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Abstract

In this paper, we consider the problem of testing for mean vector and simultaneous con-

fidence intervals when the data have three-step monotone pattern missing observations. The

maximum likelihood estimators of the mean vector and the covariance matrix with a three-step

monotone missing data pattern are presented based on the derivation of Jinadasa and Tracy

(1992). An approximate upper percentile of Hotelling’s T 2 type statistic to test mean vector is

proposed. Approximate simultaneous confidence intervals for any and all linear compounds of

the mean and testing equality of mean components are also obtained. Finally the accuracy of

the approximation is investigated by Monte Carlo simulation.

Key Words and Phrases: T 2 type statistic; Maximum likelihood estimator; Three-step monotone
missing data

1. Introduction

We deal with the problem of testing for mean vector with three-step monotone missing data:

x11 · · · x1p3 x1,p3+1 · · · x1p2 x1,p2+1 · · · x1p1
...
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xn11 · · · xn1p3 xn1,p3+1 · · · xn1p2 xn1,p2+1 · · · xn1p1

xn1+1,1 · · · xn1+1,p3 xn1+1,p3+1 · · · xn1+1,p2 ∗ · · · ∗
...

...
...
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...
xn21 · · · xn2p3 xn2,p3+1 · · · xn2p2 ∗ · · · ∗

xn2+1,1 · · · xn2+1,p3 ∗ · · · ∗ ∗ · · · ∗
...

...
...

...
...

...
xn31 · · · xn3p3 ∗ · · · ∗ ∗ · · · ∗


,
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where p = p1 > p2 > p3 > 0 and n1 > p, and “ ∗ ” indicates a missing observation. That is,

we have complete data set for n1 observations with p1 dimensions and two incomplete data sets

which have n2 observations with p2 dimensions and n3 observations with p3 dimensions. Further

x be distributed as Np(µ,Σ), and let xi = (x)i, be the vector of the first pi elements of x. Then

xi(= (x1, x2, . . . , xpi)
′) is distributed as Npi(µi,Σi), i = 1, 2, 3, where µi = (µ)i = (µ1, . . . , µpi)

′

and Σi is the principal submatrix of Σ(= Σ1) of order pi × pi.

Let (Σi)j be the principal submatrix of Σi of order pj × pj , 1 ≤ i < j ≤ 3. We define

Σi+1 = (Σ1)i+1, Σ1 = Σ =

(
Σi+1 Σi+1,2

Σ′
i+1,2 Σi+1,3

)
and

Σi =

(
Σi+1 Σ(i,2)

Σ′
(i,2) Σ(i,3)

)
, i = 1, 2, 3.

For example, we can express Σ1 as

Σ1 =

p2︷ ︸︸ ︷ p1−p2︷ ︸︸ ︷(
Σ2 Σ22

Σ′
22 Σ23

)
}p2
}p1 − p2

or Σ1 =

p3︷ ︸︸ ︷ p1−p3︷ ︸︸ ︷(
Σ3 Σ32

Σ′
32 Σ33

)
}p3
}p1 − p3 .

Also, we have

Σ2 =

p3︷ ︸︸ ︷ p2−p3︷ ︸︸ ︷(
Σ3 Σ(2,2)

Σ′
(2,2) Σ(2,3)

)
}p3
}p2 − p3 ,

where Σ2 is an upper left submatrix of Σ1.

If xij denotes the jth observation on xi, then the three-step monotone missing data set is

the form of



x′
11
...

x′
1n1

x′
2,n1+1 ∗ · · · ∗
...

...
...

x′
2n2

∗ · · · ∗

x′
3,n2+1 ∗ · · · ∗ ∗ · · · ∗
...

...
...

...
...

x′
3n3

∗ · · · ∗ ∗ · · · ∗



.
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Such a data set is called a three-step monotone missing data pattern. As for a k-step monotone

sample or a k-step monotone missing data pattern, see Bhargava (1962), Srivastava and Carter

(1983), Little and Rubin (1987) and Srivastava (2002) and so on.

