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Abstract

The AIC and Cp have been proposed for estimation of the di-
mensionality in some multivariate models. In this paper we consider
high-dimensional properties of the criteria in multivariate linear model
and canonical correlation analysis. First we show consistency prop-
erties of the criteria when the number p of variables and the sample
size n are large under a high-dimensional asymptotic framework such
that p/n → c ∈ [0, 1). The consistency properties are shown, under
two types of assumptions on the order of the noncentrality parameter
matrix, but the true dimension j0 and the possible maximum dimen-
sion q(≥ j0) are fixed. When j0 and q are also large with q/n → 0, we
give a sufficient condition such that the probabilities of estimating the
overspecified dimensions tend to zero, without any assumption on the
order of the noncentrality parameter matrix. Through a Monte Carlo
simulation experiment we see that our results are checked numerically.
Further, we compare with the dimensionalities estimated by AIC and

Cp.
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1. Introduction

The dimensionality problem have been studied in some multivariate mod-

els. The dimensionality in multivariate linear model is defined by a rank

condition on the mean parameter matrix. The likelihood ratio tests on di-

mensionality were first obtained by Anderson (1951, 2003) in multivariate

linear model including discriminant analysis. Izenman (1985) treated the

case when the set of explanatory variables is a random vector as well as

a fixed vector. The model with a rank condition on the regression matrix

is called multivariate reduced-rank regression (RRR) model. In general, we

call these models reduced-rank models. Reinsel and Velu (1998) have reviewd

various applications and inferential problems in the RRR model.

One of the important problems in multivariate reduced-rank models is

concerned with the estimation of dimensionality. There are some approaches

for estimating the dimensionality. One is based on sequential test procedures.

One of the other approaches is based on the use of model selection criteria.

The cross-validiation method is also used. Yuan and Ekici(2007) proposed

a method based on penalized least squares estimate. Recently some other

methods have been proposed by Bunea, She and Wegkamp (2011, 2012) and

Chen and Hung (2012).

In this paper we are concerned with the estimation method by use of

the model selection criteria AIC (Akaike (1973)) and Cp (Mallows (1973)),

which were proposed by Fujikoshi and Veitch (1979) in multivariate linear

model with p response variables and k explanatory variables and canonical

correlation analysis with two random vectors of p and q(q ≤ p) components,

based on the sample size n. The large sample properties of the criteria were

studied by Fujikoshi (1985), Gunderson and Muirhead (1997). It is known

that the criteria have no consistency property in a large-sample asymptotic

framework.

The AIC, Cp and their modifications have been proposed for selection of
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k predictive variables in multivariate linear model with p response variables

and the sample size n. The criteria have not a consistency property under

a large-sample framework such that n tends to infinity, but p, q and k are

fixed. However, recently it is known that there is a situation such that these

criteria have a consistency property when the number p of response variables

and the sample size n are large under a high-dimensional framework such

that p/n → c ∈ [0, 1). These results can be found in Fujikoshi, Sakurai and

Yanagihara (2013) and Yanagihara, Wakaki and Fujikoshi (2014).

In this paper we first consider asymptotic properties of AIC and Cp for

estimation of dimensionality in a high-dimensional asymptotic framework

such that

p → ∞, n → ∞, p/n → c ∈ [0, 1). (1.1)

It is shown that the AIC and Cp for estimation of dimensionality have con-

sistency properties under two types of assumptions on largeness of the non-

centrality parameter matrix when the true dimension j0 and the maximum

dimension q(≥ j0) are fixed. The noncentrality matrix essentially expresses

the true discriminant power in discriminant analysis and the true canonical

correlations in canonical correlation analysis. Next we consider a situation

where j0, q and the number k of explanatory variables are also large. More

precisely we assume an extended high-dimensional asymptotic framework

such that

p → ∞, n → ∞, k → ∞, p/n → c ∈ [0, 1), k/n → 0, (1.2)

which implies j0/n → 0 and q/n → 0. Here, in canonical correlation anal-

ysis, k should be understood as q. Then, we give a sufficient condition

such that the probabilities of estimating the overspecified dimensions tend

to zero, without any assumption on the order of the noncentrality parameter

matrix. It may be noted that these properties are different from the ones

in a large-sample case, since in general these criteria have a positive proba-

bility of selecting each of the overspecified models. Our results are checked

numerically by conducting a Monte Carlo simulation experiment. Further,

we compare with the dimensionalities estimated by AIC and Cp.

3



In Section 2, we treat the criteria for estimating the dimensionality in mul-

tivariate linear model including multivariate RRR model and discriminant

analysis. High-dimensional properties of the criteria are given. In Section 3

we treat the criteria for estimating the dimensionality in canonical correlation

analysis. In Section 4 we check our theoretical results by conducting a Monte

Carlo simulation experiment, and compare with the selection probabilities of

the two criteria. The proofs of our results are given in Appendix.

2. Multivariate Linear Model

2.1. Preliminaries

We consider a multivariate linear model of p response variables y1, . . . , yp

on a subset of k explanatory variables x1, . . . , xk. Suppose that there are n

observations on y = (y1, . . . , yp)
′ and x = (x1, . . . , xk)

′, and let Y : n× p and

X : n × k be the observation matrices of y and x with the sample size n,

respectively. The multivariate normal linear model on y and x is written as

Y ∼ Nn×p(XΘ,Σ⊗ In), (2.1)

where Θ is a k × p unknown matrix of regression coefficients, Σ is a p × p

unknown covariance matrix, and In is the identity matrix of order n. The

notation Nn×p(·, ·) means the matrix normal distribution such that the mean

of Y is XΘ and the covariance matrix of vec (Y) is Σ ⊗ In, where vec (Y)

is the np× 1 vector formed by stacking the columns of Y under each other.

