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Abstract

This paper is concerned with the problem of testing the homogeneity of mean vectors. The
testing problem is without assuming common covariance matrix. We proposed a testing statistic
based on the variation matrix due to the hypothesis and the unbiased estimator of the covariance
matrix. The limiting null and non-null distributions are derived as each sample size and the
dimensionality go to infinity together under a general population distribution including normal
distribution. It is found that our proposed test has the same limiting power as the one of Dempster’s
trace statistic for MANOVA proposed in Fujikoshi, Himeno and Wakaki (2004, JJSS) for the case
that the population distributions are multivariate normal with common covariance matrix for all
groups. A small scale simulation study is performed to compare the actual error probability of the
first kind with the nominal. It is seen that our proposed test is little affected by the non-normality.

1 Introduction

Let x
(i)
1 , . . . ,x

(i)
Ni

be the p-dimensional observation vectors from the ith population Πi, i = 1, . . . , g.
Assume that the observation vector has the following model:

x
(i)
j = µi +Σ

1/2
i ε

(i)
j (j = 1, . . . , Ni, i = 1, . . . , g), (1)

where ε
(i)
1 , . . . , ε

(i)
Ni

are independently and identically distributed (i.i.d.) as p-dimensional distribution
F = Fp(0, Ip) with mean 0 and covariance matrix Ip. We concern the problem of testing homogeneity
of these mean vectors, i.e., the problem is testing the null hypothesis

H0 : µ1 = · · · = µg

against all alternative hypothesis H1. Some results are obtained under the assumption that Σ1 =
· · · = Σg and F is p-dimensional normal. Let W and B be the variation matrices due to the errors
and due to the hypothesis, respectively, which are defined as follows:

W = (N1 − 1)S1 + · · ·+ (Ng − 1)Sg,

B =

g∑
i=1

Ni(x̄
(i) − x̄)(x̄(i) − x̄)′,

where x̄(i) = N−1
i

∑Ni

j=1 x
(i)
j , x̄ = N−1

∑g
j=1 Njx̄

(j), N = N1 + · · ·+Ng, Si is the unbiased estimator

of Σi, which is defined as Si = (Ni−1)−1
∑Ni

j=1(x
(i)
j − x̄(i))(x

(i)
j − x̄(i))′. When n = N−g+1 ≥ p, the

three tests are classically used, where the three tests are the likelihood ratio test Λ = |W |/|W +B|,
Lawley-Hotelling’s trace test trBW−1 and Bartlett-Nanda-Pillai’s trace test trB(B + W )−1. For
the case that p > n, these three tests cannot be defined by the reason that W becomes singular.
Srivastava and Fujikoshi [12] proposed adapted versions of these three tests by using Moore-Penrose

1E-mail address: yma801228@gmail.com
2E-mail address: t-himeno@st.seikei.ac.jp

1



inverse matrix. They showed asymptotic normality as the dimension and the sample size go to infinity
together. Although these three tests are natural extension of the classical tests, the preciseness of
the actual error probability of the first kind is worse, which can be checked by simulation. On the
other hand, Dempster [4], [5] proposed non-exact tests for one and two sample problems. Later, Bai
and Saranadasa [2] proposed other non-exact test for two sample problem. These two tests are both
invariant under transformation (x̄,S) → (cΓx̄, c2ΓSΓ′) for an orthogonal matrix Γ and a constant c.
Fujikoshi et al. [6] generalized Dempster’s test for MANOVA problem and Srivastava and Fujikoshi [12]
did Bai and Saranadasa’s test. Generalization for non-normality has been studied. Bai and Saranadasa
[2] has shown that their test is robust for the general population distribution with the condition CBS of
F that E[ε4i ] = 3 + γ for ε = (ε1, . . . , εp)

′ ∼ F and E[
∏p

i=1 ε
νi
i ] = 0 (and 1) when there is at least one

νi = 1 (there are two νi’s equal to 2, correspondingly), whenever ν1+ · · ·+νp = 4 under the model (1).
Chen and Qin [3] proposed a test based on Bai and Saranadasa [2]’s testing statistic for two sample
problem. They showed the asymptotic normality under the general population distribution with the
condition CCQ of F that E[ε4i ] = 3 + γ and E[

∏q
i=1 ε

νi

ℓi
] =

∏q
i=1 E[ενi

ℓi
] for a positive integer q such

that
∑q

i=1 νi ≤ 8 and ℓ1 ̸= · · · ̸= ℓq without assuming that Σ1 = Σ2. The condition CCQ implies CBS,
and so CBS is milder condition than CCQ.

This paper is concerned with the testing H0 without assuming that Σ1 = · · · = Σg. Let m =∑g
i=1 Ni(µi − µ̄)′(µi − µ̄) with µ̄ = (1/N)

∑g
i=1 Niµi. Then m ≥ 0, where the strict inequality holds

except for the case that µ1 = · · · = µg. Hence, the null hypothesis H0 is equivalent to the hypothesis
that m = 0. Rejection of the null hypothesis H0 results from evidence that the unbiased estimator m̂
of m is significantly larger than zero. Hence we propose the testing statistic as

T =
m̂
√
p
=

1
√
p

{
trB −

g∑
i=1

(
1− Ni

N

)
trSi

}
.

We derive the asymptotic distribution under asymptotic framework A1:

A1 : p → ∞, Ni → ∞, Ni/p → ci ∈ (0,∞), Ni/N → γi ∈ (0, 1), i = 1, . . . , g.

In addition, we will assume A2 and A3, which are as the following:

A2 : trΣ2
i /p = O(1) as p → ∞, i = 1, . . . , g, but at least one of them converges to a positive constant;

A3 : trΣ4
i /p = O(1) as p → ∞, i = 1, . . . , g.

These assumptions are concerned with the structure of the covariance matrices. Instead of using the
CBS or CCQ, we use the assumptions A4, A5 and A6, which are as follows:

A4 : κ1 = sup
1≤i≤g

E[(ε′Σ2
i ε− trΣ2

i )
2] = O(p2) for ε is distributed as F ;

A5 : κ2 = sup
1≤i,j≤g

E[(ε′1Σ
1/2
i Σ

1/2
j ε2)

4] = o(p4) for ε1 and ε2 are i.i.d. as F ;

A6 : κ3 = sup
1≤i,j≤g

E[(ε′Σ
1/2
i ΣjΣ

1/2
i ε)2] = O(p2) for ε is distributed as F .

For the case that g = 2, the statistic T is identical to the Chen and Qin [3]’s testing statistic except
for multiple of N/

√
N1N2. We will show the asymptotic null distribution of T under the asymptotic

framework A1 and the assumptions A2, . . . ,A6. The testing statistic is not invariant under trans-

formation: x
(i)
j 7→ Aix

(i)
j for an non-singular matrix Ai. So the asymptotic variance of the testing

statistic becomes the function of the nuisance parameters (Σ1, . . . ,Σg), which needs to be estimated
for practical use. It is common to use the unbiased estimator. To show the consistency, we use the
following assumption A7:

A7 : κ22 = sup
1≤i≤g

{E[(ε′Σ2
i ε)

2]− 2 trΣ4
i − (trΣ2

i )
2} = o(p3), sup

1≤i≤g
{E[(ε′1Σiε2)

4]} = o(p4)

for ε1 and ε2 are i.i.d. as F.
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Under the asymptotic framework A1 and the assumptions for covariance matrices A2 and A3, the
assumptions for distribution A4, A5, A6 and A7 hold when F is elliptical distribution, and are implied
by CBS. Hence our assumption is milder than CBS.

For the nonnull case, we assume the assumption A8:

A8 :

g∑
i=1

trΣk
iΩi = O(

√
p) (k = 1, 2),

where
Ωi = NiΣ

−1/2
i (µi − µ̄)(µi − µ̄)′Σ

−1/2
i .

Under the asymptotic framework A1 and the assumptions A2-A8, we gave asymptotic power, and
found that it is the same as the one proposed by Fujikoshi et al. [6] or Srivastava and Fujikoshi [12]
when Σ1 = · · · = Σg and F = Np(0, Ip).

Later, we denote “
p→” as the convergence in probability, and “

D
=” as the equality in distribution.

In addition, we use the notation “
∑

i ̸=j” as the sum of all pairs of i and j such that i ̸= j.

