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ABSTRACT

The present paper considers a model selection criterion in regression models using generalized estimating

equation (GEE). Using the prediction mean squared error (PMSE) normalized by the covariance matrix,

we propose a new model selection criterion called PMSEG that reflects the correlation between responses.

A numerical study reveals that the PMSEG has better performance than previous other criteria for model

selection.
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1. INTRODUCTION

In real data analysis, correlated data are often discussed in health sciences, medical sciences, eco-

nomics and many other fields. Longitudinal data, defined from observations of subjects measured

repeatedly over time, often arise in these fields as an important example. In general, observa-

tions from each subject in longitudinal data are correlated. Liang and Zeger (1986) introduced

an extension of the generalized linear model (Nelder and Wedderburn, 1972) to the analysis of

longitudinal data, known as the generalized estimating equation (GEE) method. Defining features

of the GEE method are that we can use a working (but not necessarily correct) correlation matrix

as the correlation matrix, and a full specification of the joint distribution is not required. Hence,

the GEE method is widely used in many fields for analyzing longitudinal data.

In addition, the model selection problem in the GEE methodology is also an important. The

goodness of fit of the model is commonly measured by a risk function, and the model selection is

performed by obtaining a certain estimator of the risk function. For example, the risk function

based on the expected Kullback-Leibler (KL) information (Kullback and Leibler, 1951) is often

used, and the most famous estimator of the risk function is Akaike’s information criterion (AIC)

proposed by Akaike (1973, 1974). The AIC is obtained by using the likelihood, it can be simply
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defined as AIC = −2× the maximum log likelihood+2× the number of parameters. Furthermore,

Nishii (1984), Rao (1988) proposed the GIC as a general extension of the AIC, which is widely

applied for selecting the best model, and considered about various properties in many literatures.

However, in the GEE method, the maximum likelihood based model selection criteria such as the

AIC or GIC, are not applicable directly because the GEE method is not likelihood based. Some

model selection criteria like the AIC or GIC in the GEE method have been already proposed. For

example, Pan (2001) proposed the QIC that is based on the quasi likelihood (Wedderburn, 1974).

Cantoni et al. (2005) proposed the GCp as a general extension of the Mallows’s Cp (Mallows, 1973).

Hin and Wang (2009), Gosho et al. (2011) proposed the CIC to select the correlation structure.

Unfortunately, above model selection criteria are not derived by taking account into the correlation

between responses. For example, the risk function of the QIC is based on the independent quasi

likelihood. In this respect, these criteria are not reflective of the significant feature in longitudinal

data.

The principal aim of the present paper is to obtain a new model selection criterion that reflects

the correlation between responses. In this study, we have focused on deciding the best subset

of variables. By using the risk function based on the prediction mean squared error (PMSE)

normalized by the covariance matrix, we propose a new model selection criterion called the PMSEG

(the prediction mean squared error in the GEE).

The remainder of the present paper is organized as follows: In Section 2, we consider a stochastic

expansion of a GEE estimator. In Section 3, we propose the PMSEG. In Section 4, we verify that

the proposed PMSEG has good properties by conducting numerical experiments. In Section 5, we

conclude our discussion. Technical details are provided in the Appendix.

2. STOCHASTIC EXPANSION OF THE GEE ESTIMATOR

Let yij be a scalar response variable, and let x∗,ij be a l-dimensional nonstochastic vector consists

of all possible explanatory variables for the ith subject at the jth occasion, where i = 1, . . . , n and

j = 1, . . . ,m. Assume that response variables from different subjects are independent and response

variables from the same subject are correlated. For i = 1, . . . , n, let yi = (yi1, . . . , yim)′, X∗,i =

(x∗,i1, . . . ,x∗,im)′, and let Xi = (xi1, . . . ,xim)′ be a m × p submatrix of the matrix X∗,i. Liang

and Zeger (1986) used the GLM to model the marginal density of yij ,

f(yij ;xij ,β, ϕ) = exp[{yijθij − a(θij)}/ϕ+ b(yij , ϕ)], (2.1)

where, a(·), b(·) are known functions, θij is an unknown location parameter and ϕ is a scale

parameter. In the GLM framework, the location parameter θij = u(ηij) = θij(β), where u(·) is a
known function, ηij = x′

ijβ and β is a p-dimensional unknown parameter. In the present paper,

we assume that ϕ is known, and we also assume Θ to be the natural parameter space (see, Xie and

Yang, 2003) of the exponential family of distributions presented in (2.1), and the interior of Θ is
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denoted as Θ0. Then Θ is convex, and in the Θ0, all derivatives of a(·) and all moments of yij

exist. Under such model conditions, the first two moments of yij are given by

µij(β) = E[yij ] = ȧ(θij), σ2
ij(β) = Cov[yij ] = ä(θij)ϕ ≡ ν(µij(β)) (say).

In this situation, the expectation of the response yij is modeled by a link function g(t) =

(ȧ ◦ u)−1(t) and the linear predictor ηij , i.e., g(µij(β)) = ηij = x′
ijβ. When u(s) = s, we say that

g(t) = (ȧ)−1(t) is the natural link function. For example, the logistic regression model is defined

with the natural link function. We call the model with x∗,ij or xij as the full or candidate model,

respectively. We assume that the true probability density function of yij can be written as (2.1),

i.e., the true model is one of the candidate models.