Jinadasa and Tracy (1992) obtained closed form expressions for the maximum likelihood

estimators of the mean vector and the covariance matrix of the multivariate normal distribution

in the case of k-step monotone missing data. In particular, Anderson (1957) and Anderson

and Olkin (1985) considered the two-step monotone missing data pattern. Kanda and Fujikoshi

(1998) discussed the distribution of the MLEs in the case of k-step monotone missing data.

In this paper, we consider the problem of testing H0 : µ = µ0 vs. H1 ̸= H0 when the data

have a monotone pattern missing observations. In the case of two-step monotone missing data,

Krishnamoorthy and Pannala (1999) gave a Hotelling’s T 2 type statistic and its approximate

distribution. Chang and Richards (2009) and Seko, Yamazaki and Seo (2012) discussed the

Hotelling’s T 2 type statistic and gave some properties and its another approximation procedure.

We propose a Hotelling’s T 2 type statistic and its approximate upper percentile in the case

of three-step monotone missing data, similar to the one in the case of two-step monotone missing

data . Our approximation procedure is essentially based on the ones given in Seko, Yamazaki

and Seo (2012). In Section 2, we present the maximum likelihood estimators of the mean vector

and the covariance matrix with a three-step monotone missing data using the notations and

same derivation by Jinadasa and Tracy (1992). These results are simple and useful in order to

get a Hotelling’s T 2 type statistic and the covariance for the maximum likelihood estimator of

the mean vector. In Section 3, we give the T 2 type statistic of testing for mean vector and its

approximate upper percentile. In Section 4, we discuss the simultaneous confidence intervals

for any and all linear compounds of the mean and testing equality of mean components. We

also give some simulation results.

2. MLEs of µ and Σ

Let the MLEs of µ and Σ denote by µ̂ and Σ̂. If the data have three-step monotone pattern
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missing observations, then we have the following theorem by the same derivation of Jinadasa

and Tracy (1992).

Theorem 1. If the data have three-step monotone pattern missing observations, then the

maximum likelihood estimator of the mean vector is given by

µ̂ = x1 + T̂2d2 + T̂2T̂3d3,

where

xi =
1

ni

ni∑
j=1

xij , i = 1, 2, 3,

d2 =
n2

N3
{x2 − (x1)2} , d3 =

n3

N4

[
x3 −

1

N3
{n1(x1)3 + n2(x2)3}

]
,

T̂2 =

(
Ip2

Σ̂′
(1,2)Σ̂

−1
2

)
, T̂3 =

(
Ip3

Σ̂′
(2,2)Σ̂

−1
3

)
,

Ni+1 =
i∑

j=1

nj , i = 1, 2, 3,

and then the maximum likelihood estimator of the covariance matrix is given by

Σ̂ =
1

N2
E1 +

1

N3
G2

[
E2 +

N2N3

n2
d2d

′
2 −

n2

N2
L11

]
G′

2

+
1

N4
G2G3

[
E3 +

N3N4

n3
d3d

′
3 −

n3

N3
L21

]
G′

3G
′
2,

where

Ei =

ni∑
j=1

(xij − xi)(xij − xi)
′, i = 1, 2, 3,

G2 =

(
I2

L′
12L

−1
11

)
, G3 =

(
I3

L′
22L

−1
21

)
,

L1 = E1, L2 = L11 + E2 +
N2N3

n2
d2d

′
2,

Li =

(
Li1 Li2

L′
i2 Li3

)
, i = 1, 2.

Figure 1 shows the data set with a three-step monotone missing data pattern which are used

to calculate d2 and d3, respectively.
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Figure 1: (a) the data to calculate d2 and (b) the data to calculate d3.

The results of MLEs coincide with which Kanda and Fujikoshi (1998) derived by the condi-

tional approach. In this paper, we present the MLEs in the case of three-step monotone missing

data in order to get a Hotelling’s T 2 type statistic for testing of mean vector.