2 Assumptions for multivariate distribution

In this section, we show that the assumptions for distribution A4, A5, A6 and A7 hold when F is
elliptical distribution and are implied by CBS under the asymptotic framework A1 and the assumptions
for covariance matrices A2 and A3,

Lemma 1. Assume that F is p-dimensional elliptical distribution with mean vector 0 and the covari-
ance matrix Ip, and E[R4] = O(p2) with R =

√
ε′ε for ε ∼ F . Then A4, A5, A6 and A7 hold.

Proof. First of all, we evaluate E[(ε′Λε)2] with positive semi definite matrix Λ. Since ε
D
= Γε for any

orthogonal matrix Γ, we may assume without loss of generality that Λ = diag(λ1, . . . , λp). It holds
that

E[(ε′Λε)2] =

p∑
i=1

λ2
iE[ε4i ] +

p∑
i ̸=j

λiλjE[ε2i ε
2
j ]

with ε = (ε1 · · · εp)′. The moments can be evaluated as the following:

E[ε4i ] =
3E[R4]

p(p+ 2)
, E[ε2i ε

2
j ] =

E[R4]

p(p+ 2)

for i, j = 1, . . . , p, i ̸= j (cf. Anderson [1]). So we have

E[(ε′Λε)2] =
2E[R4]

p(p+ 2)
trΛ2 +

E[R4]

p(p+ 2)
(trΛ)2. (2)

For i = 1, . . . , p,

E[(ε′Σ2
i ε− trΣ2

i )
2] =

2E[R4]

p(p+ 2)
trΣ4

i +

{
E[R4]

p(p+ 2)
− 1

}
(trΣ2

i )
2,

which is O(p2) under A1, A2 and A3, so A4 holds. Letting A = aa′ with a = Σ
1/2
i Σ

1/2
j ε2, it can be

expressed that

E[(ε′1Σ
1/2
i Σ

1/2
j ε2)

4] = E[E[(a′ε1)
4|a]]

= E[E[(ε′1Aε1)
2|a]]

= E

[
2E[R4]

p(p+ 2)
trA2 +

E[R4]

p(p+ 2)
(trA)2

]
,
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where the last equality follows from (2). Note that trA2 = (trA)2 = (a′a)2. Using the result in (2)
again, we have

E[(ε′1Σ
1/2
i Σ

1/2
j ε2)

4] = E

[
2E[R4]

p(p+ 2)
trA2 +

E[R4]

p(p+ 2)
(trA)2

]
= 3

{
E[R4]

p(p+ 2)

}2 {
2 tr(ΣiΣj)

2 + (trΣiΣj)
2
}

for i, j = 1, . . . , p. From the inequalities in (25), it is found that

1

p
tr(ΣiΣj)

2 = O(1) (3)

under the asymptotic framework A1 and assumption A3. Using Cauchy-Schwarz’s inequality, it holds
that

(trΣiΣj)
2 ≤ trΣ2

i trΣ
2
j .

Thus,
1

p2
(trΣiΣj)

2 = O(1). (4)

From (3) and (4), E[(ε′1Σ
1/2
i Σ

1/2
j ε2)

4] is o(p4) under A1, A2 and A3, so A5 holds. By the result in
(2), A6 and A7 can be shown immediately.

Lemma 2. Under A1, A2 and A3, the condition CBS implies A4, A5, A6 and A7.

Proof. Let C = (cij) be p×p positive semi definite matrix. Under the assumption CBS, the expectation
E[(ε′Cε)2] can be evaluated that

E[(ε′Cε)2] = E


 p∑

i=1

ciiε
2
i +

p∑
i ̸=j

cijεiεj

2


=

p∑
i=1

ciiE[ε4i ] +

p∑
i ̸=j

ciicjjE[ε2i ε
2
j ] + 2

p∑
i ̸=j

c2ijE[ε2i ε
2
j ]

= (3 + γ)

p∑
i=1

cii +

p∑
i ̸=j

ciicjj + 2

p∑
i ̸=j

c2ij . (5)

Note that
∑p

i=1 c
2
ii ≤ trC2,

∑p
i ̸=j ciicjj ≤ (trC)2 and

∑p
i ̸=j c

2
ij ≤ trC2. Thus we have

E[(ε′Cε)2] = (3 + γ)

p∑
i=1

c2ii +

p∑
i ̸=j

ciicjj + 2

p∑
i ̸=j

c2ij

≤ (3 + γ) trC2 + (trC)2 + 2 trC2. (6)

This leads that
κ1 ≤ (5 + γ) sup

1≤i≤g
trΣ2

i ,

which the right-hand side is O(p) under A2, and so κ1 = O(p). Hence we find that A4 holds. For any

fixed i, j ∈ {1, . . . , p} with i ̸= j, letting A = aa′ with a = Σ
1/2
i Σ

1/2
j ε2, it can be expressed that

E[(ε′1Σ
1/2
i Σ

1/2
j ε2)

4] = E[E[(ε′1Aε1)
2|a]],

From (6), we find that

E[E[(ε′1Aε1)
2|a]] ≤ E[(3 + γ) trA2 + (trA)2 + 2 trA2].
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Since trA2 = (trA)2 = (a′a)2,

E[(ε′1Σ
1/2
i Σ

1/2
j ε2)

4] ≤ (6 + γ)E[(ε′2Σ
1/2
j ΣiΣ

1/2
j ε2)

2]

≤ (6 + γ)
{
(3 + γ) tr(ΣiΣj)

2 + 2 tr(ΣiΣj)
2 + (trΣiΣj)

2
}
, (7)

where the second inequality follows by (6). From (25), the right-hand of the inequality (7) is O(p2), and
so κ2 is o(p

4), which leads that A5 holds. We can show A6 and A7 by the result in (6), immediately.

3 Asymptotic null distribution of the proposed testing statis-
tic

Let

Φ = (ϕij) =

PN1 O O

O
. . . O

O O PNg

−PN , (8)

where the matrix Pj = j−11j1
′
j , 1j is j-dimensional vector which all elements are equal to 1. Then it

holds that
B = XΦX ′,

where

X =
(
x
(1)
1 · · · x

(1)
N1

x
(2)
1 · · · x

(g)
Ng

)
.

Define

mi =

{
N1 + · · ·+Ni−1 (i = 2, 3, . . . , g),

0 (i = 1).

Setting xmi+j = x
(i)
j , we can rewrite X as

X =
(
x1 · · · xN

)
,

and then expand trB as

trB =
N∑
i=1

ϕiix
′
ixi + 2

N∑
i<j

ϕijx
′
ixj .

Recalling the definition of Φ, we have ϕkk = N−1
i −N−1 when k ∈ Ii = {mi +1, . . . ,mi +Ni}, and so

trB =

g∑
i=1

(
1

Ni
− 1

N

) mi+Ni∑
k=mi+1

x′
kxk +

N∑
i ̸=j

ϕijx
′
ixj . (9)

On the other hand, let Xi =
(
xmi+1 · · · xmi+Ni

)
. Then

Si =
1

Ni − 1
Xi(INi −PNi)X

′
i,

which can be described as

1

Ni

mi+Ni∑
k=mi+1

xkx
′
k − 1

Ni(Ni − 1)

mi+Ni∑
k ̸=ℓ

k,ℓ≥mi+1

xkx
′
ℓ. (10)

So,

trSi =
1

Ni

mi+Ni∑
k=mi+1

x′
kxk − 1

Ni(Ni − 1)

mi+Ni∑
k ̸=ℓ

k,ℓ≥mi+1

x′
kxℓ. (11)
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From the expressions (9) and (11), we have

T =
1
√
p

N∑
i ̸=j

ϕijx
′
ixj +

1
√
p

g∑
i=1

(
1− Ni

N

)
1

Ni(Ni − 1)

mi+Ni∑
k ̸=ℓ

k,ℓ≥mi+1

x′
kxℓ.

Recalling the definition Φ again, it holds that for i ̸= j,

ϕij =


1

Nk
− 1

N
(i, j ∈ Ik),

− 1

N
(otherwise).

Thus,

T =
1
√
p


g∑

i=1

(
1

Ni
− 1

N

) mi+Ni∑
k ̸=ℓ

k,ℓ≥mi+1

x′
kxℓ −

1

N

g∑
i ̸=j

 mi+Ni∑
k=mi+1

mj+Nj∑
ℓ=mj+1

x′
kxℓ




+
1
√
p

g∑
i=1

(
1− Ni

N

)
1

Ni(Ni − 1)

mi+Ni∑
k ̸=ℓ

k,ℓ≥mi+1

x′
kxℓ,

which can be coordinate as

T =
1
√
p

g∑
i=1

1

Ni − 1

(
1− Ni

N

) mi+Ni∑
k ̸=ℓ

k,ℓ≥mi+1

x′
kxℓ −

1
√
pN

g∑
i ̸=j

 mi+Ni∑
k=mi+1

mj+Nj∑
ℓ=mj+1

x′
kxℓ

 .