We assume that n − k > 0 and rank(X) = k. When x has a set of dummy

variables, X may not be the full rank. However, as is well known, there are

some linear restrictions on the parameters, and we can make X a full rank

matrix.
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Consider a testing problem

H : CΘ = O vs. K : CΘ ̸= O, (2.2)

where C is a given q × k matrix with rank(C) = q. Then, we have an LR

statistic given

Λ =
|Se|

|Se + Sh|
, (2.3)

where

Se = Y′(In −PX)Y,

Sh = (CΘ̂)′{C(X′X)−1C′}−1CΘ̂,

where Θ̂ = (X′X)−1X′Y. It is well known that Se and Sh are independently

distributed as a Wishart distribution Wp(n−k,Σ) and a noncentral Wishart

distribution Wp(q,Σ;Σ1/2Ω̃Σ1/2), respectively where

Ω̃ = Σ−1/2(CΘ)′{C(X′X)−1C′}−1CΘΣ−1/2. (2.4)

One of the interested problems when the hypothesis is rejected is to con-

sider a reduced-rank condition defined

Mj : rank(CΘ) = j. (2.5)

Relating to estimating the rank of CΘ, we consider a family of models ex-

pressed as {M0,M1, . . . ,Mq}.
Some applications have been discussed in the case C = Ik by Izenman

(2008), Reinsel and Velu (1998). An important application when C ̸= Ik

appears in discriminant analysis. These two special cases are explained in

the next subsection.

2.2. Two Special Cases

First we consider a multivariate RRR model (Izenman (2008), Reinsel and

Velu (1998)) which is given by (2.1) with (2.5) and C = Ik. From the rank
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constraint the regression matrix Θ can be expressed as a product of two rank

j matrices as follows:

Θ = FG,

where F is of dimension k× j and G is of dimension j× p. Then, the model

can be written as

Y ∼ Nn×p((XF) ·G,Σ⊗ In). (2.6)

The model means that the j linear combinations Fx of the k explanatory

variavles x are sufficient to model the valiation in the p response variables

y. For a more detailed discussion, see Reinsel and Velu (1986). In practice,

the dimension j is unknown, and we need to estimate it. Recently Chen

and Huang (2012) has proposed to select relevant variables for reduced-rank

regression by using a spacity-inducing penality.

Next we consider (q + 1) p-variate normal populations with common co-

variance matrix Σ and the ith population having mean vector µi. Suppose

that a sample of size ni is available from the ith population, and let yij be the

jth observation from the ith population. Let us denote the between-group

and within-group sums of squares and products matrices by

Sb = n1(ȳ1 − ȳ)(ȳ1 − ȳ)′ + · · ·+ nq+1(ȳq+1 − ȳ)(ȳq+1 − ȳ)′,

Sw = (n1 − 1)S1 + · · ·+ (nq+1 − 1)Sq+1,

respectively, where ȳi ans Si are the mean vector and sample covariance

matrix of the ith population, and ȳ is the total mean vector defined by

(1/n)
∑q+1

i=1 niȳi, and n =
∑q+1

i=1 ni. In general, Sw and Sb are independently

distributed as a Wishart distribution Wp(n − q − 1,Σ) and a noncentral

Wishart distribution Wp(q,Σ;Σ1/2Ω̃Σ1/2), respectively where

Ω̃ = Σ−1/2

q+1∑
i=1

ni(µi − µ̄)(µi − µ̄)Σ−1/2, (2.7)

where µ̄ = (1/n)
∑q+1

i=1 niµi.

In this paper, since we are interested in asymptotic properties in a high-

dimensional situation, we assume that p ≥ q. The coefficient vector βi of the
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i-th population discriminant function is defined as the characteristic vector

satisfying

Σ1/2Ω̃Σ1/2βi = ωiΣβi, β′
iΣβj = δij,

where δij denotes the Kroneker delta. Here, ω1 ≥ ω2 ≥ · · · ≥ ωq ≥ 0 are the

possible non-zero characteristic roots of Ω̃. The between-groups variation

of the i-th discriminant function β′
iX is ωi. Therefore, if ωi is zero, the

i-th discriminant function β′
iX is not meaningful. The dimensionality in

discriminant analysis may be defined (see Kishisagar (1972), Fujikoshi et al.

(2010), etc.) as the number of non-zero characteristic roots of Ω̃ which is the

number of meaningful population discriminant functions. The model that

the dimension is j may be expressed as

Mj : rank(Ω̃) = j,

⇔ ω1 ≥ · · · ≥ ωj > ωj+1 = · · · = ωq = 0, (2.8)

⇔ rank(µ1 − µq+1, . . . ,µq−1 − µq+1) = j.

Note that the model Mj in (2.5) is a generalization of Mj in discriminant

analysis. This is easily seen by taking k = q + 1 and choosing Y, C, X and

Θ as follows.

Y = (y11, . . . ,y1N1 , . . . ,yq+1,1, . . . ,yq+1,Nq+1)
′, C = (Iq, −1q)

X =


1n1 0 · · · 0
0 1n2 · · · 0
...

...
. . .

...
0 0 · · · 1nq+1

 , Θ =


µ

′
1

µ
′
2

...
µ

′
q+1

 ,

where 1n is an n× 1 vector whose elements are all one.

2.3. AIC and Cp

In general, AIC for a model M is defined (Akaike (1973)) as

AIC = −2 log L̂+ d,
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where L̂ is the maximum likelihood under M , and d is the number of inde-

pendent parameters under M . The AIC for Mj is expressed (Fujikoshi and

Veitch (1979)) as

AICj =n log(1 + ℓj+1) · · · (1 + ℓq) + n log |(1/n)Se|

+ np(log 2π + 1) + 2{j(p+ q − j) + (k − q)p+
1

2
p(p+ 1)}. (2.9)

Based on AIC, if min{AIC0,AIC1, . . . ,AICq} = AICj, we estimate the

dimension as j. Instead of AIC, we may use

Aj =AICj − AICq

=n log

q∏
i=j+1

(1 + ℓi)− 2(p− j)(q − j), j = 0, . . . , q. (2.10)

Here Aq = 0. Then the estimation method is equivalent to estimate the

dimensionality as j if min{A0,A1, . . . ,Aq} = Aj.

