be arth diagonal matrix, wherd; is the jth largest eigenvalue of
X’ X defined by (2.2), and |eX; be ann x k matrix defined by
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1/2 O
Xr — P[ r r.k—r ]Q/
On—r,r On—r,k—r

After eliminatingm — r principal components and replacidj with X, the reduced model, called
ther-PCR model, can be expressed. It is equivalent to the following liner regression model:

y=uly+ X8 +e. (4.2)

We know that a predictor aj derived from the model (4.1) with= m corresponds tg. Thus, we
do not consider the case ot m. Let GCV(@|r) be the GCV criterion for selectin@ in ther-PCR
model (4.1) to which the GRR is applied, andfete the minimizer of GCW|r). Then,d; can be
also obtained in closed form from Theorem 1.

The most important choice in PCR is to determine how many singular values are eliminated, i.e.,
it is important to choose the optimal We can use the estimate of the GDF calculated in Theorem
4 with the new GCV criterion for selectimgfor the PCR hybridized with the GRR. For the°CR
model (4.1) derived from the GRR after optimizifig lety, 5 be a predictor ofy and lety; be the
estimator of GDF. As in Ye (1998), we propose a new GCV criterion for selectasy
W -96) YY)

(1 - % /n)?

Unfortunately, there is a possibility that-1y,/n < 0, in which case, we reject LetS be a set
of integers defined by = {r € {0,1,...,m—-1}] 1 — ¥%;/n > 0}. Then, an optimat is found by
minimizing the GCV criterion in (4.2) is as follows:

GCV#(r) =

(4.2)

f =arg ménGCV#(r).
re.

4.2. Numerical Study

We evaluated the proposed method by applying it to data fNypX 3, I,,), where X =
(In — J)Xo®(p)Y? and3 = M*X’'n. Here, X, is ann x k matrix whose elements are iden-
tically and independently distributed accordindtf-1, 1), ®(p) is ak x k symmetric matrix whose
(a, b)th element i@, andn is ann-dimensional vector whosgh element is given by

12n(n- 1) . -1\ 1
\/—4nz+en_1{“1)’ 1(1‘7)‘%}-

In this setting, it should be emphasized thatl does not become large even wheis increased.
If ||3|] becomes large dsis increased, a value close @g, is frequently chosen as the optintal
Needless to say, such a situation is meaningless in applications of GRR. Therefore, we avoid such a
situation by controlling the elements gf

The following three methods were applied to simulated data:

Method 1: ordinary GRR (GRR with all of the principle components).

Method 2: PCR hybridized with GRR (i.e., the proposed method).
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Table 1. MSEs of codficients and a predictor in each method

MSE of Cosficients (%) MSE of Predictor (%)
n k p | Method 1 Method 2 Method 8Method1 Method 2 Method 3

20| 20| 0.80 95.69 29.28 29.3 98.72 96.39 101.82
0.90 98.10 29.20 29.22  98.77 95.19 101.80
0.99 100.63 29.14 29.17  99.10 94.71 101.85
40| 0.80 98.06 63.29 63.87  98.93 94.63 100.27
0.90 99.25 63.35 63.37 99.73 95.22 100.90
0.99 97.84 63.32 63.08  98.60 95.44 100.86
100| 0.80 99.15 93.76 94.13  99.04 95.41 99.94
0.90 99.01 96.60 97.1% 99.12 97.20 102.77
0.99 99.03 99.33 100.02  98.80 96.79 103.60
200| 0.80 98.55 87.53 90.82  98.32 92.20 98.91
0.90 98.92 85.91 91.02  98.55 90.30 101.48
0.99 98.88 86.48 92.37 9851 87.80 101.35

50| 50| 0.80 100.24 77.08 77.0 99.69 96.51 99.33
0.90 100.91 77.42 77.2 99.97 97.01 99.38
0.99 100.15 77.32 77.5 99.81 97.36 99.08
100 0.80 100.30 75.76 74.6 99.57 90.22 89.28
0.90 99.94 75.61 73.9 99.77 91.39 92.40
0.99 100.08 75.15 73.79  99.84 86.65 92.24
250 0.80 99.72 78.76 77.62 99.69 86.64 88.70
0.90 99.90 78.83 77.8 99.74 91.84 95.19
0.99 100.26 78.52 77.90 100.02 89.30 98.42
500 0.80 99.46 86.05 87.77 99.59 92.65 97.63
0.90 99.56 87.51 89.43 99.47 91.99 98.90
0.99 99.68 90.53 92.37 99.88 95.59 100.85

T =

Method 3: ordinary PCR (PCR without GRR) with an optimgt = 0,1,...,m— 1) chosen by
minimizing GCV criterion as

_ (y-9)(y—9r)
GCVA(r) = nl—(1+r)/n2’
wherey; = {J, + X, M X/ }y.