Assuming the model (1), under the null hypothesis H0, it can be expressed that

T =
2
√
p

g∑
i=1

1

Ni − 1

(
1− Ni

N

) mi+Ni∑
k<ℓ

k≥mi+1

z′
kΣizℓ −

2
√
pN

g∑
i<j

 mi+Ni∑
k=mi+1

mj+Nj∑
ℓ=mj+1

z′
kΣ

1/2
i Σ

1/2
j zℓ

 ,

where each zi denotes the error vector corresponding to xi which satisfies zi = ε
(ℓ)
k for the case that

i = mℓ + k. Notice that T is represented as the sum of correlated terms. In order to show asymptotic
normality, we use Martingale difference central limit theorem. For the case that ℓ ∈ Ij , let

ηℓ =
2
√
p

− 1

N
z′
ℓΣ

1/2
j

{
j−1∑
i=1

mi+Ni∑
k=mi+1

Σ
1/2
i zk

}
+

1

Nj − 1

(
1− Nj

N

)
z′
ℓ

 ℓ−1∑
k=mj+1

Σjzk

 ,

and let Fj be the σ-algebra generated by the random vectors z1, . . . , zj and F0 = {ϕ,Ω}, where ϕ
denotes the empty set and Ω the whole space. It shall be noticed that F0 ⊂ F1 ⊂ · · · ⊂ FN . Letting
z0 = 0, we have

T =
N∑
ℓ=1

ηℓ.

In addition,

E[ηℓ|Fℓ−1] = 0,

E[η2ℓ |Fℓ−1] =
4

pN2

{
j−1∑
i=1

mi+Ni∑
k=mi+1

Σ
1/2
j Σ

1/2
i zk

}′{j−1∑
i=1

mi+Ni∑
k=mi+1

Σ
1/2
j Σ

1/2
i zk

}

+
1

p

{
2

Nj − 1

(
1− Nj

N

)}2
 ℓ−1∑

k=mj+1

zk

′

Σ2
j

 ℓ−1∑
k=mj+1

zk


− 2

2

pN

{
2

Nj − 1

(
1− Nj

N

)}{j−1∑
i=1

mi+Ni∑
k=mi+1

Σ
1/2
j Σ

1/2
i zk

}′ ℓ−1∑
k=mj+1

Σjzk

 (12)
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for the case that ℓ ∈ Ij . By taking expectation for the conditional expectation, we have

E[η2ℓ ] =
4

N2

j−1∑
i=1

Ni
trΣjΣi

p
+

{
2

Nj − 1

(
1− Nj

N

)}2

{(ℓ− 1)− (mi + 1) + 1}
trΣ2

j

p
, (13)

which is finite under the asymptotic framework A1 and the assumption A2. So the sequence (ηℓ,Fℓ)
is a squared integrable Martingale difference. In order to show the central limit theorem, it shall be
verified that

(I) C =
N∑
ℓ=1

E[η2ℓ |Fℓ−1]
p→ σ2

0 < ∞;

(II) L =
N∑
ℓ=1

E[η2ℓ I(|ηℓ| > ε)|Fℓ−1]
p→ 0 for ∀ε > 0,

where the function I(.) denotes the indicator function. The latter is known as the Lindberg’s condition
in central limit theorem.

We first show the condition (I). From the definition, it can be described as

E[C] =

N∑
ℓ=1

E[η2ℓ ].

Partition the summing as
N∑
ℓ=1

E[η2ℓ ] =

g∑
i=1

mi+Ni∑
ℓ=mi+1

E[η2ℓ ].

From (13), we have

E[C] =

g∑
i=1

 4

N2

i−1∑
j=1

Nj
trΣjΣi

p

 mi+Ni∑
ℓ=mi+1

1


+

{
2

Ni − 1

(
1− Ni

N

)}2 mi+Ni∑
ℓ=mi+1

{(ℓ− 1)− (mi + 1) + 1} trΣ
2
i

p

]
,

which can be represented as

g∑
i=1

{
2

Ni − 1

(
1− Ni

N

)}2
Ni(Ni − 1)

2

trΣ2
i

p
+

2

N2

g∑
i ̸=j

NiNj
trΣiΣj

p
.

This implies that E[C] converges to a positive constant under the asymptotic framework A1 and
assumption A2, say σ2

0 . Thus, to show the probability convergence in (I), we need to show that Var(C)
converges to 0. Partition the summing in C as

C =

g∑
i=1

mi+Ni∑
ℓ=mi+1

E[η2ℓ |Fℓ−1].

From (12) it can be expressed that
C = T1 + T2 + T3,
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where

T1 =
1

p

g∑
i=1

{
2

Ni − 1

(
1− Ni

N

)}2 mi+Ni∑
ℓ=mi+1

(
ℓ−1∑

k=mi+1

zk

)′

Σ2
i

(
ℓ−1∑

k=mi+1

zk

)
,

T2 =
4

pN2

g∑
i=1

mi+Ni∑
ℓ=mi+1


i−1∑
j=1

mj+Nj∑
k=mj+1

Σ
1/2
i Σ

1/2
j zk


′

i−1∑
j=1

mj+Nj∑
k=mj+1

Σ
1/2
i Σ

1/2
j zk

 ,

T3 = −2
2

Np

g∑
i=1

{
2

Ni − 1

(
1− Ni

N

)}i−1∑
j=1

mj+Nj∑
k=mj+1

Σ
1/2
i Σ

1/2
j zk

′{
mi+Ni∑
ℓ=mi+1

(
ℓ−1∑

k=mi+1

Σizk

)}
.

Since Var(C) ≤ 3(Var(T1) + Var(T2) + Var(T3)), it is sufficient to show that Var(Ti) → 0, i = 1, 2, 3.
Firstly, we show that Var(T1) converges to 0. Let

T1i =

mi+Ni∑
ℓ=mi+1

(
ℓ−1∑

k=mi+1

zk

)′

Σ2
i

(
ℓ−1∑

k=mi+1

zk

)
.

From the independency, it holds that

Var(T1) =
1

p2

g∑
i=1

{
2

Ni − 1

(
1− Ni

N

)}4

Var (T1i) .

Note that the random variable T1i can be expanded as

T1i =

mi+Ni∑
ℓ=mi+1


ℓ−1∑

k=mi+1

z′
kΣ

2
izk +

ℓ−1∑
α ̸=β

α,β≥mi+1

z′
αΣ

2
izβ

 ,

and so we find that

E[T1i] =
Ni(Ni − 1)

2
trΣ2

i .

This gives that

T1i − E[T1i] =

mi+Ni∑
ℓ=mi+1


ℓ−1∑

k=mi+1

(z′
kΣ

2
izk − trΣ2

i ) +
ℓ−1∑
α ̸=β

α,β≥mi+1

z′
αΣ

2
izβ

 .

Let

Y
(DQ)
k,i = z′

kΣ
2
izk − trΣ2

i ,

Y
(B1)
αβ,i = z′

αΣ
2
izβ .

The variance Var(T1i) can be expressed that

E[(T1i − E[T1i])
2]

= E

mi+Ni∑
ℓ=mi+1


(

ℓ−1∑
k=mi+1

Y
(DQ)
k,i

)2

+

 ℓ−1∑
α ̸=β

α,β≥mi+1

Y
(B1)
αβ,i


2

+ 2

(
ℓ−1∑

k=mi+1

Y
(DQ)
k,i

) ℓ−1∑
α ̸=β

α,β≥mi+1

Y
(B1)
αβ,i




+2

mi+Ni∑
mi+1≤ℓ<ℓ′

 ℓ−1∑
k=mi+1

Y
(DQ)
k,i +

ℓ−1∑
α ̸=β

α,β≥mi+1

Y
(B1)
αβ,i


 ℓ′−1∑

k=mi+1

Y
(DQ)
k,i +

ℓ′−1∑
α ̸=β

α,β≥mi+1

Y
(B1)
αβ,i


 .
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For evaluating these expectations, we use the following identities.