The Cp,j corresponding to Aj is given (Fujikoshi and Veitch (1979)) by

Cp,j = n

q∑
i=j+1

ℓi − 2(p− j)(q − j), j = 0, . . . , q. (2.11)

2.4. High-Dimensional Properties

We denoteMj by j simply. Then, the set of all the models is F = {0, 1, . . . , q}.
It is assumed that the true dimension is j0, where 0 ≤ j0 ≤ q. We also denote

the true model by j0, and also denote the minimum model including the true

model by j0. We separate F into two sets, one is a set of overspecified models,

i.e., F+ = {j0, j0 + 1, . . . , q} and the other is a set of underspecified models,

i.e., F− = Fc
+ ∩ F = {0, 1, . . . j0 − 1}. Further, we denote the set of models

deleting the true model from F+ by F+\{j0}, i.e., F+\{j0} = {j0+1, . . . , q}.
The estimation methods are expressed as

ĵA = argmin
j∈F

Aj, ĵC = argmin
j∈F

Cp,j.
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Wemake two types of assumptions on the order of Ω̃ in (2.4). Since rank(Ω̃) ≤
q, we can write Ω̃ = Γ1Γ

′

1, where Γ1 is a p× q matrix. Let

Ω = Γ′
1Γ1, (2.12)

which is a q × q matrix. In discriminant analysis with q = 1,

Ω̃ = (n1n2/n)Σ
−1/2(µ1 − µ2)(µ1 − µ2)

′Σ−1/2,

and

Ω =
n1n2

n
(µ1 − µ2)

′Σ−1(µ1 − µ2),

which is (n1n2/n) times the squared Mahalanobis distance between two nor-

mal populations Np(µ1,Σ) and Np(µ2,Σ). It may be natural for assuming

that Ω = O(n) and also Ω = O(np), depending on the largeness of Ω, where

O(n) is the usual order in a high-dimensional framework (1.1) or (1.2). Note

that, when we consider the distributions of AIC and Cp, without loss of

information we may assume

Ω = diag(ω1, . . . , ωq), (2.13)

where ω1 ≥ · · · ≥ ωq are the characteristic roots of Ω or the non-zero char-

acteristic roots of Ω̃.

Here we list our main assumptions whose parts are used, depending on

Theorems:

A1 (The true model): j0 ∈ F.

A2 (The asymptotic framework-1): q is fixed,

p → ∞, n → ∞, p/n → c ∈ [0, 1).

A3 (The asymptotic framework-2): j0 → ∞, p → ∞, n → ∞,

q/n → 0, p/n → c ∈ [0, 1).

A4 (The noncentrality matrix-1): For any j(0 ≤ j < j0),

ωj = nδj = O(n), lim
p/n→c

δj = δj0 > 0.
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A5 (The noncentrality matrix-2): For any j(0 ≤ j < j0),

ωj = npξj = O(np), lim
p/n→c

ξj = ξj0 > 0.

The assumption A3 (the asymptotic framework-2) means that q and j0

may tend to infinity, under the restriction that q/n → 0 and hence j0/n → 0.

First we show that the asymptotic probabilities of selecting the true model

by ĵA and ĵC go to 1 when the sample size and the dimension of response

variables are approaching to ∞ as in (1.1), and q is fixed. Next we consider

the case when j0 and q may tend to infinity.

Theorem 2.1. Suppose that the assumptions A1 and A2 are satisfied. Fur-

ther, assume that c ∈ [0, ca), where ca (≈ 0.797) is the constant satisfying

log(1− ca) + 2ca = 0.

(1) Suppose that the assumption A4 is satisfied, and

A6: log(1 + δj00) > 2c+ log(1− c).

Then, the asymptotic probability of selecting the true model k0 by AIC

tends to 1, i.e.

lim
p/n→c

P (ĵA = j0) = 1.

(2) Suppose that the assumption A5 is satisfied. Then, the asymptotic prob-

ability of selecting the true model j0 by AIC tends to 1, i.e.

lim
p/n→c

P (ĵA = j0) = 1.

Similar results are obtained for ĵc as in the next theorem.

Theorem 2.2. Suppose that the assumptions A1 and A2 are satisfied. Fur-

ther, assume that c ∈ [0, 1/2).

(1) Suppose that the assumption A4 is satisfied, and

A7: δj00 > c(1− 2c).
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Then, the asymptotic probability of selecting the true model j0 by Cp tends

to 1, i.e.

lim
p/n→c

P (ĵC = j0) = 1.

(2) Suppose that the assumption A4 is satisfied. Then, the asymptotic prob-

ability of selecting the true model j0 by Cp tends to 1, i.e.

lim
p/n→c

P (ĵC = j0) = 1.

From the proofs of Theorems 2.1 and 2.2 we can see that the AIC and

Cp criteria on the dimensionality in multivariate linear model satisfy the

followings:

(i;MLM) if c ∈ [0, c0), lim
p/n→c

P (ĵA ∈ F+\{j0}) = 0, (2.14)

(ii;MLM) if c ∈ [0, 0.5), lim
p/n→c

P (ĵC ∈ F+\{j0}) = 0, (2.15)

without the assumptions on the order of Ω. The first result can be extended

to the case when q is large as follows.

Theorem 2.3. Suppose that the assumptions A1 and A3 are satisfied. If

there exists a positive number δ such that 2c(q− j0)
−1 + log(1− c) > δ, then

lim
p/n→c,q/n→0

P (ĵA ∈ F+\{j0}) = 0. (2.16)

When j0 + 1 = q, the sufficient condition in Theorem 2.3 is expressed as

c ∈ [0, ca), where ca is the constant given Theorem 2.1.