Denote µi(β) = (µi1(β), . . . , µim(β))′, Ai(β) = diag(σ2
i1(β), . . . , σ

2
im(β)) and ∆i(β) =

diag(∂θi1/∂ηi1, . . . , ∂θim/∂ηim), where diag(a1, . . . , as) denotes the s × s diagonal matrix whose

the (i, i)th element is ai. We write Di(β) = Ai(β)∆i(β)Xi, Σi(β) = A
1/2
i (β)R∗

iA
1/2
i (β), where

R∗
i is the true correlation matrix, and Vi(β,α) = A

1/2
i (β)Ri(α)A

1/2
i (β). Here, Ri(α) is the

working correlation matrix that one can choose freely, which may possibly have a nuisance param-

eter α. Depending on the situation, we can choose some useful working correlation matrices. For

example, “Independence” (i.e., (R)jk = 0, if j ̸= k), “Exchangeable” (i.e., (R)jk = α, if j ̸= k),

“(first-order) Autoregressive” (i.e., (R)jk = (R)kj = αj−k, if j > k), “1-dependent” (i.e.,

(R)jk = (R)kj = α, if j = k + 1) and “Unstructured” (i.e., (R)jk = (R)kj = αjk, if j > k). If

Ri(α) is equal to R∗
i , then Vi(β0,α) = Σi(β0) = A

1/2
i (β0)R

∗
iA

1/2
i (β0) = Cov[yi], where β0 is

the true value of β.

Liang and Zeger (1986) proposed the GEE as follows:

sn(β) =
n∑

i=1

D′
i(β)V

−1
i (β,α)(yi − µi(β)) = 0p, (2.2)

where 0p is a p-dimensional vector of zeros. An estimator β̂ of β0 is defined as a solution of the

equation (2.2), and the estimator is called the GEE estimator. In the present paper, we assume

that Ri(α) = R(α) and R∗
i = R0. Moreover, to simplify our discussion, we also assume that the

nuisance parameter α is known. Hence, we write Vi(β,α) = Vi(β).

In order to propose a new model selection criterion at Section 3, a stochastic expansion of β̂ is

needed. In this section, we obtain the stochastic expansion of β̂ up to the order n−1. For simplicity,

we omit (β) from functions of β like µij(β) = µij . Furthermore, in order to distinguish a function

of β evaluated at the true parameter β0 and GEE estimator β̂, we write such as µij(β0) = µij,0

and µij(β̂) = µ̂ij , respectively. Furthermore, in order to assure asymptotic properties of the GEE

estimator, we consider the following regularity assumptions (see, e.g., Xie and Yang, 2003):

C1. β0 is in an admissible set B, where B is an open set in Rp for the parameter β.

C2. x′
ijβ ∈ g(M) for all β ∈ B, where M is the image of ȧ(Θ0).
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C3. u(ηij) is four times continuously differentiable and u̇(ηij) > 0 in g(M)0.

C4. Hn,0 and Mn,0 are positive definite when n is large, where

Hn =
n∑

i=1

D′
iV

−1
i Di, Mn =

n∑
i=1

D′
iV

−1
i ΣiV

−1
i Di.

Condition C1 and C2 are necessary to have the GLM for all β. Condition C3 and C4 are necessary

to calculate the bias. In addition, in order to assure the strong consistency, asymptotic normality

and uniqueness of the GEE estimator, we consider the following additional assumptions, which can

be derived slightly modifying the results reported by Xie and Yang (2003):

C5. lim inf
n→∞

λmin(Hn,0/n) > 0, where λmin(A) is the smallest eigenvalue of symmetric matrix A.

C6. Sequence {xij} lies in X with u(xijβ) ∈ Θ0, β ∈ B, where X is a compact set for regressors

xij .

C7. In a neighborhood of β0, say N , there exist a constant c0 > 0 and some δ > 0, independent

of n, such that, when n → ∞, for any p-dimensional vector λ, ∥λ∥ = 1,

λ′ ∂sn
∂β′ λ ≥ c0λ

(1/2)+δ
max (Mn,0), a.s. for β ∈ N.

C8. The equation (2.2) has a unique solution when n is large.

Here λmax(A) is the largest eigenvalue of symmetric matrix A. According to THEOREM 7 and

COROLLARY 1 in Xie and Yang (2003), β̂ has the strong consistency and asymptotic normality

under these conditions. Furthermore, from C5, Hn,0 = O(n).

Based on the above conditions, to perform the stochastic expansion of β̂, we focus on the fact

that ŝn = 0p. By applying a Taylor expansion around β̂ = β0 to this equation, the GEE is

expanded as follows:

0p = sn,0 +
∂sn
∂β′

∣∣∣∣
β=β0

(β̂ − β0) +
1

2
{(β̂ − β0)

′ ⊗ Ip}
(

∂

∂β
⊗ ∂sn

∂β′

)∣∣∣∣
β=β∗

(β̂ − β0)

= sn,0 −Hn,0(Ip +G1,0 +G2,0)(β̂ − β0) +
1

2
{(β̂ − β0)

′ ⊗ Ip}L1(β
∗)(β̂ − β0), (2.3)

where β∗ lies between β0 and β̂, Ip is a p-dimensional identity matrix, G1,0, G2,0 and L1(β
∗) are

defined by

G1,0 = −H−1
n,0

n∑
i=1

D′
i,0

(
∂

∂β′ ⊗ V −1
i

∣∣∣∣
β=β0

)
{Ip ⊗ (yi − µi,0)},

G2,0 = −H−1
n,0

n∑
i=1

(
∂

∂β′ ⊗D′
i

∣∣∣∣
β=β0

)
[Ip ⊗ {V −1

i,0 (yi − µi,0)}],

L1(β
∗) =

(
∂

∂β
⊗ ∂sn

∂β′

)∣∣∣∣
β=β∗

.
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Note that for a matrix W = (wij), the derivative of W by β = (β1, . . . , βp)
′ and βk are respectively

defined as follows:

∂

∂β′ ⊗W =

(
∂W

∂β1
, . . . ,

∂W

∂βp

)
,

∂

∂β
⊗W =

(
∂W ′

∂β1
, . . . ,

∂W ′

∂βp

)′

,
∂W

∂βk
=

(
∂wij

∂βk

)
.