Let BJ- be an estimator gB andyj be a predictor ofy, as derived from Methodgl (j = 1,2,3). We
compared the following two characteristics of each method, based on 10,000 iterations:

 MSE of codficients (%): 100« E[(3; - B) (3; — B)]/tr(M*), tr(M*) is the MSE of the OLS
estimator of3.

e MSE of predictor (%): 10& E[(y; - XB) (y; — XB)]/(n— 1), where ( — 1) is the MSE of a
predictor ofy derived from the OLS estimation.

Table 1 shows the two characteristics for= 20,100,k = n,2n,5n,10n andp = 0.8,0.9,0.99.
When the characteristic is less than 100, it means that the method used improved the performance
of the OLS estimation, as measured by the MSE. From the table, we can see that in most cases
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and for both MSEs Method 2 resulted in the smallest (best) values. Those of Method 1 were the
worst. These results indicate that GRR does not wéécévely wherk is larger tham. If PCR is

used instead of GRR, although the result is improved, it is stillfiisant. Using GRR and PCR
simultaneously is expected to improve the results more than using either one alone.
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Appendix
A. Proof of Lemma 1

In order to prove Lemma 1 (1), we show that if the integein (2.10) exists, it is unique. Later,
we will use reductio ad absurdum to prove the existence of the integdlotice that the following
equation is satisfied for any integers {0,1,...,m—1}:

2 (h-m-1+a)f+thy N-m-1l+a

= = S —tor1) +t
a+l n-m+a nomeg o) Pl

wheret; ands? are given by (2.8) and (2.9), respectively. This implies that

n—m—1+a(s(21_t

Y v 0,1,...,m-1).
n_m+a +1)(CL’€{, ] 7m })

52+1 1=

(03

From the above equation, we can see that the following statements are true:

S(zy_ta+130:>52

a+1

~1ty1<0, €-1t,>0=>¢ ,-t,>0. (A1)

Moreover, the following statements are also true because - - < t, holds:
-1,<0=2L-1,,1<0, £-1t,,1>0=>5-1t,>0. (A.2)
Suppose that an integar exists. Combining (A.1) and (A.2) yields

S -ta1<0=2L  -thu<0=2L, —th <0 = -ty <0,

and
£ -1t >0=>8 -t >0 ;-th1>0=>=>F-1,>0

Hence, we find

£<ty (aefa+1,....m), £L>ty ((aecf(0l...,a -1).

These equations indicate thgt¢ R, whena # a., whereR, is given by (2.11). Consequently, the
integera, is uniquely determined i&. exists. Next we show the existence of the integerSince
RS = (0,t,] U(te+1, o0), we can see that the following statement is true:

(S —te > 0N ¢ R} = & —to1 > 0. (A.3)

Suppose that the integar does not exist, i.es? ¢ R, holds”a = {0,1,...,m}. This implies that

11
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$ > t;. Combining (A.1) and (A.3) yields
$-41>0=S-4>0=2S-6>0= = £ —tn>0.

However,s2, — t, > 0 contradicts the assumptiaf, ¢ R,,. Consequently, by reductio ad absurdum,
the integem, exists.

Next, we derive an upper bound faf . Letx; = -+ = Xom1 = S5 and Xop-m-14j = t;
(j = 1,...,m). Thens? is regarded as the sample meanxgf..., X,-m-1.o- It follows from a
property of the sample mean that

£<  max  xj=maxst) (aell...,m). (A.4)

(04

Sincesg >0 andU'j“:0 R;j = (0, ] hold, an integeb € {0,1,..., m} exists such that € R,. When
b = m, it follows from the inequalitysy > t, and (A.4) that

S <maxs,t,} < max st} = 82 (e e {1,...,m).

Whenb < m- 1, inequalitiess; < t, Yo € {b+1,...,mandsj > t, @ € {1,..., b} are satisfied,
becauses € R,. It follows from these results and (A.4) that

t (aecib+l,....m),
£ (Yaell....by.

The upper equation on the right side of (A.5) indicates tfat R, holds’a € {b+1,...,m}. Hence
it seems that the integex is less than or equal t@ This result and the lower equation on the right
side of (A.5) lead us to the conclusion thgt < 2.

Finally, we give the proof of Lemma 1 (2). Whes@ =0, s is expressed as the sample mean of
tr,....tm i€, =a P 39ty (@ = 1,...,m). Itis clear thatsj ¢ Ro. Moreover, from a property of
the sample mean and the inequatity - - - < tp,, we derive

s, < max(s), t} = { (A.5)

£< max tj=t, ("ae(l,...,m).
je{l,...m}

The above equation indicates tigdt¢ R, holds”« € {1,...,m}. Therefore, Lemma 1 (2) is proved.