3. T 2 type statistic

In this section, we consider the following the hypothesis test with three-step monotone

missing data:

H0 : µ = µ0 vs. H1 : µ ̸= µ0,

where µ0 is known. Without loss of generality, we can assume that µ0 = 0. To test the

hypothesis H0, an usual Hotelling’s T 2 type statistic are given by

T 2 = µ̂′ Γ̂−1µ̂,

where µ̂ = x1 + T̂2d2 + T̂2T̂3d3 and Γ̂ is an estimator of Γ = Cov(µ̂). In order to discuss the

distribution of T 2, the covariance matrix of µ̂, Cov(µ̂) is a key quantity. However, we use the

Hotelling’s T 2 type statistic with Ĉov(µ̃) instead of Ĉov(µ̂) since Ĉov(µ̂) is complicated and

the value of Ĉov(µ̃) may be almost the same that of Ĉov(µ̂).

Therefore, we adopt that T̃ 2 = µ̂′ Γ̃−1µ̂, where Γ̃ = Ĉov(µ̃) and µ̃ = x1 + T2d2 + T2T3d3.
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Then we have Cov(µ̃) = E[µ̃µ̃′]− µµ′, where

E[µ̃µ̃′] =E[(x1 + T2d2 + T2T3d3)(x1 + T2d2 + T2T3d3)
′]

=E[x1x
′
1 + x1d

′
2T

′
2 + x1d

′
3T

′
3T

′
2 + T2d2x

′
1 + T2d2d

′
2T

′
2

+ T2d2d
′
3T

′
3T

′
2 + T2T3d3x

′
1 + T2T3d3d

′
2T

′
2 + T2T3d3d

′
3T

′
3T

′
2].

Further, using the following results,

E[x1x
′
1] =

1

n1
Σ+ µµ′, E[x1d

′
2] = − n2

N2N3

(
Σ2

Σ′
22

)
, E[x1d

′
3] = − n3

N3N4

(
Σ3

Σ′
32

)
,

E[d2d
′
2] =

n2

N2N3
Σ2, E[d2d

′
3] =

n2n3(n1 − n2)

n1N2
3N4

(
Σ3

Σ′
(2,2)

)
, E[d3d

′
3] =

n3

N3N4
Σ3.

As a result, we can obtain

Γ̃ = Ĉov(µ̃) =
1

N2
Σ̂1 −

n2

N2N3
Û − (n2

1 − n1n2 + 2n2
2)n3

N2N2
3N4

V̂ ,

where

Û =

(
Σ̂2

Σ̂′
22

)
T̂ ′
2, V̂ =

(
Σ̂3

Σ̂′
32

)
T̂ ′
3T̂

′
2.

Therefore, we can provide T 2 type statistic. We note that, under H0, the T 2 type statistic is

asymptotically distributed as χ2 distribution with p degrees of freedom when n1, N4 → ∞ with

n1/N4 → δ ∈ (0, 1]. However, it is noted that χ2 approximation is not a good approximation

to the upper percentile of the T 2 type statistic when the sample is not large. Using the same

idea for two-step monotone missing data in Seko, Yamazaki and Seo (2012), we propose the

approximate upper percentile of T̃ 2 statistic since it is difficult to find the exact upper percentiles

of T̃ 2 statistic.

Theorem 2. Suppose that the data have three-step monotone pattern missing observations.Then

the approximate upper 100α percentile of the T̃ 2 statistic is given by

t2Y S = T 2
n1,α − n2p2 + n3p3

(n2 + n3)p1
(T 2

n1,α − T 2
N4,α),

where

T 2
N4,α =

(N4 − 1)p1
N4 − p1

Fp1,N4−p1,α, T 2
n1,α =

(n1 − 1)p1
n1 − p1

Fp1,n1−p1,α

and Fp,q,α is the upper 100α percentile of the F distribution with p and q degrees of freedom.
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p1
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n1

n2

n3

p1

n1

Figure 2: Approximation to Upper Percentiles of T 2

Figure 2 shows that the upper percentiles of T 2 may be between T 2
N4,α

and T 2
n1,α, where

T 2
N4,α

and T 2
n1,α are calculated from N4 × p1 complete data set (left side) and n1 × p1 complete

data set (right side), respectively.