Also note that L1(β
∗) = Op(n), sn,0 = Op(n

1/2), β̂ − β0,G1,0,G2,0 = Op(n
−1/2). Thus, (2.3)

yields

β̂ − β0 = H−1
n,0sn,0 +Op(n

−1) = b1,0 +Op(n
−1). (2.4)

Similarly, the GEE can also be expanded as follows:

sn,0 = Hn,0(Ip +G1,0 +G2,0)(β̂ − β0)−
1

2
{(β̂ − β0)

′ ⊗ Ip}{G3,0 + (L1(β0)−G3,0)}(β̂ − β0)

− 1

6
{(β̂ − β0)

′ ⊗ Ip}
{

∂

∂β′ ⊗
(

∂

∂β
⊗ ∂sn

∂β′

)}∣∣∣∣
β=β∗∗

{(β̂ − β0)⊗ (β̂ − β0)}, (2.5)

where β∗∗ lies between β0 and β̂, and G3,0 = E[L1(β0)].

Note that the order of the last term of equation (2.5) is Op(n
−1/2). Also note that G3,0 = O(n)

and L1(β0)−G3,0 = Op(n
1/2). Therefore, by using equation (2.4) and (2.5), β̂ can be expanded

as follows:
β̂ − β0 = b1,0 + b2,0 +Op(n

−3/2), (2.6)

where b2,0 = H−1
n,0(b

′
1,0⊗Ip)G3,0b1,0/2−G1,0b1,0−G2,0b1,0. Note that b1,0 and b2,0 are Op(n

−1/2)

and Op(n
−1), respectively.

3. MAIN RESULT

In this section, we propose a new model selection criterion. The goodness of fit of the model is

measured by the risk function based on the PMSE normalized by the covariance matrix as follows:

RiskP = PMSE−mn = Ey

[
Ez

[
n∑

i=1

(zi − µ̂i)
′Σ−1

i,0 (zi − µ̂i)

]]
−mn,

where zi = (zi1, . . . , zim)′ is an m-dimensional random vector that is independent of yi and has

the same distribution as yi. It is easy to show that if β̂ is β0, then RiskP has the minimum value

of zero, i.e., the PMSE has the minimum value of mn. For this reason, we would like to select the

model, which has the minimum PMSE. However, since the PMSE is typically unknown, we must

estimate it.
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We define R0(β), L(β1,β2) and L∗(β) as follows:

R0(β) =
1

n

n∑
i=1

A
−1/2
i (yi − µi)(yi − µi)

′A
−1/2
i ,

L(β1,β2) =

n∑
i=1

(yi − µi(β1))
′A

−1/2
i (β2)R

−1
0 (β2)A

−1/2
i (β2)(yi − µi(β1)),

L∗(β) =
n∑

i=1

(yi − µi)
′Σ−1

i,0 (yi − µi).

Based on the above, we estimate PMSE by L(β̂, β̂f ), where β̂f is a GEE estimator that is obtained

under the “full” model. Specifically, β̂f is defined as the solution to the following equation:

sf,n(β∗) =
n∑

i=1

D′
i(β∗)V

−1
i (β∗,α

∗)(yi − µi(β∗)) = 0l,

where Di(β∗) = Ai(β∗)∆i(β∗)X∗,i, Vi(β∗,α
∗) = A

1/2
i (β∗)R̄i(α

∗)A
1/2
i (β∗) and R̄i(α

∗) is a

positive definite working correlation matrix that one can choose freely. We assume that the nuisance

parameter α∗ is known. Note that β∗ is an l-dimensional unknown parameter under the full model.

Also note that R̄i(α
∗) is the same for all candidate models. The reason for using β̂f is discussed

later. For simplicity, we write L(β0,β2) = L(β2) and L∗(β0) = L∗.

Since L(β̂, β̂f ) is not an asymptotically unbiased estimator of PMSE, we evaluate the asymptotic

bias in order to propose the new model selection criterion. The bias when we estimate the PMSE

by L(β̂, β̂f ) is given as

Bias = PMSE− Ey[L(β̂, β̂f )] = {RiskP − Ey[L∗(β̂)]}+ {Ey[L∗(β̂)− L∗)]}

+ {Ey[L∗ − L(β̂f )]}+ {Ey[L(β̂f )− L(β̂, β̂f )]}
= Bias1 + Bias2 + Bias3 + Bias4. (3.1)

Here, we can see that Bias3 in (3.1) satisfies

Bias3 = Ey

[
n∑

i=1

(yi − µi,0)
′{Σ−1

i,0 −A
−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )}(yi − µi,0)

]

= mn− Ey

[
n∑

i=1

(yi − µi,0)
′A

−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )(yi − µi,0)

]
.

Therefore, we can ignore the calculation of Bias3 because it is not dependent on candidate models.

Similarly, Bias1 in (3.1) is expanded as

Bias1 = Ey

[
Ez

[
n∑

i=1

(zi − µ̂i)
′Σ−1

i,0 (zi − µ̂i)

]
−

n∑
i=1

(yi − µ̂i)
′Σ−1

i,0 (yi − µ̂i)

]

= 2Ey

[
n∑

i=1

(yi − µi,0)
′Σ−1

i,0 (µ̂i − µi,0)

]
. (3.2)
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Applying a Taylor expansion around β̂ = β0 to µ̂i yields

µ̂i = µi,0 +
∂µi

∂β′

∣∣∣∣
β=β0

(β̂ − β0) +
1

2
{(β̂ − β0)

′ ⊗ Im}
(

∂

∂β
⊗ ∂µi

∂β′

)∣∣∣∣
β=β0

(β̂ − β0)

+
1

6
{(β̂ − β0)

′ ⊗ Im}
{

∂

∂β′ ⊗
(

∂

∂β
⊗ ∂µi

∂β′

)}∣∣∣∣
β=β∗∗∗

{(β̂ − β0)⊗ (β̂ − β0)}

= µi,0 +Di,0(β̂ − β0) +
1

2
{(β̂ − β0)

′ ⊗ Im}D(1)
i,0 (β̂ − β0) +Op(n

−3/2), (3.3)

D
(1)
i,0 =

(
∂

∂β
⊗Di

)∣∣∣∣
β=β0

.