It may be noted that these properties (2.14), (2.14) and (2.16) are different

from the ones in large-sample framework. In fact, under a large-sample

framework

p, q, k; fixed, n → ∞, (2.17)

and A4, it is known (Fujikoshi (1985)) that

lim
n→∞

P (ĵA = j) = P (ĵC = j) = h(j|j0), (2.18)
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where for j = 0, 1, . . . , j0 − 1, h(j|j0) = 0, and for j = j0, . . . , q, h(j|j0)’s are
positive and are expressed in terms of the characteristic roots z1 > · · · > zs

of a s× s Wishart matrix W whose distribution is distributed as Ws(t, Is) as

h(j|j0) = P (

j−j0∑
i=k+1

zi > 2pk,j−j0 ; k = 0, 1, . . . , j − j0 − 1, and,

k∑
i=j−j0+1

zi > 2pj−j0,k; k = j − j0 + 1, j − j0 + 2, . . . , q). (2.19)

Here pij = (p− j0 − i)(q − j0 − i)− (p− j0 − j)(q − j0 − j), and the density

function of z1, . . . , zs is expressed as

πs2/2

2st/2Γs

(
1
2
s
)
Γs

(
1
2
t
) exp(− 1

2

s∑
i=1

zi

) s∏
i=1

z
(t−s−1)/2
i

s∏
i<j

(zi − zj),

where Γa(b) = πa(a−1)/4
∏a

i=1 Γ[b− (i− 1)/2].

3. Canonical Correlation Analysis

3.1. Preliminaries

Let

X = (x1,x2, . . . ,xN)
′, Y = (y1,y2, . . . ,yN)

′

be a sample of size N = n + 1 of (x′, y′)′ from (p + q)-dimensional normal

distribution Nq+p(µ,Σ), with x : p × 1 and y : q × 1. Let S be the sample

covariance matrix formed from the sample. In this section we assume that

q ≤ p. Corresponding to a partition (x′,y′), we partition µ, Σ and S as

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, S =

(
S11 S12

S21 S22

)
.

Let ρ1 ≥ · · · ≥ ρq ≥ 0 and r1 > · · · > rq > 0 be the population and

sample canonical correlations between x and y. Then ρ21 ≥ · · · ≥ ρ2q ≥ 0
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and r21 > · · · > r2q > 0 are the characteristic roots of Σ−1
11 Σ12Σ

−1
22 Σ21 and

S−1
11 S12S

−1
22 S21, respectively.

As is well known, by considering the conditional distribution of Y given X

we can regard the canonical correlation model as a multivariate linear model,

i.e.

Y|X ∼ NN×q(1Nµ
′
2·1 + XΣ−1

11 Σ12,Σ22·1 ⊗ IN), (3.1)

where µ2·1 = µ2 −Σ21Σ
−1
11 µ1 and Σ22·1 = Σ22 −Σ21Σ

−1
11 Σ12.

We are interested in the number of nonzero canonical correlations, which

is called the dimensionality in canonical correlation analysis. Related to the

estimation of the dimensionality we consider a dimensionality model:

Mj: rank(Σ12) = j,

⇔ ρj > ρj+1 = · · · = ρq = 0 (3.2)

IfMj is true, we can explain the correlation structure between x and y by the

first j canonical correlation variables, since the remeining canonical variables

have no power of prediction.

Based on the likelihood of S, it is known (Fujikoshi and Veitch (1979))

that AIC for Mj is given by

AICj = −
q∑

i=j+1

n log(1− r2i ) + n(p+ q) + (p+ q + 1) log |S|+K

+ 2

{
j(p+ q − j) +

1

2
p(p+ 1) +

1

2
q(q + 1)

}
, (3.3)

where K = 2 log
{
Γp+q(

1
2
/(1

2
n)(1/2)n(p+q)

}
. Instead of AIC, we may use

Aj =AICj − AICq

=−
q∑

i=j+1

n log(1− r2i )− 2(p− j)(q − j), j = 0, . . . , q. (3.4)

Here Aq = 0. The Cp,j corresponding to Aj is given by

Cp,j = n

q∑
i=j+1

r2i
1− r2i

− 2(p− j)(q − j), j = 0, . . . , q. (3.5)
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Note that the Aj and Cp,j based on the likelihood of X and Y can be expressed

as the ones in (3.4) replaced n by N .

3.2. High-Dimensional Properties

We use the same notation for the models of dimensionality as in multivariate

linear model. For examples, the model Mj is denoted by j simply. Then, the

set of all the models is F = {0, 1, . . . , q}. It is also assumed that the true

dimension is j0, where 0 ≤ j0 ≤ q. The notation j0 is also used for the true

model and the minimum model including the true model.

When we treat the distributions of the canonical correlations themselves

or their function, without loss of generality we may assume that

Σ =

(
Ip R′

R Iq

)
, (3.6)

R = (R1 O)′, R1 = diag(ρ1, . . . , ρq). The number of possible nonzero canoni-

cal correlations is q. We will consider the transformed population and sample

canonical correlations defined by

γj =
ρj

(1− ρ2j)
1/2

, dj =
rj

(1− r2j )
1/2

, j = 1, . . . , q. (3.7)

We use the assumptions similar to the ones in multivariate linear model.

The following assumptions are used, depending on Theorems:

B1 (The true model): j0 ∈ F.

B2 (The asymptotic framework-1): q is fixed,

p → ∞, n → ∞, p/n → c ∈ [0, 1).

B3 (The asymptotic framework-2): j0 → ∞, p → ∞, n → ∞,

q/n → 0, p/n → c ∈ [0, 1).

B4 (The canonical correlations-1): For any j(0 ≤ j < j0),

ρ2j = O(1) and lim
p/n→c

ρ2j = ρ2j0.
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B5 (The canonical correlations-2): For any j(0 ≤ j < j0),

γ2
j = pθ2j = O(p) and lim

p/n→c
θ2j = θ2j0.

Theorem 3.1. Suppose that the assumptions B1 and B2 are satisfied. Fur-

ther, assume that c ∈ [0, ca), where ca (≈ 0.797) is the constant satisfying

log(1− ca) + 2ca = 0.

(1) Suppose that the assumption B4 is satisfied, and

B6: − log(1− ρ2j00) > 2c+ log(1− c).

Then, the asymptotic probability of selecting the true model j0 by AIC

tends to 1, i.e.

lim
p/n→c

P (ĵA = j0) = 1.