E

mi+Ni∑
ℓ=mi+1

(
ℓ−1∑

k=mi+1

Y
(DQ)
k,i

)2
 =

mi+Ni∑
ℓ=mi+1

{(ℓ− 1)− (mi + 1) + 1}E[(z′Σiz − trΣ2
i )

2]

=
Ni(Ni − 1)

2
E[(z′Σiz − trΣ2

i )
2],

E

mi+Ni∑
ℓ=mi+1

 ℓ−1∑
α ̸=β

α,β≥mi+1

Y
(B1)
αβ,i


2 =

mi+Ni∑
ℓ=mi+1

{(ℓ− 1)− (mi + 1)}{(ℓ− 1)− (mi + 1) + 1} trΣ4
i

=
2Ni(Ni − 1)(Ni − 2)

3
trΣ4

i ,

E

mi+Ni∑
ℓ=mi+1

(
ℓ−1∑

k=mi+1

Y
(DQ)
k,i

) ℓ−1∑
α ̸=β

α,β≥mi+1

Y
(B1)
αβ,i


 = 0,

E

 mi+Ni∑
mi+1≤ℓ<ℓ′

(
ℓ−1∑

k=mi+1

Y
(DQ)
k,i

) ℓ′−1∑
k=mi+1

Y
(DQ)
k,i


=

mi+Ni∑
mi+1≤ℓ<ℓ′

E

[
ℓ−1∑

k=mi+1

(Y
(DQ)
k,i )2

]
=

mi+Ni∑
mi+1≤ℓ<ℓ′

{(ℓ− 1)− (mi + 1) + 1}E[(z′Σ2
iz − trΣ2

i )
2]

=
(Ni − 2)(Ni − 1)Ni

6
E[(z′Σ2

iz − trΣ2
i )

2],

E

 mi+Ni∑
mi+1≤ℓ<ℓ′

 ℓ−1∑
α ̸=β

α,β≥mi+1

Y
(B1)
αβ,i


 ℓ′−1∑

α ̸=β
α,β≥mi+1

Y
(B1)
αβ,i


 = 4

mi+Ni∑
mi+1≤ℓ<ℓ′

E


 ℓ−1∑

α<β
α≥mi+1

Y
(B1)
αβ,i


 ℓ′−1∑

α<β
α≥mi+1

Y
(B1)
αβ,i




= 4

mi+Ni∑
mi+1≤ℓ<ℓ′

E


 ℓ−1∑

α<β
α≥mi+1

Y
(B1)
αβ,i


2 = 4

mi+Ni∑
mi+1≤ℓ<ℓ′

ℓ−1∑
α<β

α≥mi+1

E[(Y
(B1)
αβ,i )

2]

= 4

mi+Ni∑
mi+1≤ℓ<ℓ′

{(ℓ− 1)− (mi + 1)}{(ℓ− 1)− (mi + 1) + 1}
2

trΣ4
i =

Ni(Ni − 1)(Ni − 2)(Ni − 3)

6
trΣ4

i ,

E

 mi+Ni∑
mi+1≤ℓ<ℓ′

(
ℓ−1∑

k=mi+1

Y
(DQ)
k,i

) ℓ′−1∑
α ̸=β

α,β≥mi+1

Y
(B1)
αβ,i


 = 0,

where z ∼ F . Combining these results, we have

Var(T1i) =
Ni(Ni − 1)(2Ni − 1)

6
E[(z′Σ2

iz − trΣ2
i )

2] +
Ni(Ni − 1)2(Ni − 2)

3
trΣ4

i ,

and so Var(T1) converges to 0 under the asymptotic framework A1 and the assumptions A3 and A4.
Next, we show that Var(T2) converges to 0. To do it, we use the following inequality:

Var(X1 + · · ·+Xn) ≤ n
n∑

i=1

Var(Xi), (14)

where the strict inequality holds unless X1 = · · · = Xn. Using the inequality, we have

Var(T2) ≤
1

p2
16

N4
g

g∑
i=1

N2
i Var


i−1∑
j=1

Σ
1/2
i Σ

1/2
j

mj+Nj∑
k=mj+1

zk


′

i−1∑
j=1

Σ
1/2
i Σ

1/2
j

mj+Nj∑
k=mj+1

zk


 ,
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The right-hand side of the inequality can be expressed as

1

p2
16

N4
g

g∑
i=1

N2
i Var

i−1∑
j=1

 mj+Nj∑
k=mj+1

zk

′

Σ
1/2
j ΣiΣ

1/2
j

 mj+Nj∑
k=mj+1

zk


+2

i−1∑
α<β

(
mα+Nα∑
k=mα+1

zk

)′

Σ1/2
α ΣiΣ

1/2
β

mβ+Nβ∑
k=mβ+1

zk

 ,

and from the uncorrelatedness,

1

p2
16

N4
g

g∑
i=1

N2
i


i−1∑
j=1

Var

 mj+Nj∑
k=mj+1

zk

′

Σ
1/2
j ΣiΣ

1/2
j

 mj+Nj∑
k=mj+1

zk


+ 4

i−1∑
α<β

Var

(mα+Nα∑
k=mα+1

zk

)′

Σ1/2
α ΣiΣ

1/2
β

mβ+Nβ∑
k=mβ+1

zk

 .

Further, it can be expanded as

1

p2
16

N4
g

g∑
i=1

N2
i


i−1∑
j=1

 mj+Nj∑
k=mj+1

Var(z′
kΣ

1/2
j ΣiΣ

1/2
j zk) + 4

mj+Nj∑
k<ℓ

k≥mj+1

Var(z′
kΣ

1/2
j ΣiΣ

1/2
j zℓ)


+4

i−1∑
α<β

Var

(mα+Nα∑
k=mα+1

zk

)′

Σ1/2
α ΣiΣ

1/2
β

mβ+Nβ∑
k=mβ+1

zk

 .

Evaluating these variances, and coordinating them, we have

16g

g∑
j<i

[
N2

i Nj

N4

1

p2
E[(z′Σ

1/2
j ΣiΣ

1/2
j z − trΣiΣj)

2] +
2

p

N2
i Nj(Nj − 1)

N4

1

p
tr(ΣiΣj)

2

]

+ 64
g

p

g∑
i=1

i−1∑
α<β

N2
i NαNβ

N4

1

p
trΣαΣiΣβΣi

 . (15)

From the inequalities in (26), it is found that

1

p
trΣαΣiΣβΣi = O(1)

under the asymptotic framework A1 and the assumption A3. With using (3), it is found that (15)
converges to 0 under the asymptotic framework A1 and the assumption A3, and so Var(T2) also
converges to 0. Lastly, we show that Var(T3) converges to 0. Making use of the inequality in (14), it
holds that

Var(T3) ≤
16g

p2N2

g∑
i=1

1

(Ni − 1)2

(
1− Ni

N

)2

·Var


i−1∑
j=1

(Σ
1/2
i Σ

1/2
j )

mj+Nj∑
k=mj+1

zk


′{

Σi

(
mi+Ni∑
ℓ=mi+1

ℓ−1∑
k=mi+1

zk

)} . (16)
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Note that

Var


i−1∑
j=1

(Σ
1/2
i Σ

1/2
j )

mj+Nj∑
k=mj+1

zk


′{

Σi

(
mi+Ni∑
ℓ=mi+1

ℓ−1∑
k=mi+1

zk

)}
= tr

E

{Σi

mi+Ni−1∑
k=mi+1

(Ni +mi − k)zk

}{
Σi

mi+Ni−1∑
k=mi+1

(Ni +mi − k)zk

}′
· E


i−1∑
j=1

(Σ
1/2
i Σ

1/2
j )

mj+Nj∑
k=mj+1

zk




i−1∑
j=1

(Σ
1/2
i Σ

1/2
j )

mj+Nj∑
k=mj+1

zk


′ ,

which is evaluated as

tr

{Ni(Ni − 1)(2Ni − 1)

6
Σ2

i

}i−1∑
j=1

NjΣ
1/2
i ΣjΣ

1/2
i

 .