Here, β∗∗∗ lies between β0 and β̂. Substituting the stochastic expansion of β̂ in (2.6) into (3.3)

yields the following:

µ̂i − µi,0 = Di,0b1,0 +

{
Di,0b2,0 +

1

2
(b′1,0 ⊗ Im)D

(1)
i,0 b1,0

}
+Op(n

−3/2). (3.4)

By combining (3.2) and (3.4), we obtain

1

2
Bias1 = Ey

[
n∑

i=1

(yi − µi,0)
′Σ−1

i,0Di,0b1,0

]

+ Ey

[
n∑

i=1

(yi − µi,0)
′Σ−1

i,0

{
Di,0b2,0 +

1

2
(b′1,0 ⊗ Im)D

(1)
i,0 b1,0

}]
+ Ey[Op(n

−1/2)].

(3.5)

Note that E[(yi − µi,0)
′(yj − µj,0)] = 0, (i ̸= j), the first term of (3.5) can be calculated as

Ey

[
n∑

i=1

(yi − µi,0)
′Σ−1

i,0Di,0b1,0

]
= Ey

 n∑
i=1

n∑
j=1

(yi − µi,0)
′Σ−1

i,0Di,0H
−1
n,0D

′
j,0V

−1
j,0 (yj − µj,0)


= Ey

[
n∑

i=1

(yi − µi,0)
′Σ−1

i,0Di,0H
−1
n,0D

′
i,0V

−1
i,0 (yi − µi,0)

]

= tr

[
H−1

n,0

n∑
i=1

D′
i,0V

−1
i,0 Di,0

]
= tr[H−1

n,0Hn,0] = p. (3.6)

Similarly, since E[(yi − µi,0)⊗ (yj − µj,0)
′(yk − µk,0)] = 0m, (not i = j = k), the second term of

(3.5) can be expanded as

Ey

[
n∑

i=1

(yi − µi,0)
′Σ−1

i,0

{
Di,0b2,0 +

1

2
(b′1,0 ⊗ Im)D

(1)
i,0 b1,0

}]

= Ey

[
n∑

i=1

(yi − µi,0)
′Σ−1

i,0

{
Di,0b2i,0 +

1

2
(b′1i,0 ⊗ Im)D

(1)
i,0 b1i,0

}]
,
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where b1i,0 = H−1
n,0D

′
i,0V

−1
i,0 (yi−µi,0), b2i,0 = H−1

n,0(b
′
1i,0⊗Ip)G3,0b1i,0/2−G1i,0b1i,0−G2i,0b1i,0,

G1i,0 = −H−1
n,0D

′
i,0

(
∂

∂β′ ⊗ V −1
i

∣∣∣∣
β=β0

)
{Ip ⊗ (yi − µi,0)},

G2i,0 = −H−1
n,0

(
∂

∂β′ ⊗D′
i

∣∣∣∣
β=β0

)
[Ip ⊗ {V −1

i,0 (yi − µi,0)}].

Note that Di,0b2i,0 +(b′1i,0 ⊗ Im)D
(1)
i,0 b1i,0/2 = Op(n

−2), the second term of (3.5) can be obtained

as

Ey

[
n∑

i=1

(yi − µi,0)
′Σ−1

i,0

{
Di,0b2,0 +

1

2
(b′1,0 ⊗ Im)D

(1)
i,0 b1,0

}]
= O(n−1). (3.7)

Under certain conditions, the limit of the expectation is equal to the expectation of the limit.

Furthermore, in many cases of practical interest, a moment of statistic can be expanded as power

series in n−1 (see e.g., Hall, 1992). Therefore, by substituting (3.6) and (3.7) into (3.5), we obtain

the asymptotic expansion of Bias1 up to order 1 as

Bias1 = 2p+O(n−1). (3.8)

Moreover, by using the same argument of the calculation of Bias1, we obtain

Bias2 + Bias4 = O(n−1). (3.9)

The derivation of (3.9) is shown in Appendix.

Consequently, by substituting (3.8) and (3.9) into (3.1), we obtain the asymptotic expansion of

Bias up to order 1 as
Bias = 2p+Bias3 +O(n−1). (3.10)

Recall that Bias3 is not dependent on candidate models. Hence, the PMSEG can then be defined

by adding an estimated (Bias− Bias3) to L(β̂, β̂f ), i.e.,

PMSEG = L(β̂, β̂f ) + 2p. (3.11)

(3.11) is our proposed model selection criterion called the PMSEG (the prediction mean squared

error in the GEE). Recall that β̂f is estimated under the full model and it is not dependent on

candidate models. Since the covariance matrix in the PMSEG is estimated by β̂f , the PMSEG can

be simply defined. If the covariance matrix is estimated by β̂, Bias3 in (3.11) is different for each

candidate model. Unfortunately, it is difficult and too expensive to calculate Bias3. This is one of

the advantages of using β̂f for estimating the covariance matrix. For actual use, we recommend to

use the working independence matrix in order to obtain β̂f since we can get β̂f easily by omitting

the calculations of the working correlation matrix. Fitzmaurice (1995) mentioned that the GEE

estimator under the working independence assumption is often inefficient. Nevertheless, from some

simulation results, we confirmed that the estimation of the covariance matrix using the inefficient

estimator does not dramatically influence the performance of the PMSEG.
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4. NUMERICAL STUDIES

In this section, we confirm a usefulness of the PMSEG through comparisons with the QIC, which

is a representative previous study. The QIC is an estimator of a risk function based on the quasi

likelihood under the independence assumption. The risk function that is estimated by the QIC,

which is called RiskQ in this paper, and the quasi likelihood Q(·) are defined as follows:

RiskQ = Ey

Ez

−2

n∑
i=1

m∑
j=1

Q(β̂; zij)

 , Q(β̂; zij) =

∫ g−1(x′
ij β̂)

zij

zij − t

ν(t)
dt,

where zi = (zi1, . . . , zim)′ is an m-dimensional random vector that is independent of yi and has

the same distribution as yi. Note that since the RiskQ is considered under the independence

assumption, both the RiskQ and QIC are not reflective of the correlation between responses. Also

note that the PMSEG and QIC are estimators of the RiskP and RiskQ, respectively. In general,

the RiskP and RiskQ are different, i.e., the PMSEG and QIC are criteria from different viewpoints.