(2) Suppose that the assumption B5 is satisfied. Then, the asymptotic prob-

ability of selecting the true model j0 by AIC tends to 1, i.e.

lim
p/n→c

P (ĵA = j0) = 1.

Theorem 3.2. Suppose that the assumptions B1 and B2 are satisfied. Fur-

ther, assume that c ∈ [0, 1/2).

(1) Suppose that the assumption is satisfied, and

B6: δj00 > c(1− 2c).

Then, the asymptotic probability of selecting the true model j0 by Cp tends

to 1, i.e.

lim
p/n→c

P (ĵC = j0) = 1.

(2) Suppose that the assumption B5 is satisfied. Then, the asymptotic prob-

ability of selecting the true model j0 by Cp tends to 1, i.e.

lim
p/n→c

P (ĵC = j0) = 1.
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From the proofs of Theorems 3.1 and 3.2 we can also see that the AIC

and Cp criteria on the dimensionality in canonical correlation analysis satisfy

the followings:

(i; CCA) if c ∈ [0, c0), lim
p/n→c

P (ĵA ∈ F+\{j0}) = 0, (3.8)

(ii; CCA) if c ∈ [0, 0.5), lim
p/n→c

P (ĵC ∈ F+\{j0}) = 0. (3.9)

These results hold without the assumptions on the order of population canon-

ical correlations.

Theorem 3.3. Suppose that the assumptions B1 and B3 are satisfied. Fur-

ther, if there exists a positive number δ such that 2c(q−j0)
−1+log(1−c) > δ,

then

lim
p/n→c,q/n→0

P (ĵA ∈ F+\{j0}) = 0. (3.10)

Under a large-sample framework (2.17) with k = q and B4 it is known

(Fujikoshi (1985)) that

lim
n→∞

P (ĵA = j) = lim
n→∞

P (ĵC = j) = h(j|j0), (3.11)

where for j = 0, 1, . . . , j0 − 1, h(j|j0) = 0, and for j = j0, . . . , q, h(j|j0)’s
are positive and expressed as (2.19). Gunderson and Muirhead (1997) gave

a different expression for h(j|j0) and extended the result to the case of an

elliptical distribution.

4. Numerical Study

In this section, we numerically examine the validity of our claims, and

point some tendencies for the dimensionalities estimated by AIC and Cp.
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4.1. DA(Discriminant Analysis)

The nonzero characteristic roots ℓ1 > · · · > ℓq in DA are the ones of SbS
−1
w .

When we consider distributions of AIC and Cp, without loss of generality we

may assume that Sw and Sb are independently distributed as Wp(n−q−1, Iq)

and Wp(q, Ip;Ωp), respectively. Here, Ω = diag(ω1, · · · , ωq, 0, . . . , 0) and

ω1, · · · , ωq are the possible nonzero characteristic roots of the noncentrality

matrix Ω defined by (2.7).

Suppose that q = 5, and so we have six candidate modelsM0,M1, . . . ,M5.

It is assumed that the minimum model including the true model is M3 and

so j0 = 3. The two types of characteristic roots ωi, i = 1, . . . , 5 are defined

as follows:

(a) : ω1 = 2ω3, ω2 =
3

2
ω3, ω3 = 0.2n, ω4 = ω5 = 0,

(b) : ω1 = 2ω3, ω2 =
3

2
ω3, ω3 = 0.2np, ω4 = ω5 = 0.

These are corresponding to the two types of noncentrality matrix-1 and -2

in A4 and A5. Several different values of n and p = cn, were prepared for

Monte Carlo simulations. We give simulation results with 104 repetitions for

(n, p) =(30, 5), (60, 10), (120, 20), (210, 35),

(300, 50), (480, 80), (600, 100).

The values of p/n in these cases are all 1/6. The assumptions A6 and A7 are

sasified.

Table 4.1. Selection probabilities of the true model by AIC

in DA under (a)
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n p A0 A1 A2 A3 A4 A5

30 5 0.05 0.29 0.41 0.21 0.04 0.00
60 10 0.01 0.17 0.48 0.32 0.03 0.00
120 20 0.00 0.07 0.50 0.42 0.01 0.00
210 35 0.00 0.02 0.46 0.52 0.00 0.00
300 50 0.00 0.01 0.41 0.58 0.00 0.00
480 80 0.00 0.00 0.34 0.66 0.00 0.00
600 100 0.00 0.00 0.30 0.70 0.00 0.00

Tabe 4.2. Selection probabilities of the true model by Cp

in DA under (a)

n p C0 C1 C2 C3 C4 C5

30 5 0.01 0.17 0.45 0.31 0.06 0.01
60 10 0.00 0.06 0.40 0.47 0.06 0.00
120 20 0.00 0.01 0.29 0.65 0.05 0.00
210 35 0.00 0.00 0.18 0.80 0.02 0.00
300 50 0.00 0.00 0.12 0.88 0.01 0.00
480 80 0.00 0.00 0.05 0.94 0.00 0.00
600 100 0.00 0.00 0.03 0.97 0.00 0.00

Table 4.3. Selection probabilities of the true model by AIC

in DA under (b)

n p A0 A1 A2 A3 A4 A5

30 5 0.00 0.00 0.01 0.79 0.18 0.03
60 10 0.00 0.00 0.00 0.83 0.16 0.01
120 20 0.00 0.00 0.00 0.94 0.06 0.00
210 35 0.00 0.00 0.00 0.99 0.01 0.00
300 50 0.00 0.00 0.00 1.00 0.00 0.00
480 80 0.00 0.00 0.00 1.00 0.00 0.00
600 100 0.00 0.00 0.00 1.00 0.00 0.00

Table 4.4. Selection probabilities of the true model by Cp
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in DA under (b)

n p C0 C1 C2 C3 C4 C5

30 5 0.00 0.00 0.00 0.75 0.21 0.03
60 10 0.00 0.00 0.00 0.75 0.24 0.01
120 20 0.00 0.00 0.00 0.85 0.15 0.00
210 35 0.00 0.00 0.00 0.94 0.06 0.00
300 50 0.00 0.00 0.00 0.97 0.03 0.00
480 80 0.00 0.00 0.00 1.00 0.00 0.00
600 100 0.00 0.00 0.00 1.00 0.00 0.00

The simulation results under the noncentrality matrix-1 are given in Ta-

bles 4.1 and 4.2. The simulation results under the noncentrality matrix-2

are given in Tables 4.3 and 4.4. From Tables 4.1 ∼ 4.4 we can see that

AIC and Cp are consistent for the estimation of dimensionality in the high-

dimensional settings considered. On the velocity of convergence to the true

dimension, the case of noncetrality matrix-2 is faster than the one of non-

cetrality matrix-1. Further, in the case of noncetrality matrix-1 Cp is faster

than AIC. Tables 4.4 and 4.5 shows that there are some possibilities for the

two criteria to overestimate the dimension when p is small, but n is large.