Thus, the right-hand side of the inequality (16) is

16g

6p

g∑
i=1

(
1− Ni

N

)2
Ni

Ni − 1

2Ni − 1

N

i−1∑
j=1

Nj

N

trΣjΣ
3
i

p
. (17)

From the inequalities in (26), it is found that trΣjΣ
3
i /p = O(1), and so (17) converges to 0 under the

asymptotic framework A1 and the assumptions A2 and A3. It implies that Var(T3) converges to 0.
Since Var(T1), Var(T2) and Var(T3) are all converge to 0, Var(C) = Var(T1 + T2 + T3) converges to 0.
Thus C converges in probability to σ2

0 .
To show (II), it is sufficient to show that

N∑
ℓ=1

E[η4ℓ ] → 0

under the asymptotic framework A1. From Jensen’s inequality, it holds that

E[η4ℓ ] ≤ 23

E

(− 1
√
p

2

N

j−1∑
i=1

mi+Ni∑
k=mi+1

Y
(B2)
ℓk,ji

)4
+ E


 1
√
p

2

Nj − 1

(
1− Nj

N

) ℓ−1∑
k=mj+1

Y
(B2)
ℓk,j

4


(18)

for ℓ ∈ Ij , where

Y
(B2)
ℓk,j = z′

ℓΣjzk,

Y
(B2)
ℓk,ji = z′

ℓΣ
1/2
j Σ

1/2
i zk.

Firstly, we evaluate the first expectation in the right-hand side of the inequality. It can be expanded
that (

j−1∑
i=1

mi+Ni∑
k=mi+1

Y
(B2)
ℓk,ji

)2

=

j−1∑
i=1

{
mi+Ni∑
k=mi+1

Y
(B2)
ℓk,ji

}2

+

j−1∑
α ̸=β

{
mα+Nα∑
k=mα+1

Y
(B2)
ℓk,ji

}
mβ+Nβ∑
k=mβ+1

Y
(B2)
ℓk,ji

 ,

and so the expectation of the squared is described as

E

(j−1∑
i=1

mi+Ni∑
k=mi+1

Y
(B2)
ℓk,ji

)4
 =

j−1∑
i=1

E

( mi+Ni∑
k=mi+1

Y
(B2)
ℓk,ji

)4
+3

j−1∑
α ̸=β

E

(mα+Nα∑
k=mα+1

Y
(B2)
ℓk,jα

)2
mβ+Nβ∑

k=mβ+1

Y
(B2)
ℓk,jβ

2
 .

(19)
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It can be expressed that

E

( mi+Ni∑
k=mi+1

Y
(B2)
ℓk,ji

)4
 =

mi+Ni∑
k=mi+1

E[(z′
kΣ

1/2
i Σ

1/2
j zℓ)

4]

+ 3

mi+Ni∑
α ̸=β

α,β≥mi+1

E[(z′
αΣ

1/2
i Σ

1/2
j zℓ)

2(z′
βΣ

1/2
i Σ

1/2
j zℓ)

2],

which is bounded by Niκ2 + 3Ni(Ni − 1)κ3. Besides, we can see that

E

{mα+Nα∑
k=mα+1

Y
(B2)
ℓk,jα

}2


mβ+Nβ∑
k=mβ+1

Y
(B2)
ℓk,jβ


2
 = E[Nαz

′
ℓΣ

1/2
j ΣαΣ

1/2
j zℓNβz

′
ℓΣ

1/2
j ΣβΣ

1/2
j zℓ],

where α ̸= β. Using Cauchy-Schwarz’s inequality, the right-hand side of the equality is bounded by

NαNβ

√
E[(z′

ℓΣ
1/2
j ΣαΣ

1/2
j zℓ)2]E[(z′

ℓΣ
1/2
j ΣβΣ

1/2
j zℓ)2],

which is bounded by NαNβκ3. Combining these results, we have

E

(j−1∑
i=1

mi+Ni∑
k=mi+1

Y
(B2)
ℓk,ji

)4
 ≤

j−1∑
i=1

{Niκ2 + 3Ni(Ni − 1)κ3}+ 3

j−1∑
α ̸=β

NαNβκ3. (20)

Next, we evaluate the second expectation in the right-hand side of the inequality (18). It can be
expanded that  ℓ−1∑

k=mj+1

Y
(B2)
ℓk,j

2

=
ℓ−1∑

k=mj+1

(z′
ℓΣjzk)

2 +
ℓ−1∑
α ̸=β

α,β≥mj+1

(z′
ℓΣjzα)(z

′
ℓΣjzβ),

and so the expectation of the squared can be described as

E


 ℓ−1∑

k=mj+1

Y
(B2)
ℓk,j

4
 =

ℓ−1∑
k=mj+1

E[(z′
ℓΣjzk)

4] + 3
ℓ−1∑
α ̸=β

α,β≥mj+1

E[(z′
ℓΣjzα)

2(z′
ℓΣjzβ)

2].

From the assumptions A5 and A6, if ℓ ∈ Ij , the right-hand side of the equality is bounded by

{(ℓ− 1)− (mj + 1) + 1}κ2 + 3{(ℓ− 1)− (mj + 1) + 1}{(ℓ− 1)− (mj + 1)}κ3.

Thus, we have

E


 ℓ−1∑

k=mj+1

Y
(B2)
ℓk,j

4
 ≤ (ℓ−mj − 1)κ2 + 3(ℓ−mj − 1)(ℓ−mj − 2)κ3. (21)
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From the inequalities (20) and (21), it holds that

N∑
ℓ=1

E[η4ℓ ] =

g∑
j=1

mj+Nj∑
ℓ=mj+1

E[η4ℓ ]

≤ 8

16

N

g∑
j=1

mj+Nj∑
ℓ=mj+1

j−1∑
i=1

{
Ni

N

p2

N2

κ2

p4
+

3

N

Ni(Ni − 1)

N2

κ3

p2

}
+

3

N

j−1∑
α ̸=β

NαNβ

N2

κ3

p2


+

g∑
j=1

mj+Nj∑
ℓ=mj+1

16

p2(Nj − 1)4

(
1− Nj

N

)2

{(ℓ−mj − 1)κ2 + 3(ℓ−mj − 1)(ℓ−mj − 2)κ3}


= 8

16

N

g∑
j=1

mj+Nj∑
ℓ=mj+1

j−1∑
i=1

{
Ni

N

p2

N2

κ2

p4
+

3

N

Ni(Ni − 1)

N2

κ3

p2

}
+

3

N

j−1∑
α ̸=β

NαNβ

N2

κ3

p2


+

g∑
j=1

16Np2

(Nj − 1)3

(
1− Nj

N

)2{
Nj

2N

κ2

p4
+

1

N

Nj(Nj − 2)

p2
κ3

p2

} ,

which goes to 0 under asymptotic framework A1 and assumptions A2, A3, A5 and A6, and so the
condition (II) holds.

Thus it completes the proof of the asymptotic normality of T , which is given in the following
theorem.

Theorem 1. Assume that the observation vectors have the model (1), where these error vectors are
independent and identically distributed as F with the mean 0 and the covariance matrix Ip for i =
1, . . . , g. Under the asymptotic framework A1 and assumptions A2-A6, the null distribution of T
converges in distribution to the normal distribution with mean 0 and variance σ2

0, where σ2
0 = limσ2,

σ2 = 2

g∑
i=1

(
1− Ni

N

)2
Ni

Ni − 1

trΣ2
i

p
+ 2

g∑
i ̸=j

NiNj

N2

trΣiΣj

p
.

For the actual use of Theorem 1, we need to estimate σ2
0 . The unbiased estimator of σ2 is given by

σ̂2 = 2

g∑
i=1

(
1− Ni

N

)2
Ni

Ni − 1

t̂rΣ2
i

p
+ 2

g∑
i≠j

NiNj

N2

̂trΣiΣj

p
,

where ̂trΣ2
i /p and ̂trΣiΣj/p are unbiased estimators of trΣ2

i /p and trΣiΣj/p, respectively, which
are defined as

t̂rΣ2
i

p
=

Ni − 1

Ni(Ni − 2)(Ni − 3)p
{(Ni − 1)(Ni − 2) trS2

i + (trSi)
2 −NiQi},

̂trΣiΣj

p
=

trSiSj

p
.

Here,

Qi =
1

Ni − 1

Ni∑
j=1

((x
(i)
j − x̄(i))′(x

(i)
j − x̄(i)))2.