At the beginning, we examine the numerical studies for the frequencies of candidate models and

the prediction error of the best models selected by the PMSEG and QIC. We prepared the fifteen

candidate models with n = 100 and m = 3. First, we constructed a 3 × 5 explanatory variable

matrix X∗,i = (x∗,i1,x∗,i2,x∗,i3)
′, i = 1, . . . , 100. The first column of X∗,i is 13, where 13 is

a 3-dimensional vector of ones, and the second column of X∗,i is 13 × ςi, where ς1, . . . , ς100 are

i.i.d. binomial distribution B(1, 0.5). The third column of X∗,i is (0, 1, 2)
′, and the remaining six

elements of X∗,i were defined by realizations of independent variables with uniform distribution

on the interval [−1, 1].

In this simulation, we prepared two situations, as follows:

Case 1 : Corr[yij , yij∗ ] = 0.85|j−j∗|, β0 = (0.25,−0.25,−0.25, 0, 0)′,

Case 2 : Corr[yij , yij∗ ] = 0.35, β0 = (0.25,−0.25,−0.25, 0, 0)′.

The explanatory variables matrix for the ith subject in the (5k + k∗)th model consists of the

first k∗ column of X∗,i, k = 0, 1, 2, k∗ = 1, . . . , 5. For the working correlation matrix, we pre-

pare three different matrices, working exchangeable matrix (k = 0), working autoregressive matrix

(k = 1) and working independence matrix (k = 2). Thus, in case 1, the true model is the eighth

model, and in case 2, the true model is the third model. We simulated 10,000 realizations of y =

(y11, . . . , y1m, . . . , y100,1, . . . , y100,m)′ in the logistic regression model, i.e., yij ∼ indep. B(1, pij),

where pij = logit−1(x′
ijβ0), i = 1, . . . , 100, j = 1, 2, 3. Note that we used the working indepen-

dence matrix for obtaining β̂f in this simulation. Tables 1 and 2 list the following characteristics.

(1) Prediction error of the best model in the RiskP/RiskQ (PEBP/PEBQ): the RiskP and RiskQ

9



Table 1: Selection probability and prediction error for the Case 1

Criterion k∗ 1 2 3 4 5 SPC SPM PEBP PEBQ

Exchangeable 0.95 0.08 11.02 2.62 1.10

PMSEG Autoregressive 2.61 0.48 50.71 9.77 6.92 70.49 95.61 4.37 416.66

Independence 0.22 0.05 12.72 0.67 0.08

Exchangeable 4.36 0.01 2.60 3.46 3.60

QIC Autoregressive 38.36 0.26 22.20 6.11 5.86 72.79 55.50 10.54 418.09

Independence 1.51 0.00 3.09 5.17 3.41

Table 2: Selection probability and prediction error for the Case 2

Criterion k∗ 1 2 3 4 5 SPC SPM PEBP PEBQ

Exchangeable 13.97 0.89 26.28 8.06 6.76

PMSEG Autoregressive 7.67 1.77 9.10 1.97 1.20 55.96 72.79 4.88 416.24

Independence 2.06 0.85 17.00 1.73 0.69

Exchangeable 29.70 1.14 20.06 7.46 5.64

QIC Autoregressive 2.55 0.19 1.70 1.17 1.14 64.00 57.93 5.53 416.61

Independence 7.53 0.96 16.64 2.56 1.56

of the model selected by the criterion as the best model, which are respectively estimated as

PEBP =
1

10000

10000∑
υ=1

Ez

[
n∑

i=1

(zi − µi(β̂Bυ ))
′Σ−1

i,0 (zi − µi(β̂Bυ ))

]
−mn,

PEBQ =
1

10000

10000∑
υ=1

Ez

−2

n∑
i=1

m∑
j=1

Q(β̂Bυ ; zij)

 .

(2) Selection probability: the frequency of the best model chosen by minimizing each criterion.

In particular, the SPC/SPM is the frequency that the working correlation matrix/mean

structure of the selected model is correctly specified.

Here zi is a future observation, and β̂Bυ is the value of β̂ of the selected model at the υth iteration.

In particular, both the PEBP and PEBQ are important properties because these are equivalent

to the RiskP and RiskQ of the best model selected by the criterion, respectively. We would like

to note that the PMSEG selects the model which minimizes the RiskP, and the QIC selects the

model which minimizes the RiskQ. Thus, the model selected by the PMSEG does not necessarily

minimize the RiskQ and the model selected by the QIC does not necessarily minimize the RiskP. In

other words, in order to evaluate the goodness of the criterion, the PEBP and PEBQ are favorable

indicators for the PMSEG and QIC, respectively.

From Tables 1 and 2, we can see that the value of the PEBP from the model selected by the
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PMSEG is smaller than that from the model selected by the QIC. This result is justified since the

PEBP is the favorable indicator for the PMSEG. However, surprisingly, although the PEBQ is the

favorable indicator for the QIC, the value of the PEBQ from the model selected by the PMSEG is

also smaller. This result means that the PMSEG is better than the QIC whether evaluating the

goodness of the criterion by the PEBP or PEBQ. Moreover, both the frequency of selecting the

true model and SPM of the PMSEG are larger than those of the QIC in two cases. On the other

hand, the SPC of the QIC is larger in two cases. Furthermore, by comparing Tables 1 and 2, we

can see that the difference between the PMSEG and QIC is more salient when the correlation is

large. We simulated several other models and obtained similar results.