B. Proof of Lemma 2

Let P be annth orthogonal matrix that diagonalizé6 X’ as

D Omn-m ]

(B.1)
On—mm On—mn—m

P'XX'P =(

where D is annth diagonal matrix given by (2.2). The singular value decompositioXois
expressed as

D2 Ok
X = P( mk-m ]Q’, (B.2)
On—mm On—mk—m

12
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whereQ is given by (2.1). Le®; = diag@s,...,0n) and®; = diag@m.1, - . ., 6k)- It follows from
(B.2) that
(D + 61)71D1/2 Omn—m

Py. (B.3)
Ok—m,m Ok—mn—m ]

Myj*X'y = Q[
Moreover, the equations (B.2) and (B.3) imply that

(B.4)

DY2(D + ©,)1D"2 :
XMng’zP[ (D +8) Om-m | pr.

On—m,m On—m,n—m

The results in (B.3) and (B.4) indicate thdg in (2.3) and tr( 1,1 M) in (2.6) are independent of
©,. Consequently, Lemma 2 is proved.

C. Proof of Lemma 3

Let u be ann-dimensional vector derived by centralizingi.e.,u = (I, — Jn)y. Moreover, let
us decompos® in (B.1) to
P = (P, P), (C.1)

where P, and P, aren x m andn x (n — m) matrices, respectively. It follows from the equation
X'1, = 0k and (B.2) that

D2 Omnm

Plu = (D™?, Op )Q’Q(
! mem Ok—mm Ok—mn—m

]P’u = (D2, Opp-m) Q' X 'y.

SincePju is equal to %, ..., Zy)" in (2.7), we write the followingr-dimensional vector as:

z Plu

z:(zl,...,zn)’:( 1]:( L ] (C.2)
2z Pju

Notice thatP, P; = I, - X M* X’ and X' J, = Oy,. Thus, we have

zozp = U (In - XM X)u =y (In—- Jn)In - XM X)(In - Jn)y = (N—m- 1)35, (C.3)

wheres% is given by (2.9). By using the equatioXi’1, = 0y, and (B.4) and (C.3), the residual sum
of squares in (2.6) can be rewritten as

(y—10) (y —Bo) = v (In- XMy X")u

2
1/2 -1y1/2
wP In—( DY2(D + ©)'DY?  Omp-m ) P
On—mm On—mn—m

= 21{In— DY*(D + ©1) 'DY?Y2; + 22,

:(n—m—l)%+zm:( d )sz. (€4

= d; +6;

Moreover, from (B.4), tr}4, 1 M) can be rewritten as

13
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DY2(D + ©,)'DY2 Oy
tr(MglM)=tr{( (D +64) mo-m ]}

On- mm On- mn-m

=tr{(D+©,)'D}=m- zm:(

j=1

d + 9,) (€5)

By substituting (C.4) and (C.5) into (2.6), GCA)(is expressed as (2.12).

D. Proof of Theorem 1

Letd = (61, ...,dm) be anm-dimensional vector whosgh element; € [0,1] (j =1,...,m)is
defined by

0;
dj + 0 ’
From Lemma 3¢(6,) in (2.12) is expressed as the following function with respedto
ro)
W,

5 =

g(01) = () = (D.1)

where
r(8) = %{(n—m— 1)s§+26fz?}, c(d) = 1—%{m+1—251}’
=1 j=1

andz; and% are given by (2.7) and (2.9), respectively. Vet (61, ...,0m) be a minimizer off ()
in(D.1), i.e.,

6 =arg rQ'ﬂm (),

where [Q 1]™ is themth Cartesian power of the set, [[]. Notice that

)
%f(a) - 5)3 {c(8)6.2 - 1(3)}.

Hence, we find that a necessary conditiord d$

b= { 1 (if h(3) > 2),

h(d)/2  (if h(3) < 22) (D.2)

whereh(8) = r(8)/c(d).