The unbiased estimator ̂trΣ2
i /p has consistency under the asymptotic framework A1 and the assump-

tions A2, A3, A5 and A7, which can be checked in Himeno and Yamada [8]. We need to show the
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consistency of ̂trΣiΣj/p. From (10) and the invariance property of mean vector,

1

p
trSiSj =

1

p
tr


 1

Ni

mi+Ni∑
k=mi+1

Σ
1/2
i zkz

′
kΣ

1/2
i − 1

Ni(Ni − 1)

mi+Ni∑
k ̸=ℓ

k,ℓ≥mi+1

Σ
1/2
i zkz

′
ℓΣ

1/2
i


·

 1

Nj

mj+Nj∑
k=mj+1

Σ
1/2
j zkz

′
kΣ

1/2
j − 1

Nj(Nj − 1)

mj+Nj∑
k ̸=ℓ

k,ℓ≥mj+1

Σ
1/2
j zkz

′
ℓΣ

1/2
j


 ,

which can be expanded as U1 − U2 − U3 + U4 with

U1 =
1

pNiNj

mi+Ni∑
k=mi+1

mj+Nj∑
ℓ=mj+1

(Y
(B2)
ℓk,ji )

2,

U2 =
1

pNiNj(Nj − 1)

mi+Ni∑
k=mi+1

mj+Nj∑
α ̸=β

α,β≥mj+1

Y
(B2)
αk,jiY

(B2)
βk,ji,

U3 =
1

pNjNi(Ni − 1)

mj+Nj∑
ℓ=mj+1

mi+Ni∑
α ̸=β

α,β≥mi+1

Y
(B2)
ℓα,jiY

(B2)
ℓβ,ji ,

U4 =
1

pNiNj(Ni − 1)(Nj − 1)

mi+Ni∑
k ̸=ℓ

k,ℓ≥mi+1

mj+Nj∑
α ̸=β

α,β≥mj+1

Y
(B2)
αℓ,jiY

(B2)
βk,ji.

Since U1, U2, U3 and U4 are uncorrelated,

Var

(
1

p
trSiSj

)
= E

[
{U1 − (1/p) trΣiΣj}2

]
+ E[U2

2 ] + E[U2
3 ] + E[U2

4 ].

Firstly, we treat E
[
{U1 − (1/p) trΣiΣj}2

]
. It follows that

E
[
{U1 − (1/p) trΣiΣj}2

]
= E

 1

p2N2
i N

2
j


mi+Ni∑
k=mi+1

mj+Nj∑
ℓ=mj+1

(Y
(B2)
ℓk,ji )

4 +

mi+Ni∑
k=mi+1

mj+Nj∑
α ̸=β

α,β≥mj+1

(Y
(B2)
αk,ji)

2(Y
(B2)
βk,ji)

2


+

mi+Ni∑
α ̸=β

α,β≥mi+1

mj+Nj∑
ℓ=mj+1

(Y
(B2)
ℓα,ji)

2(Y
(B2)
ℓβ,ji )

2 +

mi+Ni∑
α ̸=β

α,β≥mi+1

mj+Nj∑
k ̸=ℓ

k,ℓ≥mj+1

(Y
(B2)
kα,ji)

2(Y
(B2)
ℓβ,ji )

2

−
(
1

p
trΣiΣj

)2

=
1

p2NiNj
E[(ε′1Σ

1/2
i Σ

1/2
j ε2)

4] +
Nj − 1

p2NiNj
E[(ε′1Σ

1/2
i ΣjΣ

1/2
i ε1)

2]

+
Ni − 1

p2NiNj
E[(ε′1Σ

1/2
j ΣiΣ

1/2
j ε1)

2] +

(
1

NiNj
− 1

Ni
− 1

Nj

)(
1

p
trΣiΣj

)2

,

which is bounded by

p2

NiNj

(
1

p4
κ2

)
+

Ni +Nj − 2

NiNj

(
1

p2
κ3

)
+

(
1

NiNj
− 1

Ni
− 1

Nj

)(
1

p
trΣiΣj

)2

.
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Under the asymptotic framework A1 and the assumptions A2, A5 and A6, the boundary converges to
0, and so E[{U1 − (1/p) trΣiΣj}2] converges to 0. Next, we treat E[U2

2 ]. It follows that

E[U2
2 ] = E

 1

p2N2
i N

2
j (Nj − 1)2


mj+Ni∑
k=mi+1

 mj+Nj∑
α ̸=β

α,β≥mj+1

Y
(B2)
αk,jiY

(B2)
βk,ji


2

+

mi+Ni∑
k ̸=ℓ

k,ℓ≥mi+1

 mj+Nj∑
α ̸=β

α,β≥mj+1

Y
(B2)
αk,jiY

(B2)
βk,ji


 mj+Nj∑

α ̸=β
α,β≥mj+1

Y
(B2)
αℓ,jiY

(B2)
βℓ,ji





= E

 1

p2N2
i N

2
j (Nj − 1)2

2

mi+Ni∑
k=mi+1

mj+Nj∑
α ̸=β

α,β≥mj+1

(Y
(B2)
αk,ji)

2(Y
(B2)
βk,ji)

2

+2

mi+Ni∑
k ̸=ℓ

k,ℓ≥mi+1

mj+Nj∑
α ̸=β

α,β≥mj+1

Y
(B2)
αk,jiY

(B2)
βk,jiY

(B2)
αℓ,jiY

(B2)
βℓ,ji




=
2

p2NiNj(Nj − 1)
E[(ε′Σ

1/2
i ΣjΣ

1/2
i ε)2] +

2(Ni − 1)

p2NiNj(Nj − 1)
tr(ΣiΣj)

2,

which is bounded by

2

NiNj(Nj − 1)

(
1

p2
κ3

)
+

2(Ni − 1)

pNiNj(Nj − 1)

{
1

p
tr(ΣiΣj)

2

}
.

Using (3), it is checked that the boundary converges to 0 under the asymptotic framework A1 and the
assumptions A3 and A6, and so E[U2

2 ] converges to 0. By similar derivation, it can be shown that
E[U2

3 ] converges to 0. Lastly, we treat E[U2
4 ]. It follows that

E[U2
4 ] = E

 1

p2N2
i N

2
j (Ni − 1)2(Nj − 1)2

 mi+Ni∑
k ̸=ℓ

k,ℓ≥mi+1

mj+Nj∑
α ̸=β

α,β≥mj+1

Y
(B2)
αℓ,jiY

(B2)
βk,ji


2

=
1

p2N2
i N

2
j (Ni − 1)2(Nj − 1)2

E

 mi+Ni∑
k ̸=ℓ

k,ℓ≥mi+1


 mj+Nj∑

α ̸=β
α,β≥mj+1

Y
(B2)
αℓ,jiY

(B2)
βk,ji


2

+

 mj+Nj∑
α ̸=β

α,β≥mj+1

Y
(B2)
αℓ,jiY

(B2)
βk,ji


 mj+Nj∑

α ̸=β
α,β≥mj+1

Y
(B2)
αk,jiY

(B2)
βℓ,ji





=
2

p2N2
i N

2
j (Ni − 1)2(Nj − 1)2

mi+Ni∑
k ̸=ℓ

k,ℓ≥mi+1

mj+Nj∑
α ̸=β

α,β≥mj+1

E
[
(Y

(B2)
αℓ,ji)

2(Y
(B2)
βk,ji)

2 + Y
(B2)
αℓ,jiY

(B2)
βℓ,jiY

(B2)
αk,jiY

(B2)
βk,ji

]

=
2

NiNj(Ni − 1)(Nj − 1)

{(
trΣiΣj

p

)2

+
1

p

tr(ΣiΣj)
2

p

}
.

From (3) and (4), it is found that E[U2
4 ] converges to 0 under asymptotic framework A1 and the

assumptions A2 and A3. Thus, the consistency of ̂trΣiΣj/p is shown under the asymptotic framework

A1 and the assumptions A2, A3, A5 and A6. By Slutsky’s theorem (cf. Rao [9]), T/
√
σ̂2 converges in

distribution to the standard normal distribution.
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4 Asymptotic non-null distribution of the proposed statistic

Under the alternative hypothesis H1,

T
D
= TH0 + 2TC +

1
√
p

g∑
i=1

trΩiΣi,

where TH0 is the T under H0, TC = TC1 − TC2,

TC1 =
1
√
p

g∑
i=1

(
1− Ni

N

) mi+Ni∑
k=mi+1

Y
(C1)
k,i ,

TC2 =
1
√
p

g∑
i̸=j

Nj

N

mi+Ni∑
k=mi+1

Y
(C2)
k.i;j ,

with

Y
(C1)
k,i = µ′

iΣ
1/2
i zk (k = mi + 1, . . . ,mi +Ni, i = 1, . . . , g),

Y
(C2)
k,i;j = µ′

jΣ
1/2
i zk (k = mi + 1, . . . ,mi +Ni, i, j = 1, . . . , g, i ̸= j).