Next, for the purpose of analyzing the GEE method, we consider the Mother’s Stress and Child

Morbidity (MSCM) data reported in Alexander and Markowitz (1986), who studied the relationship

between maternal employment and pediatric health care utilization. The MSCM data contain the

information of mothers and children in the study for 28 days, and there are 167 mothers and

preschool children enrolled. In this analysis, we focus on the child illness for the first 9 days. The

response variable is the child illness on the study day (1=yes, 0=no), and there were eight predictor

variables: Married (1=married, 0=other), Employed (1=employed, 0=unemployed), Race (child

race, 1=non-white, 0=white), Household (size of household, 1=more than 3 people, 0=other),

Stress (today’s mother’s stress, 1=yes, 0=no), and additionally, St1, St2 and St3 are the mother’s

stress of one, two and three days before, respectively. This data have a few missing value, and we

assume that the missingness mechanism is missing completely at random. We use complete 146

mothers and children data. We also assume that the response variable yij is distributed according

to B(1, pij), i = 1, . . . , 146, j = 1, . . . , 9. For the link function, we prepare the logistic link

function. For the working correlation matrix, we prepare four matrices: the working 1-dependent,

autoregressive, exchangeable and independence matrices. In this analysis, we select the working

correlation matrix and variables. Table 3 shows the selection probability of the model selected

by minimizing the criterion and the estimated prediction error of the best model selected by the

criterion. We divide the MSCM data into calibration data and validation data. The numbers

of subjects in the calibration data and validation data were 136 and 10, respectively. The best

subset of variables and working correlation matrices were selected by each criterion derived from

the calibration data. The selection probabilities were obtained from only the calibration data.

The estimated prediction errors were obtained as follows. Let dt = (d1t, . . . , d146t)
′ be a 146-

dimensional binary vector that contains 136 zeros and 10 ones at the tth iteration, t = 1, . . . , 1000,

i.e., dit = 0 or 1 and
∑146

i=1 dit = 10. In addition, we denote that β̂B,[−dt] is a GEE estimator β̂[−dt]

of the best model selected from the calibration data, where β̂[−dt] is the solution of the following

equation:
146∑
i=1

(1− dit)D
′
iV

−1
i (yi − µi) = 0p.
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Table 3: Selection probability and estimated prediction error with the MSCM data

Variables PMSEG QIC

Auto Ex 1-dep Ind Auto Ex 1-dep Ind

Race, Household, Stress, St1 0 6 77 0 0 0 2 8

Race, Household, Stress, St3 0 11 0 0 0 0 0 533

Race, Household, Stress, St1, St2 0 2 1 0 0 0 0 0

Race, Household, Stress, St1, St3 0 135 739 10 25 0 2 429

Race, Household, Stress, St2, St3 0 3 0 0 0 0 0 0

Married, Race, Household, Stress, St1, St3 0 1 3 0 0 0 0 0

Employed, Race, Household, Stress, St1, St3 0 0 1 0 0 0 0 0

Race, Household, Stress, St1, St2, St3 0 8 1 0 0 0 0 1

Married, Race, Household, Stress, St1, St2, St3 0 2 0 0 0 0 0 0

P̂EBP 230.11 234.89

P̂EBQ 1018.41 1020.72

Finally, the estimated PEBP and PEBQ are given as

P̂EBP = 136×

(
1

1000

1000∑
t=1

1

10
L(β̂B,[−dt], β̂f,t, t)− 9

)
,

P̂EBQ = 136× 1

1000

1000∑
t=1

1

10

−2
146∑
i=1

9∑
j=1

dit ×Q(β̂B,[−dt]; yij)

 ,

where L(β1,β2, t) is defined as follows:

L(β1,β2, t) =
146∑
i=1

dit × (yi − µi(β1))
′A

−1/2
i (β2)R

−1
0 (β2)A

−1/2
i (β2)(yi − µi(β1)).

Note that we used the working independence matrix for obtaining β̂f from the calibration data

in this study. Also note that we denote β̂f,t as the value of β̂f from the calibration data at the

tth iteration. From Table 3, we can see that the model most selected by each criterion is different.

However, both the P̂EBP and P̂EBQ of the PMSEG were smaller than those of the QIC. Hence,

using the PMSEG is better than using the QIC for selecting models in this study.

Consequently, from Tables 1, 2 and 3, we recommend the use of the PMSEG rather than the

QIC for selecting models in the GEE method.

5. CONCLUSION AND DISCUSSION

In the present paper, we proposed the PMSEG as a model selection criterion that reflects the

correlation in the GEE method. The PMSEG is the simple criterion such as the AIC. Nowadays,
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the GEE method is one of the mainstream of longitudinal analysis methods and many statistical

softwares (e.g., SAS, R, etc) support the GEE method. For these reasons, it is important to

propose a more useful criterion for analyzing longitudinal data using the GEE method.

We recall that, in deriving the PMSEG, we assume that the nuisance parameter α is known.

Actually, we often estimate α because α is unknown in many cases. In fact, we estimate α in

Section 4. However, Liang and Zeger (1986) showed that an estimator of α is consistent under the

standard assumption, and we confirmed that the estimation of α dose not dramatically influence

the performance of the PMSEG from some simulation results. Theoretical study of the influence

of estimating α to the PMSEG is left for the future work.

In all situations of the simulation results of Section 4, we showed that the PMSEG has better

performance than the QIC for the variable selection, and the difference between the performances

of the PMSEG and QIC is more salient when the correlation is large. Recall that the PMSEG

reflects the correlation between responses, however, the QIC is not reflective. This is probably one

of the reasons why the PMSEG has better performance than the QIC. In the study of the MSCM

data, we also showed that the PMSEG is useful as same as the QIC. Nevertheless, computational

costs of the PMSEG are lower than those of the QIC because the bias term of the PMSEG is 2 ×
the number of parameters. On the other hand, many previous studies including the QIC require

the calculation of the bias term for each candidate model. Therefore, the PMSEG is useful and

user friendly.