Suppose tham(é) € Ry, wherea € {0,1,...m}, andR, is a range defined by (2.11). Then the
equation (D.2) leads us to the result tlﬁ@t: lwhenje J, =1{j € {1,...,m) zJ2 < t3} and
6j = h(8)/zj? whenje J¢={je{l,...,m} zf > a1}, Wheret; is given by (2.8). Notice that

ZS,—: 1+Zg_a h(5)Z—

j=1 j€Ta jegs i j=a+l {]

Sia=yae Y WhasSener ) L

j=1 j€Ta jeTs J 1a+1J

14
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These imply
r@d) = 1 (n—m—1+a) + h(d)? zm: 1 c(d) = L mot1+as h(d) Zm: 1
on Ght)n o gl

wheres? is given by (2.9). It follows from the above equation and the definition(8j that

(n—m-1+a)2 + h(5)? Yilain ]

h(8) = h
n—-m-1+a+h()X 1/t

m
j=a+l
By solving the above equation, an explicit formhﬁﬁ) is given as

h(6) = £ (whensj # 0)
"he(Ot] (a=0); s (a=1...,m); (whens=0).

From Lemma 1, we find that the integee {0, 1, ... m} such thass? € R, is uniquely determined as
a. whens} # 0, wherea, is defined by (2.10), and the integee {1,...m} such thats? € R, does
not exist Whersf) = 0. Therefore, we derive

N (5 #0),
(o) = { "he (O,t] (f=0). (©3)

Recall that; = 6;/(d; + 6;). By using (D.2) and (D.3), the equations (3.1) and (3.2) are obtained.
Finally, from the same calculation as in (B.4), the covariance matrj%dfs derived as

(D + @1)_1D(D + (")]_)_1 Om’kfm

Co[Be] = 2 My*M Mt = Q[ o. O Q.
—mm —mk-m

The equation indicates that a larggreduces the covariance matrix@§. Since the largedtist,,
equation (3.3) is obtained.

E. Proof of Theorem 4

SinceV given in (3.4) andD given in (2.2) are diagonal matriceB,¥2V D~Y2 = V holds. By
using this result, the definition qﬁé in (3.5), and the singular value decomposition6fin (B.2),
we derive

D1/2 Om,k—m

On—mm On—m,k—m

D—1/2 Om,n—m

XB;=P
o Ok—mm Ok—m,n—m

]Q/leQiQ( Py=PVPy,

whereP; is given by (C.1). This equation leads to another expression of the predicjgrasf
Y = (Jn+ PV P))y.

It follows from the above equation and the resB|tP; = I, that
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n
= —(Jn + PLVP)y =tr(Jy+ PLVP]) + Z e Pl( ) "y
i=1

_1+tr(V)+ZZepJ( )py 1+tr(V)+Z(ZZj,)pjp'jy, (E.1)

i=1 j=1 j=1
wheree; is ann-dimensional vector such that tite element is 1 and the others are 0, ands the
jth column vector ofP,, i.e., P, = (p1, ..., Pm)-

At first, we consider the case &f # 0. Recall that the number ofs that are zero is., where
a. is given by (2.10). Thus, tW/) = m— a. is satisfied, wher®V = diags, . .., wm) iS given in
Theorem 4. LetL be anmth diagonal matrix defined bfi = diag@, ..., z2), wherez; is given by
(2.7). Then, we have

m
2,

=1

pjp’,-y = PWL Py, = wj - vj, (E.2)

Wi
zJ?

—%I_E

wheres? is given by (2.9). Notice that

R &3

anddsZ /4y does not depend ojy From the above results and (E.2), the last part of (E.1) is ex-
pressed as

Zm: (g—;)pm]y =- i % {(ij)zjz - [jj ]}pjp,y

02 N wj — vj 322
=- PWLP] L E.4
[ay') W 1y+; 2 (8y Pipjy. (E-4)
On the other hand, by using the same method as in Appendk @ndzjz are rewritten as
£ = 1 \PyPy + Py(Im— W)P| Z = (piy)?
—my{22+ 1(Im - W)Ply, Z = (pjy)~,
whereP; is given by (C.1). These equations imply that
I 2 PP, + Pi(In—- W)P, 02'2 2 E.5
%—m{zzﬂL 1(Im— W) P}y, @_p]py (E.5)

It follows from P} P, = I, Py P; = On-mm, W? = W, andz; = pjy that
1
Y(PP; + Pi(In-W)P)PWL'Ply =0, Sy'pipipipjy = 1. (E.6)
j
By using (E.6) after substituting (E.5) into (E.4), we derive

M O m
Z (5—3)1’11’]3/ = ZZ(Wj —vj) = 2{tr(W) —tr(V)}. (E.7)

j=1 j=1
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Next, we consider the case ﬁ = 0. In order to give the proof, it is only necessary to replace
ai/ay in (E.3) withoty/dy, wheret; is given by (2.8). Notice that = y' Py(In— W)P]y. Thus,
by using the same method that was used in the proof of the%ase, we can see that the equation
(E.7) is satisfied even whﬁ = 0. Consequently, equation (3.7) is derived from (E.1) and (E.7).
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