On the other hand, when p becomes increasing, but n is not so large, there

are some possibilities for the two criteria to underestimate the dimension.

4.2. CCA(Canonical Correlation Analysis)

We consider the selection probabilities of the true model by AIC and Cp in

CCA. The setting similar to the one as in DA is considered. It is assumed

that q = 5 and the true dimension is j0 = 3. The two types of population

canonical correlations are defined as follows:

(c) ρ1 = 2ρ, ρ2 =
3

2
ρ, ρ3 = ρ, ρ4 = ρ5 = 0,

(d) ρ1 = ρ̃, ρ2 =
3

4
ρ̃, ρ3 =

1

2
ρ̃, ρ4 = ρ5 = 0.
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where

ρ =

√
(4p)/(21)

p+ 1 + (4p)/(21)
, ρ̃ =

√
p

p+ 1

√
(4p)/(21)

1 + (4p)/(21)
.

These are corresponding to the two types of canonical correlations-1 and -2

in B4 and B5. The values of n and p = cn, were chosen by the same way in

MLM. Note that the assumptions A9 and A10 are satisfied. Our simulation

results are given in Tables 4.5-4.8.

Table 4.5. Selection probabilities of the true model by AIC

in CCA under (c)

n p A0 A1 A2 A3 A4 A5

30 5 0.00 0.14 0.48 0.31 0.05 0.01
60 10 0.00 0.03 0.47 0.45 0.05 0.00
120 20 0.00 0.00 0.43 0.55 0.02 0.00
210 35 0.00 0.00 0.39 0.61 0.00 0.00
300 50 0.00 0.00 0.36 0.64 0.00 0.00
480 80 0.00 0.00 0.31 0.69 0.00 0.00
600 100 0.00 0.00 0.30 0.70 0.00 0.00

Table 4.6. Selection probabilities of the true model by Cp

in CCA under (c)

n p C0 C1 C2 C3 C4 C5

30 5 0.00 0.06 0.43 0.41 0.08 0.01
60 10 0.00 0.01 0.31 0.58 0.11 0.00
120 20 0.00 0.00 0.21 0.73 0.07 0.00
210 35 0.00 0.00 0.14 0.83 0.03 0.00
300 50 0.00 0.00 0.11 0.88 0.01 0.00
480 80 0.00 0.00 0.05 0.94 0.00 0.00
600 100 0.00 0.00 0.04 0.96 0.00 0.00

Table 4.7. Selection probabilities of the true model by AIC
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in CCA under (d)

n p A0 A1 A2 A3 A4 A5

30 5 0.01 0.20 0.49 0.26 0.04 0.01
60 10 0.00 0.01 0.40 0.52 0.06 0.00
120 20 0.00 0.00 0.21 0.76 0.03 0.00
210 35 0.00 0.00 0.09 0.91 0.01 0.00
300 50 0.00 0.00 0.04 0.96 0.00 0.00
480 80 0.00 0.00 0.01 0.99 0.00 0.00
600 100 0.00 0.00 0.00 1.00 0.00 0.00

Table 4.8. Selection probabilities of the true model by Cp

in CCA under (d)

n p C0 C1 C2 C3 C4 C5

30 5 0.00 0.09 0.47 0.36 0.07 0.01
60 10 0.00 0.00 0.25 0.62 0.12 0.01
120 20 0.00 0.00 0.08 0.82 0.09 0.00
210 35 0.00 0.00 0.02 0.94 0.04 0.00
300 50 0.00 0.00 0.01 0.98 0.02 0.00
480 80 0.00 0.00 0.00 1.00 0.00 0.00
600 100 0.00 0.00 0.00 1.00 0.00 0.00

The high-dimensional settings considered are corresponding to the ones

in discriminant analysis, though there are some differences for largeness of

the characteristics of the noncentrality matrix and the population canonical

correlations. The simulation results are given in Tables 4.5 ∼ 4.8. It is

pointed that there are similar tendencies in discriminant analysis.

From Tables 4.1 ∼ 4.4 we can see that AIC and Cp are consistent for the

estimation of dimensionality in the high-dimensional settings considered. On

the velocity of convergence to the true dimension, the case of noncetrality

matrix-2 is faster than the one of noncetrality matrix-1. Further, In the case

of noncetrality matrix-1 Cp is faster than AIC. Tables 4.4 and 4.5 shows
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that there are some possibilities of underestimating the dimensionality when

(n, p) is not so large.

5. Concluding Remarks

In general, it is known that under the large sample asymptotic framework

(2.17) AIC and Cp have no consistency prorperty, in the sense that the prob-

abilities of selecting the true model do not approach to one. However, in this

paper, we demonstrated that the AIC and Cp for estimating the dimension-

alities in multivariate linear model and canonical correlation analysis have

a consistency property, under a high-dimensional framework (1.1). For the

consistency, it is required to satisfy some additional assumptions. For AIC,

it needs that c ∈ [0, ca], where ca ≈ 0.797. For Cp, it needs that c ∈ [0, 1/2].

Further, the consitency was considered under two types of assumptions on

the largeness of the characteristic roots of the noncentrality matrix and the

population canonical correlations.