4. Simultaneous confidence intervals and testing equality of mean components

We consider the simultaneous confidence intervals for any and all linear compounds of the

mean when the data have three-step monotone missing observations. Using the approximate

upper percentiles of T̃ 2 in Section 3, for any nonnull vector a = (a1, . . . , ap)
′, the approximate

simultaneous confidence intervals for a′µ are given by

a′µ̂−
√

a′Γ̃a t2Y S ≤ a′µ ≤ a′µ̂+

√
a′Γ̃a t2Y S , ∀a ∈ Rp − {0}.

As for a two-step monotone missing data, see Seko, Yamazaki and Seo (2012). Further we

consider the testing equality of mean components for the case of a three-step monotone missing

data, that is

H0 : µ1 = · · · = µp vs. H1 ̸= H0.

In this case, let yij = Cixij , i = 1, 2, 3, j = 1, 2, . . . , ni, where Ci is a (pi − 1) × pi matrix such

that Ci1 = 0 and CiC
′
i = Ipi−1, then yij ’s are distributed as Npi−1(Ciµi, Ipi−1) since, without

loss of generality, we may assume that Σ = I when we consider the T 2 type statistic with a

monotone missing data. Hence the Hotelling’s T 2 type statistic is given by

T̃ 2
c = µ̂∗′Γ̃∗−1

µ̂∗,
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where µ̂∗ is the MLE of µ∗ = C1µ and Γ̃∗ = Ĉov(µ̃∗), µ̃∗ = Cµ̃. Therefore, essentially, using

the same values of t2Y S derived in Theorem 2 for the approximate upper percentile of T̃ 2
c statistic,

we can test for equality of mean components with a three-step monotone missing data.

5. Simulation studies

We compute the upper percentiles of the T 2 type statistic with a three-step monotone missing

data by Monte Carlo simulation. The Monte Carlo simulation was 1,000,000 simulations for

selected values of pi, ni, i = 1, 2, 3 and α. It is interesting to see how the approximations are

close to the exact upper percentiles. Relating to this problem, some simulation results are given

in Tables 1 ∼ 3. Computations are made for two cases ;

Case I : (p1, p2, p3) = (6, 4, 2), (12, 8, 4),

n1 = 30, 50, 100, 200, 300,

n2, n3 = 10, 20,

α = 0.01, 0.05,

where the sets of (n1, n2, n3) are all combinations of n1, n2 and n3.

Case II : (p1, p2, p3) = (12, 8, 4),

(n1, n2, n3) = (30m, 10m, 10m), m = 1(1)5, 8, 12,

α = 0.01, 0.05.

Tables 1 and 2 present the simulated upper percentiles of T 2, t2simu, the approximate upper

percentiles of T 2, t2YS, and the upper percentiles of χ2 distribution with p degrees of freedom,

χ2
p for Case I. It may be noted from Tables 1 and 2 that the simulated values are closer to

the upper percentiles of χ2 distribution when the sample size n1 becomes large. Therefore, we

note that the chi-squared approximation χ2
p is not good for cases when ni is small. However, it

is seen that the proposed approximation t2YS is very good even for cases when n1 is not large.

Tables 1 and 2 also present the simulated coverage probabilities for t2YS and χ2
p for Case I. It
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may be noted from Tables 1 and 2 that the simulated coverage probabilities for t2YS, CP(t
2
YS)

are very close to the nominal level 1−α even for cases when n1 is small. It conclusion, even for

small samples, our approximation procedure is very accurate.