APPENDIX: Derivation of (3.9)

In this section, we calculate Bias2 + Bias4. Bias2 in (3.1) can be calculated as

Bias2 = Ey

[
n∑

i=1

(yi − µ̂i)
′Σ−1

i,0 (yi − µ̂i)−
n∑

i=1

(yi − µi,0)
′Σ−1

i,0 (yi − µi,0)

]

= Ey

[
2

n∑
i=1

(yi − µi,0)
′Σ−1

i,0 (µi,0 − µ̂i)

]
+ Ey

[
n∑

i=1

(µi,0 − µ̂i)
′Σ−1

i,0 (µi,0 − µ̂i)

]
,

and Bias4 in (3.1) can also be calculated as

Bias4 = Ey

[
n∑

i=1

(yi − µi,0)
′A

−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )(yi − µi,0)

]

− Ey

[
n∑

i=1

(yi − µ̂i)
′A

−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )(yi − µ̂i)

]

= −Ey

[
2

n∑
i=1

(yi − µi,0)
′A

−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )(µi,0 − µ̂i)

]

− Ey

[
n∑

i=1

(µi,0 − µ̂i)
′A

−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )(µi,0 − µ̂i)

]
.
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Thus, we obtain Bias2 + Bias4 as follows:

Bias2 + Bias4

= Ey

[
2

n∑
i=1

(yi − µi,0)
′{Σ−1

i,0 −A
−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )}(µi,0 − µ̂i)

]
(A.1)

+ Ey

[
n∑

i=1

(µi,0 − µ̂i)
′{Σ−1

i,0 −A
−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )}(µi,0 − µ̂i)

]
. (A.2)

In order to calculate (A.1) and (A.2), we perform the stochastic expansion of A
−1/2
i (β̂f ),

R−1
0 (β̂f ), µi(β̂f ) and β̂f . Denote D∗,i = Ai(β∗)∆i(β∗)X∗,i and D∗,i,0 = Ai,0∆i,0X∗,i. Consid-

ering the same argument in section 2 and 3, β̂f and µi(β̂f ) can be expanded as

β̂f − β∗,0 = bf,0 +Op(n
−1), bf,0 = H−1

f,n,0sf,n(β∗,0),

µi(β̂f )− µi,0 = D∗,i,0bf,0 +Op(n
−1), (A.3)

where β∗,0 is the true value of β∗, and Hf,n,0 is defined as

Hf,n,0 =

n∑
i=1

D′
∗,i,0A

−1/2
i,0 R̄−1

i (α∗)A
−1/2
i,0 D∗,i,0.

Let af,i(β̂f ) denote the m-dimensional vector and the jth element of which is the (j, j)th element

of A
−1/2
i (β̂f ). Note that diag(af,i(β̂f )) = A

−1/2
i (β̂f ). By applying a Taylor expansion around

β̂f = β∗,0, af,i(β̂f ) is expanded as

af,i(β̂f ) = af,i(β∗,0) +A∗
f,i,0bf,0 +Op(n

−1), A∗
f,i,0 =

∂

∂β′
∗
af,i(β∗)

∣∣∣∣
β∗=β∗,0

.

Hence, we obtain

A
−1/2
i (β̂f ) = diag(af,i(β̂f )) = A

−1/2
i,0 + diag(A∗

f,i,0bf,0) +Op(n
−1). (A.4)

Note that bf,0,D∗,i,0bf,0,diag(A
∗
f,i,0bf,0) = Op(n

−1/2). Moreover, substituting (A.3) and (A.4)

into R0(β̂f ) yields following:

R0(β̂f ) = − 1

n

n∑
i=1

A
−1/2
i,0 {D∗,i,0bf,0(yi − µi,0)

′ + (yi − µi,0)(D∗,i,0bf,0)
′}A−1/2

i,0

+
1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′A
−1/2
i,0

+
1

n

n∑
i=1

diag(A∗
f,i,0bf,0)(yi − µi,0)(yi − µi,0)

′A
−1/2
i,0

+
1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′diag(A∗
f,i,0bf,0) +Op(n

−1).

(A.5)
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By the Lindeberg central limit theorem, the first term of (A.5) is Op(n
−1). Thus, using this fact

and (A.5), we obtain

R
−1/2
0 R0(β̂f )R

−1/2
0 = Im −R

−1/2
0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′A
−1/2
i,0

− 1

n

n∑
i=1

diag(A∗
f,i,0bf,0)(yi − µi,0)(yi − µi,0)

′A
−1/2
i,0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′diag(A∗
f,i,0bf,0)

}
R

−1/2
0 +Op(n

−1).

Therefore, by calculating the inverse matrix of R
−1/2
0 R0(β̂f )R

−1/2
0 , R−1

0 (β̂f ) can be expanded as

R−1
0 (β̂f ) = R−1

0 +R−1
0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′A
−1/2
i,0

− 1

n

n∑
i=1

diag(A∗
f,i,0bf,0)(yi − µi,0)(yi − µi,0)

′A
−1/2
i,0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′diag(A∗
f,i,0bf,0)

}
R−1

0 +Op(n
−1).

(A.6)

Note that the second term of (A.6) is Op(n
−1/2).

Next, we calculate (A.2). By using (A.4) and (A.6), we obtain

Σ−1
i,0 −A

−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f )

=− diag(A∗
f,i,0bf,0)R

−1
0 A

−1/2
i,0 −A

−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)

−A
−1/2
i,0 R−1

0

{
R0 −

1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′A
−1/2
i,0

− 1

n

n∑
i=1

diag(A∗
f,i,0bf,0)(yi − µi,0)(yi − µi,0)

′A
−1/2
i,0

− 1

n

n∑
i=1

A
−1/2
i,0 (yi − µi,0)(yi − µi,0)

′diag(A∗
f,i,0bf,0)

}
R−1

0 A
−1/2
i,0 +Op(n

−1).