In discriminant analysis the number of groups may be assumed to be

finite. However, in multivariate regression model and canonical correlation

analysis the number k of explanatory variables and the number q of x may be

large. For such cases, we note that the probability of estimating overspecified

dimensions tends to zero under some condition. These results are expected to

be extended in the future. In a very high-dimensional case, it will occur that

p > n. In this case, AIC and Cp should be modified by using, for example,

ridge estimators. On the other hand, recently some other methods have been

proposed by Yuan and Ekici(2007), Bunea, She and Wegkamp (2011), etc.

Bunea, She and Wegkamp (2012) and Chen and Hung (2012) also consider

simultaneous methods for dimension reduction and variable selection.
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Appendix

A. The proofs of Theorems 2.1, 2.2 and 2.3

First we prepare a lemma on the limiting behavior of the characteristic roots

of ShS
−1
e in a high-dimensional case.

Lemma A.1. Let Se and Sh be independently distributed as a Wishart distri-

bution Wp(n−k,Σ) and a noncentral Wishart distribution Wp(q,Σ;Σ1/2Ω̃Σ1/2),

respectively. Here it is assumed that n − k ≥ p. Let ℓ1 > · · · > ℓq and

ω1 ≥ · · · ≥ ωq be the possible nonzero characteristic roots of ShS
−1
e and Ω̃,

respectively. We assume that rank(Ω̃) = a, and hence ω1 ≥ · · · ≥ ωa >

ωa+1 = · · · = ωq = 0. For the limiting behavior of ℓ1 > · · · > ℓq under a

high-dimensional asymptotic framework

p → ∞, n → ∞, k → ∞, p/n → c ∈ [0, 1), k/n → 0. (A.1)

we have the following results:

(1) Suppose that for any j(0 ≤ j ≤ a), ωj = nδj = O(n) and

lim
p/n→c

δj = δj0 > 0. Then

ℓj
p→ c

1− c
+

1

1− c
δj0, j = 1, . . . , a,

ℓj
p→ c

1− c
, j = a+ 1, . . . , q.

(2) Suppose that for any j(0 ≤ j ≤ a), ωj = npξj = O(np), and

lim
p/n→c

ξj = ξj0 > 0. Then

1

p
ℓj

p→ 1

1− c
ξj0, j = 1, . . . , a,

ℓj
p→ c

1− c
, j = a+ 1, . . . , q.

Proof. It is known (see Fujikoshi et al. (2013)) that the nonzero characteristic

roots ℓ1 > · · · > ℓq > 0 of ShS
−1
e may be regarded as the ones of BW−1, where
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W and B are independently distributed as a central Wishart distribution

Wq(m, Iq) and a noncentral Wishart distribution Wq(m, Iq;Ω), respectively.

Here, m = n− k − p+ q, Ω = diag(ω1, . . . , ωq), and

ω1 ≥ · · · ≥ ωa > ωa+1 = · · · = ωq = 0.

In general, letting

U =
1
√
p
(B− pIq −Ω), V =

1√
m
(W −mIq),

the limiting distributions of U and V are normal. When Ω = n∆ = O(n)

and ∆ = ndiag(δ1, . . . , δa, 0, · · · , 0), we have

1

p
B = Iq +

n

p
∆+ Iq +

1
√
p
U,

1

m
W = Iq +

1√
m
V.

This implies that the characteristic roots of BW−1 are the same as the ones

of

W−1/2BW−1/2 =
p

m
(
1

m
W)−1/2(

1

p
B)(

1

m
W)−1/2

p→
(
Iq +

1

c
∆0

)
c

1− c
,

where lim∆ = ∆0, and ∆0 = diag(δ10, . . . , δa0, 0, . . . , 0). This shows the

first result (1).

Next we consider the case ωj = O(np) = npξj, j = 1, . . . , a. We have

1

np
B = Ξ+

1

n
Iq +

1

n
√
p
U,(

1

m
W

)−1/2

= Iq −
1

2
√
m
V +

3

8m
V2 +O(m−3/2),

where Ξ = diag(ξ1, . . . , ξa, 0, . . . , 0). Therefore

m

np
W−1/2BW−1/2 =

(
1

m
W

)−1/2 (
1

np
B

)(
1

m
W

)−1/2

=

(
Ξ1 O
O O

)
+

1√
m

(
Q11 Q12

Q21 Q22

)
, (A.2)
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where Ξ1 = diag(ξ1, . . . , ξa),

Q11 = −1

2
(V11Ξ1 +Ξ1V11) + O(m−1/2),

Q12 = Q′
21 = −1

2
Ξ1V11 +O(m−1/2),

Q22 =

√
m

n
Iq−a +

1

4
√
m
V21Ξ1V12 +O(m−1),

and

V =

(
V11 V12

V21 V22

)
, V12; a× (q − a).

From (A.2) it is easy to see that

1

p
(ℓ1, . . . , ℓa)

p→ 1

1− c
(ξ10, . . . , ξa0).

Further, applying Lawley (1959) to (A.2), the larst q− a characteristic roots

{m/(np)}(ℓa+1, . . . , ℓq) are the same as the ones of

1√
m
Q22 −

1

m
Q21Ξ1Q12 +O(m−/2)

=
1

n
Iq−a +O(m−/2).

This shows that ℓj
p→ c/(1− c) for j = a+ 1, . . . , q.

The Proof of Theorem 2.1

In the proof of Theorem 2.1 it is assumed that the true dimensionality is

j0. Since the number of possible models is finite, it is sufficient to show that

the values of AICj − AICj0 converges to positive values.

Note that for j > j0

AICj − AICj0 = −n log(1 + ℓj0+1) · · · (1 + ℓj) + 2(j − j0)(p+ q − j − j0),

and for j < j0

AICj − AICj0 = n log(1 + ℓj+1) · · · (1 + ℓj0) + 2(j − j0)(p+ q − j − j0).
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Suppose that Ω = O(n). Then, using Lemma A.1 (1), we have that for j > j0

1

n
{AICj − AICj0}

p→ (j − j0) {log(1− c) + 2c} .