It can be found that E[TC] = 0. To show that TC converges to 0 in probability, it is sufficient to show
that Var(TC) converges to 0. Firstly, we treat Var(TC1). It follows that

Var(TC1) = E

1
p

g∑
i=1

(
1− Ni

N

)2
(

mi+Ni∑
k=mi+1

Y
(C1)
k,i

)2


=
1

p

g∑
i=1

(
1− Ni

N

)2 mi+Ni∑
k=mi+1

E
[
(Y

(C1)
k,i )2

]
=

1

p

g∑
i=1

Ni

(
1− Ni

N

)2

µ′
iΣiµi.

Next, we evaluate Var(TC2). It follows that

Var(TC2) =
1

p

g∑
i=1

g∑
j1=1
j1 ̸=i

g∑
j2=1
j2 ̸=i

E

[(
Nj1

N

mi+Ni∑
k=mi+1

µ′
j1Σ

1/2
i zk

)(
Nj2

N

mi+Ni∑
k=mi+1

µ′
j2Σ

1/2
i zk

)]

=
1

p

g∑
i=1

g∑
j1=1
j1 ̸=i

g∑
j2=1
j2 ̸=i

Ni
Nj1Nj2

N2
µ′

j1Σiµj2

=
1

p

g∑
i=1

Ni

 g∑
j=1
j ̸=i

Nj

N
µj


′

Σi

 g∑
j=1
j ̸=i

Nj

N
µj


′

.

Lastly, we evaluate Cov(TC1, TC2). It follows that

Cov(TC1, TC2) = E

1
p

g∑
i ̸=j

(
1− Ni

N

)
Nj

N

(
mi+Ni∑
k=mi+1

Y
(C1)
k,i

)(
mi+Ni∑
k=mi+1

Y
(C2)
k,i;j

)
=

1

p

g∑
i ̸=j

(
1− Ni

N

)
Nj

N
Niµ

′
jΣiµi

=

g∑
i=1

Ni

p

(
1− Ni

N

) g∑
j=1
j ̸=i

Nj

N
µ′

iΣiµj .
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From these results, it can be shown that

Var(TC) = Var(TC1)− 2Cov(TC1, TC2) + Var(TC2)

=

g∑
i=1

Ni

p


(
1− Ni

N

)
µi −

g∑
j=1
j ̸=i

Nj

N
µj


′

Σi


(
1− Ni

N

)
µi −

g∑
j=1
j ̸=i

Nj

N
µj


′

=
1

p

g∑
i=1

trΣ2
iΩi.

Thus under the asymptotic framework A1 and the assumption A8, Var(TC) converges to 0, and by
Chebyshef’s inequality, it can be shown that TC converges to 0 in probability.

Theorem 2. Assume the same model as in Theorem 1. Under the asymptotic framework A1 and the
assumptions A2-A8,

lim
A1

P (T/
√
σ̂ > x) = Φ

(
−x+

limp→∞(1/
√
p)
∑g

i=1 trΣiΩi

σ0

)
.

For the special case that F = Np(0, Ip) and Σ1 = · · · = Σg = Σ, the limiting power for the
significance level α is given by

lim
A1

P (T/
√
σ̂ > z1−α) = Φ

−z1−α + lim
p→∞

trΣΩ√
2(g − 1) trΣ2

 ,

where zα is the 1− α point of the standard normal distribution and

Ω = Σ−1/2

{
g∑

i=1

(µi − µ̄)(µi − µ̄)′

}
Σ−1/2.

The asymptotic power is the same as the one of Fujikoshi et al. [6]’s test, which is given as the following
corollary.

Corollary 1. Assume that F = Np(0, Ip) and Σ1 = · · · = Σg = Σ on the model (1). Under the
asymptotic framework A1 and the assumptions A2, A3 and A8,

lim
A1

P (T/σ̂ > x) = lim
A1

P (T̃FHW/σ̂FHW > x) = Φ

−x+ lim
p→∞

trΣΩ√
2(g − 1) trΣ2

 ,

where n = N − g,

T̃FHW =
√
p

{
n
trB

trW
− (g − 1)

}
,

and σ̂2
FHW is consistent estimator of the asymptotic variance for T̃FHW, which is given as follows:

σ̂2
FHW =

2(g − 1){trW 2/n2 − (trW )2/n3}/p
{trW /(np)}2

.

5 Numerical results

In this section, we did some simulations to check the precision of the proposed test. The proposed
testing criterion with the significance level α is that the null hypothesis is rejected if

Tp = T/σ̂ > z1−α, (22)
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where z1−α denotes the 100(1 − α) percentile point of the standard normal distribution. Firstly, we
treated the two sample problem, i.e., g = 2. Since the proposed test can also be defined for the case
that Σ1 = Σ2 = Σ, we compare with the test proposed in Fujikoshi et al. [6], which the test rejects
H0 when

TFHW = T̃FHW/σ̂FHW > z1−α. (23)

By Monte-Carlo simulation, the actual error probabilities of the first kind (α error) of the proposed
test (22) with the nominal α and the Fujikoshi et al. [6]’s test (23) are estimated by the proportions

α̂p = α̂p(α) =
#{Tp > z1−α}

m
, α̂FHW = α̂FHW(α) =

#{TFHW > z1−α}
m

,

respectively, where m denotes the number of the replication. We carried out the simulation with
1,000,000 replications of random samples having the model (1) with

Σ =


d1

d2
. . .

dp



ρ|1−1| ρ|1−2| · · · ρ|1−p|

ρ|2−1| ρ|2−2| · · · ρ|2−p|

· · ·
ρ|p−1| ρ|p−2| · · · ρ|p−p|



d1

d2
. . .

dp

 , (24)

where di = 5+ (−1)i−1 ∗ (p− i+ 1)/p and ρ = 0.1, which the results were given in Table 1. We chose
the total sample size as N = 50 and 100 and the dimensions as p = 50, 100, 200, 500 and 1000. The
ratios of sample sizes N1 : N2 are 7 : 3, 6 : 4 and 5 : 5, i.e., (N1, N2) = (35, 15), (30, 20) and (25, 25)
for N = 50, and (70, 30), (60, 40) and (50, 50) for N = 100. We treated the following 3 cases as the
distribution F of the error vector on the model (1):

Case 1: F is the multivariate normal distribution with the mean 0
and the covariance matrix Ip.

Case 2: For w1, . . . , wp are i.i.d. as the chi-squared distribution with 5 degrees of freedom,

zi =
√
5(wi/5− 1)/

√
2, i = 1, . . . , p.

Case 3: F is the scaled multivariate t distribution with 10 degrees of freedom,
the mean 0 and the covariance matrix Ip.

From Table 1, we found that the actual error probabilities of the first kind for Tp are almost the same in
all cases, larger than 0.05 and almost monotone decreasing for n and p. The actual error probabilities
of the first kind for TFHW are also the same tendency as the ones for Tp in Case 1 and 2, but are
smaller than 0.05 when p ≥ 100 and come cross to 0 as p becomes large in Case 3.

Next, we confirmed Corollary 1 for 2-sample case. For ease, the common covariance matrix is set
to be the identical matrix Ip. For the alternative hypothesis with satisfying A8, we chose as µ1 = 0p

and µ2 = (pδ/256, 0, . . . , 0)′, δ = 4, 8, 12, 16, 20, 24, 64. The empirical powers of the proposed test (22)
for the significance level α and the Fujikoshi et al. [6]’s test (23) are calculated, which are defined as

β̂p = #(Tp > z1−α)/m,

ˆβFHW = #(TFHW > z1−α)/m.

Table 2 gave these values for the case that F = Np(0, Ip), p = 200, N1 = N2 = 50, α = 0.05 and
m = 10, 000. It can be confirmed that the proposed test (22) is almost the same power as the Fujikoshi
et al. [6]’s test (23) under normal population distribution.

Lastly, we checked the actual error probabilities of the first kind for the proposed test (22) when
the covariance matrices are not common. We checked when g = 2 (Table 3) and g = 3 (Table
4). As covariance matrices, we set Σ1 as the matrix (24), Σ2 as the identity matrix and Σ3 as
the diagonal matrix diag(b1, . . . , bp) where b1, . . . , bp are i.i.d. as χ2(3). For g = 2, generate the

observation vectors x
(1)
1 , . . . ,x

(1)
N1

which are i.i.d. as Fp(0,Σ1) and x
(2)
1 , . . . ,x

(2)
N2

which are i.i.d. as
Fp(0,Σ2). Table 3 are listed the values of α̂p = α̂p(0.05) based on 1,000,000 replications for the case
that p = 50, 100, 200, 500, 1000 and

(N1, N2) =

{
(35, 15), (30, 20), (25, 25), (20, 30), (15, 35) (N = 50),
(70, 30), (60, 40), (50, 50), (40, 60), (30, 70) (N = 100).
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Table 1: Actual error probabilities of the first kind when g = 2 and Σ1 = Σ2 = Σ.