Tables 3 presents the values of t2simu, t
2
YS and χ2

p, respectively for Case II. Also, the values

of CP(t2YS) and CP(χ2
p) for Case II are given in Table 3. We note that the missing rate of the

data sets in Case II is a constant (= 0.2), where

the missing rate =
N4p1
3∑

i=1

nipi

− 1.

It seems from Table 3 that our approximation is very good even when (n1, n2, n3) is small. In

conclusion, we have developed the approximate upper percentiles of T 2 type statistic for the

test of mean vector in case of a three-step monotone missing data. The proposed approximate

values can be calculated easily and the approximation is much better than the χ2 approximation

even when the sample size is small.
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Table 1: The simulated and the approximate values for T 2, χ2 approximation,

and the simulated coverage probabilities when (p1, p2, p3) = (6, 4, 2)

Sample size Upper percentile Coverage probability

n1 n2 n3 t2simu t2YS χ2
p CP(t2YS) CP(χ2

p)

α = 0.05

30 10 10 17.32 16.82 12.59 0.944 0.859

50 10 10 15.17 14.99 12.59 0.947 0.900

100 10 10 13.85 13.76 12.59 0.949 0.926

200 10 10 13.23 13.18 12.59 0.949 0.938

300 10 10 13.02 12.98 12.59 0.949 0.942

30 20 10 17.02 16.36 12.59 0.942 0.864

50 20 10 14.95 14.78 12.59 0.948 0.905

100 20 10 13.76 13.70 12.59 0.949 0.928

200 20 10 13.21 13.16 12.59 0.949 0.939

300 20 10 13.00 12.97 12.59 0.950 0.942

30 10 20 16.95 16.72 12.59 0.947 0.868

50 10 20 14.95 14.92 12.59 0.950 0.905

100 10 20 13.75 13.74 12.59 0.950 0.928

200 10 20 13.19 13.17 12.59 0.950 0.939

300 10 20 13.01 12.98 12.59 0.950 0.942

30 20 20 16.74 16.35 12.59 0.945 0.870

50 20 20 14.74 14.75 12.59 0.950 0.909

100 20 20 13.68 13.68 12.59 0.950 0.930

200 20 20 13.18 13.15 12.59 0.949 0.939

300 20 20 12.99 12.97 12.59 0.950 0.943

α = 0.01

30 10 10 25.01 24.13 16.81 0.988 0.944

50 10 10 21.11 20.85 16.81 0.989 0.968

100 10 10 18.88 18.76 16.81 0.990 0.980

200 10 10 17.85 17.78 16.81 0.990 0.986

300 10 10 17.50 17.45 16.81 0.990 0.987

30 20 10 24.30 23.31 16.81 0.988 0.948

50 20 10 20.73 20.51 16.81 0.989 0.970

100 20 10 18.75 18.66 16.81 0.990 0.981

200 20 10 17.77 17.75 16.81 0.990 0.986

300 20 10 17.48 17.44 16.81 0.990 0.987

30 10 20 24.54 23.96 16.81 0.989 0.948

50 10 20 20.82 20.74 16.81 0.990 0.970

100 10 20 18.68 18.72 16.81 0.990 0.981

200 10 20 17.80 17.76 16.81 0.990 0.986

300 10 20 17.49 17.45 16.81 0.990 0.987

30 20 20 24.14 23.31 16.81 0.988 0.951

50 20 20 20.40 20.45 16.81 0.990 0.972

100 20 20 18.63 18.63 16.81 0.990 0.982

200 20 20 17.86 17.74 16.81 0.990 0.986

300 20 20 17.44 17.43 16.81 0.990 0.987
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Table 2: The simulated and the approximate values for T 2, χ2 approximation,

and the simulated coverage probabilities when (p1, p2, p3) = (12, 8, 4)

Sample size Upper percentile Coverage probability

n1 n2 n3 t2simu t2YS χ2
p CP(t2YS) CP(χ2

p)