(A.7)

Note that Σ−1
i,0 −A

−1/2
i (β̂f )R

−1
0 (β̂f )A

−1/2
i (β̂f ) = Op(n

−1/2) and Di,0b1,0 = Op(n
−1/2). There-

fore, by substituting (3.4) and (A.7) into (A.2), we obtain

(A.2) = O(n−1). (A.8)

Recall that, in general, a moment of statistic can be expanded as power series in n−1. Hence, the

order of (A.8) is shown by O(n−1), not O(n−1/2).
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Finally, we calculate (A.1). By substituting (3.4) and (A.7) into (A.1), we obtain

(A.1) = Ey

[
2

n∑
i=1

κ′
i,0{diag(A∗

f,i,0bf,0)R
−1
0 A

−1/2
i,0 +A

−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)}Di,0b1,0

]

− Ey

2 n∑
i=1

κ′
i,0A

−1/2
i,0 R−1

0

1

n

n∑
j=1

A
−1/2
j,0 κj,0κ

′
j,0A

−1/2
j,0 R−1

0 A
−1/2
i,0 Di,0b1,0


− Ey

 2

n

∑
i,j

κ′
i,0A

−1/2
i,0 R−1

0 diag(A∗
f,j,0bf,0)κj,0κ

′
j,0A

−1/2
j,0 R−1

0 A
−1/2
i,0 Di,0b1,0


− Ey

 2

n

∑
i,j

κ′
i,0A

−1/2
i,0 R−1

0 A
−1/2
j,0 κj,0κ

′
j,0diag(A

∗
f,j,0bf,0)R

−1
0 A

−1/2
i,0 Di,0b1,0


+ Ey

[
2

n∑
i=1

κ′
i,0Σ

−1
i,0Di,0b1,0

]
+O(n−1).

(A.9)

Here, κi,0 = (yi − µi,0) and
∑

i,j =
∑n

i=1

∑n
j=1. Moreover, in order to simplify the calculation,

we define the following notation:∑
i ̸=j

=
n∑

i=1

n∑
j=1,i ̸=j

, bf,i,0 = H−1
f,n,0D

′
∗,i,0A

−1
i,0κi,0.

Recall that E[κi,0 ⊗ κ′
j,0κk,0] = 0m, (not i = j = k). Hence, the first term of (A.9) is as follows:

Ey

[
2

n∑
i=1

κ′
i,0{diag(A∗

f,i,0bf,0)R
−1
0 A

−1/2
i,0 +A

−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)}Di,0b1,0

]

= Ey

[
2

n∑
i=1

κ′
i,0{diag(A∗

f,i,0bf,i,0)R
−1
0 A

−1/2
i,0 +A

−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,i,0)}Di,0b1i,0

]
= O(n−1). (A.10)

Similarly, since Ey[κ
′
i,0κj,0κ

′
j,0κk,0] = 0 unless i = k, the second term of (A.9) can be calculated

as

− Ey

2 n∑
i=1

κ′
i,0A

−1/2
i,0 R−1

0

1

n

n∑
j=1

A
−1/2
j,0 κj,0κ

′
j,0A

−1/2
j,0 R−1

0 A
−1/2
i,0 Di,0b1,0


=− Ey

2 n∑
i=1

κ′
i,0A

−1/2
i,0 R−1

0

1

n

n∑
j=1,i ̸=j

A
−1/2
j,0 κj,0κ

′
j,0A

−1/2
j,0 R−1

0 A
−1/2
i,0 Di,0b1i,0

+O(n−1)

=− Ey

[
2

n∑
i=1

κ′
i,0Σ

−1
i,0Di,0b1i,0

]
+O(n−1) = −2p+O(n−1). (A.11)

Note that −2p in (A.11) is obtained from (3.6). Furthermore, Ey[κ
′
i,0(κj,0⊗κ′

k,0)(κk,0⊗κl,0)] = 0

expect in the following cases:

i = j = l or i = j ̸= k = l or i = l ̸= k = j or j = l ̸= k = i.
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Thus, the third term of (A.9) is given by

− Ey

 2

n

∑
i,j

κ′
i,0A

−1/2
i,0 R−1

0 diag(A∗
f,j,0bf,0)κj,0κ

′
j,0A

−1/2
j,0 R−1

0 A
−1/2
i,0 Di,0b1,0


= −Ey

[
2

n

n∑
i=1

κ′
i,0A

−1/2
i,0 R−1

0 diag(A∗
f,i,0bf,0)κi,0κ

′
i,0A

−1/2
i,0 R−1

0 A
−1/2
i,0 Di,0b1,0

]

− Ey

 2

n

∑
i ̸=j

κ′
i,0A

−1/2
i,0 R−1

0 diag(A∗
f,j,0bf,i,0)κj,0κ

′
j,0A

−1/2
j,0 R−1

0 A
−1/2
i,0 Di,0b1j,0


− Ey

 2

n

∑
i ̸=j

κ′
i,0A

−1/2
i,0 R−1

0 diag(A∗
f,j,0bf,j,0)κj,0κ

′
j,0A

−1/2
j,0 R−1

0 A
−1/2
i,0 Di,0b1i,0

+O(n−1)

= O(n−1). (A.12)

In the same manner as in the calculation of the third term of (A.9), the fourth term of (A.9) is

calculated as

−Ey

 2

n

∑
i,j

κ′
i,0A

−1/2
i,0 R−1

0 A
−1/2
j,0 κj,0κ

′
j,0diag(A

∗
f,j,0bf,0)R

−1
0 A

−1/2
i,0 Di,0b1,0

 = O(n−1). (A.13)

Moreover, the fifth term of (A.9) is obtained from (3.6), as follows:

Ey

[
2

n∑
i=1

κ′
i,0Σ

−1
i,0Di,0b1,0

]
= 2p. (A.14)

Substituting (A.10), (A.11), (A.12), (A.13) and (A.14) into (A.9), (A.1) is given by

(A.1) = O(n−1). (A.15)

Consequently, from (A.8) and (A.15), we obtain Bias2 + Bias4 = O(n−1).
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