N N1 N2 p
Case 1 Case 2 Case 3

α̂p α̂FHW α̂p α̂FHW α̂p α̂FHW

50

35 15

50 0.063 0.060 0.063 0.059 0.062 0.051
100 0.059 0.057 0.059 0.056 0.059 0.042
200 0.057 0.055 0.057 0.053 0.057 0.032
500 0.055 0.052 0.054 0.051 0.055 0.021
1000 0.054 0.052 0.054 0.051 0.053 0.014

30 20

50 0.062 0.060 0.062 0.058 0.062 0.044
100 0.058 0.056 0.058 0.055 0.059 0.031
200 0.056 0.054 0.057 0.053 0.056 0.017
500 0.054 0.052 0.054 0.051 0.054 0.005
1000 0.053 0.051 0.053 0.050 0.053 0.001

25 25

50 0.061 0.059 0.061 0.058 0.062 0.042
100 0.059 0.057 0.059 0.055 0.058 0.028
200 0.056 0.055 0.056 0.053 0.056 0.014
500 0.054 0.053 0.054 0.051 0.055 0.002
1000 0.053 0.052 0.053 0.050 0.053 0.000

100

70 30

50 0.061 0.060 0.061 0.060 0.061 0.055
100 0.058 0.057 0.058 0.057 0.058 0.047
200 0.056 0.055 0.056 0.055 0.056 0.039
500 0.054 0.053 0.054 0.052 0.054 0.026
1000 0.053 0.052 0.053 0.052 0.053 0.018

60 40

50 0.061 0.060 0.061 0.059 0.060 0.050
100 0.059 0.058 0.058 0.056 0.058 0.040
200 0.056 0.055 0.056 0.054 0.056 0.028
500 0.054 0.053 0.054 0.052 0.054 0.011
1000 0.053 0.052 0.053 0.051 0.053 0.003

50 50

50 0.061 0.060 0.061 0.059 0.061 0.050
100 0.058 0.057 0.058 0.056 0.058 0.039
200 0.056 0.055 0.056 0.054 0.056 0.025
500 0.054 0.053 0.054 0.052 0.054 0.008
1000 0.053 0.052 0.053 0.051 0.053 0.001

Table 2: Simulation results for β̂p and ˆβFHW when α = 0.05, p = 200 and N1 = N2 = 50

δ
4 8 12 16 20 24 64

Case 1
Tp 0.61 0.70 0.78 0.87 0.92 0.96 1.00

TFHW 0.60 0.69 0.78 0.86 0.92 0.96 1.00

19



For g = 3, generate the observation vectors x
(i)
1 , . . . ,x

(i)
Ni

which are i.i.d. as Fp(0,Σi) for i = 1, 2, 3.
Table 4 are listed the values of α̂p = α̂p(0.05) based on 1,000,000 replications for the case that
p = 50, 100, 200 and (N1, N2, N3) = (50, 25, 25), (25, 50, 25) and (25, 25, 50). The settings of the
multivariate distributions F are the same as the ones of Table 1. From Table 3 and 4, we found that
the actual error probabilities of the first kind for Tp are almost the same in all cases, larger than 0.05
and almost monotone decreasing for n and p. We can see that the value of α̂p for (N1, N2) = (a, b) with
a > b is smaller than the one for (N1, N2) = (b, a) in Table 3. It is conjectured that the precision of
the approximation becomes good when the size of sample with complicated structure of the covariance
matrix is relatively large. We can also check it from Table 4.

Table 3: Actual error probabilities of the first kind when g = 2 under heteroscedasticity.
N N1 N2 p Case 1 Case 2 Case 3 N N1 N2 Case 1 Case 2 Case 3

50

35 15

50 0.062 0.063 0.062

100

70 30

0.061 0.061 0.061
100 0.059 0.060 0.059 0.058 0.058 0.058
200 0.057 0.058 0.057 0.056 0.057 0.056
500 0.054 0.054 0.054 0.054 0.054 0.054
1000 0.053 0.053 0.053 0.053 0.053 0.053

30 20

50 0.063 0.063 0.062

60 40

0.061 0.061 0.060
100 0.059 0.060 0.058 0.059 0.058 0.058
200 0.057 0.057 0.057 0.056 0.056 0.056
500 0.054 0.054 0.055 0.054 0.054 0.054
1000 0.053 0.053 0.053 0.053 0.053 0.053

25 25

50 0.062 0.062 0.063

50 50

0.062 0.060 0.061
100 0.060 0.059 0.060 0.059 0.059 0.058
200 0.057 0.057 0.057 0.056 0.056 0.056
500 0.055 0.055 0.056 0.054 0.054 0.054
1000 0.054 0.053 0.054 0.053 0.053 0.053

20 30

50 0.063 0.063 0.063

40 60

0.062 0.061 0.061
100 0.060 0.059 0.060 0.059 0.059 0.059
200 0.058 0.057 0.058 0.057 0.057 0.057
500 0.055 0.055 0.055 0.054 0.054 0.055
1000 0.054 0.054 0.055 0.053 0.053 0.054

15 35

50 0.065 0.064 0.065

30 70

0.062 0.061 0.062
100 0.062 0.061 0.061 0.059 0.059 0.059
200 0.059 0.058 0.059 0.057 0.056 0.057
500 0.056 0.056 0.057 0.055 0.054 0.055
1000 0.055 0.055 0.055 0.054 0.054 0.054

Table 4: Actual error probabilities of the first kind when g = 3 under heteroscedasticity.
N1 N2 N3 p Case1 Case2 Case 3

50 25 25
50 0.060 0.060 0.060
100 0.058 0.058 0.058
200 0.056 0.056 0.056

25 50 25
50 0.062 0.061 0.062
100 0.059 0.059 0.059
200 0.057 0.057 0.057

25 25 50
50 0.062 0.062 0.062
100 0.059 0.059 0.059
200 0.057 0.057 0.057
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6 Concluding remarks

This article is considered to test the homogeneity of mean vectors under heteroscedasticity for some
groups. We have proposed a test based on the unbiased estimator of the measure from the null
hypothesis. It has been shown to perform for wide range of the population distribution which includes
elliptical distribution, theoretically and numerically. As a special case that the population distribution
is multivariate normal and assuming common covariance matrix, our proposed test has the same
asymptotic power as the one proposed in Fujikoshi et al [6] or Srivastava and Fujikoshi [12] when the
sample sizes and the dimension are large.

A Results on matrix algebra

We here show some results on matrix algebra

Lemma 3. Let Σ1,Σ2,Σ3 be positive semi definite matrices. Then the following inequalities hold.

tr(Σ1Σ2)
2 ≤ tr(Σ2

1Σ
2
2) ≤

√
trΣ4

1 trΣ
4
2, (25)

trΣ1Σ2Σ3Σ2 ≤
√
tr(Σ2

1Σ
2
2) tr(Σ

2
2Σ

2
3) ≤

(
trΣ4

1 trΣ
4
3

)1/4 (
trΣ4

2

)1/2
. (26)

Proof. For p× q matrix T , let vec(T ) be the pq× 1 vector formed by stacking the columns of T under
each other; that is, if T = (t1 · · · tq), where ti is p × 1 for i = 1, . . . , q, then vec(T ) = (t′1 · · · t′q)′. It
holds that

tr(Σ1Σ2)
2 = (vec(Σ2Σ1))

′vec(Σ1Σ2).

By Cauchy-Schwarz’s inequality,

(vec(Σ2Σ1))
′vec(Σ1Σ2) ≤

√
(vec(Σ2Σ1))′vec(Σ2Σ1) · (vec(Σ1Σ2))′vec(Σ1Σ2).

Since the right-hand side of the inequality equals to
√
tr(Σ1Σ

2
2Σ1) tr(Σ2Σ

2
1Σ2), we have the first in-

equality in (25). The second inequality in (25) also can be shown by using Cauchy-Schwarz’s inequality
again. Using similar derivation method, we can also prove the inequalities in (26).
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