α = 0.05

30 10 10 42.20 38.25 21.03 0.927 0.611

50 10 10 30.25 29.34 21.03 0.942 0.787

100 10 10 24.98 24.76 21.03 0.948 0.883

200 10 10 22.94 22.82 21.03 0.948 0.920

300 10 10 22.25 22.21 21.03 0.949 0.931

30 20 10 40.81 36.19 21.03 0.920 0.629

50 20 10 29.56 28.57 21.03 0.941 0.799

100 20 10 24.75 24.56 21.03 0.948 0.887

200 20 10 22.85 22.77 21.03 0.949 0.921

300 20 10 22.24 22.18 21.03 0.949 0.932

30 10 20 41.45 38.01 21.03 0.930 0.627

50 10 20 29.82 29.10 21.03 0.944 0.796

100 10 20 24.84 24.68 21.03 0.948 0.886

200 10 20 22.90 22.80 21.03 0.949 0.921

300 10 20 22.26 22.20 21.03 0.949 0.931

30 20 20 40.44 36.37 21.03 0.925 0.638

50 20 20 29.18 28.47 21.03 0.944 0.807

100 20 20 24.59 24.50 21.03 0.949 0.891

200 20 20 22.81 22.75 21.03 0.949 0.922

300 20 20 22.22 22.17 21.03 0.949 0.932

α = 0.01

30 10 10 60.29 53.41 26.22 0.982 0.763

50 10 10 40.07 38.73 26.22 0.988 0.904

100 10 10 32.03 31.72 26.22 0.989 0.962

200 10 10 28.93 28.83 26.22 0.990 0.979

300 10 10 28.03 27.93 26.22 0.990 0.983

30 10 20 59.45 53.11 26.22 0.983 0.775

50 10 20 39.53 38.37 26.22 0.988 0.910

100 10 20 31.76 31.59 26.22 0.990 0.963

200 10 20 28.86 28.80 26.22 0.990 0.979

300 10 20 27.97 27.92 26.22 0.990 0.983

30 20 10 58.35 50.10 26.22 0.979 0.779

50 20 10 39.03 37.55 26.22 0.987 0.913

100 20 10 31.77 31.41 26.22 0.989 0.964

200 20 10 28.84 28.75 26.22 0.990 0.979

300 20 10 27.95 27.90 26.22 0.990 0.983

30 20 20 57.88 50.48 26.22 0.981 0.786

50 20 20 38.58 37.41 26.22 0.988 0.917

100 20 20 31.49 31.31 26.22 0.990 0.966

200 20 20 28.75 28.72 26.22 0.990 0.980

300 20 20 27.87 27.88 26.22 0.990 0.984
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Table 3: The simulated and the approximate values for T 2, χ2 approximation,

and the simulated coverage probabilities when (p1, p2, p3) = (12, 8, 4)

Sample size Upper percentile Coverage probability

n1 n2 n3 t2simu t2YS χ2
p CP(t2YS) CP(χ2

p)

α = 0.05

30 10 10 42.20 38.25 21.03 0.927 0.611

60 20 20 27.43 27.04 21.03 0.946 0.839

90 30 30 24.62 24.67 21.03 0.951 0.890

120 40 40 23.43 23.64 21.03 0.953 0.912

150 50 50 22.79 23.06 21.03 0.953 0.923

240 80 80 21.83 22.25 21.03 0.955 0.938

360 120 120 21.38 21.83 21.03 0.956 0.945

α = 0.01

30 10 10 60.29 53.41 26.22 0.982 0.763

60 20 20 35.75 35.18 26.22 0.989 0.937

90 30 30 31.55 31.58 26.22 0.990 0.965

120 40 40 29.72 30.04 26.22 0.991 0.975

150 50 50 28.83 29.19 26.22 0.991 0.980

240 80 80 27.43 28.00 26.22 0.992 0.985

360 120 120 26.82 27.38 26.22 0.992 0.988
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