The limiting value is positive when c ∈ (0, ca). The proof in the case c = 0

may be modified as follows. For 0 < c < 1, we have

1

p
{AIC(j)− AIC(j0)}

p→1

c
(j − j0) {log(1− c) + 2c}

= (j − j0)

{
1

c
log(1− c) + 2

}
.

Noting that limc→0+ c−1 log(1 − c) = −1, it holds that the limiting value is

positive. Next suppose that j < j0. Then, using Lemma A.1 (1), we have

1

n
{AICj − AICj0}

→ log(1 + δj+1) · · · (1 + δj0)− (j0 − j) {log(1− c) + 2c}

≥ (j0 − j) [log(1 + δj0)− {log(1− c) + 2c}]

The lower bound is positive by the assumption A6. The case c = 0 is similarly

proved as in the case j > j0.

Now we shall prove the result (2). For j > j0, the limiting behavior of

ℓj under ωj = O(np) is the same as the one under ωj = O(n). Therefore,

the limiting value of (1/n) {AICj − AICj0} is positive when c ∈ [0, ca). For

j < j0, from Lemma A.1 (2) we have

1

np
{AIC(j)− AIC(j0)}

p→ j0 − j.

This proves Theorem 2.1 (2).

The Proof of Theorem 2.2

Theorem 2.2 is proved by the same way as in Theorem 2.1, due to Lemma

A.1. In the following we give an outline of the proof. We have that for j > j0

Cp,j − Cp,j0 = −n(ℓj0+1 + · · ·+ ℓj) + 2(j − j0)(p+ q − j − j0),
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and for j < j0

Cp,j − Cp,j0 = n(ℓj+1 + · · ·+ ℓj0) + 2(j − j0)(p+ q − j − j0).

Noting that for j > j0, ℓj → c/(1 − c) under both cases Ω = O(n) and

Ω = O(np), it holds that

1

p
{Cp,j − Cp,j0}

p→ (j − j0)
1− 2c

1− c

whose limiting value is positive when c ∈ [0, 1/2). When j < j0 and Ω =

O(n),

1

n
{Cp,j − Cp,j0}

p→ 1

1− c
(δj+1 + · · ·+ δj0) + +(j0 − j)

{
c

1− c
− 2c

}
≥ (j − j0)

1− c
{δj0 − c(1− 2c)} .

Further, when j < J0 and Ω = O(np),

1

n
{Cp,j − Cp,j0}

p→ 1

1− c
(ξj+1,0 + · · ·+ ξj00) > 0.

These imply Theorem 2.2.

The Proof of Theorem 2.3

In general, it holds that

P (ĵA = j) ≤ P (AICj − AICj0 < 0),
q∑

j=j0+1

P (ĵA = j) ≤
q∑

j=j0+1

P (AICj − AICj0 < 0).

So, it is sufficient to show

lim
q→∞

q∑
j=j0+1

P (AICj − AICj0 < 0) → 0.

For any j(≤ q), we have

P (AICj − AICj0 < 0)

= P (n log(1 + ℓj0+1) · · · (1 + ℓj) > 2(j − j0)(p+ q − j − j0))

≤ P (n log(1 + ℓj0+1) · · · (1 + ℓq) > 2(j − j0)(p+ q − j − j0)).
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Here, ℓ1 > · · · > ℓq are the characteristic roots of ShS
−1
e . We have noted that

ℓ1 > · · · > ℓq may be regarded as the characteristic roots of BW−1, where

W and B are independently distributed as a central Wishart distribution

Wq(m, Iq) with m = n − k − p + q and a noncentral Wishart distribution

Wq(p, Iq;Ω), respectively. Note that Ω = diag(ω1, · · · , ωj0 , 0, . . . , 0). Con-

sider a q × (q − j0) matrix H such that H′Ω = O and H′H = Iq−j0 . Let

B̃ = H′BH and W̃ = H′WH. Then, B̃ and W̃ are independently dis-

tributed as a Wishart distribution Wq−j0(p, Iq) and a Wishart distribution

Wq−j0(m, Iq), respectively. Let the characteristic roots of B̃W̃
−1

denote by

ℓ̃1 > · · · > ℓ̃q−j0 . Then, using Saw (1974) (see Fujikoshi and Isogai (1976),

Olkin and Tosky (1981), Schott (1984)), we have

ℓ̃i ≥ ℓj0+i, i = 1, . . . , q − j0,

which implies

P (n log(1 + ℓj0+1) · · · (1 + ℓq) > 2(j − j0)(p+ q − j − j0)) (A.3)

≤ P (n log(1 + ℓ̃1) · · · (1 + ℓ̃q−j0) > 2(j − j0)(p+ q − j − j0))

= P (−n log Λ > 2(j − j0)(p+ q − j − j0)).

Here, Λ is defined by

Λ =
W̃|

|W̃ + B̃|
which is distributed as a Lambda distribution Λq−j0(p,m). Now, using the

bellow Lemma A.3 we have that the last expression of (A.3) is O((pq)−ℓ)

for any positive number, under the assumption of Theorem 2.3. This proves

Theorem 2.3.

The following Lemma is obtained from Lemma A.1 in Yanagihara, Wakaki

and Fujikoshi (2014).

Lemma A.2. Let T = −n(pq)−1 log Λ, where Λ is distributed to Lambda

distribution Λq(p, n + q). Let cp,n = p/n and κ̂ = c−1
p,n log(1 + cp,ℓ). Assume
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the asymptotic framework given by

p → ∞, n → ∞, q →, cp,n → c ∈ [0, 1), q/n → 0.

Let m be a constant depending on n, p and q. If there exists a positive constant

δ such that m− κ̂ > δ for large n, then

P (T > m) = O((pq)−ℓ),

for any positive number ℓ.

B. The proofs of Theorems 3.1, 3.2 and 3.3

First we consider the limiting behavior of the squares r21 > · · · > r2q of the

canonical correlations under a high-dimensional framework.

Lemma A.3. Let r21 > · · · > r2q and ρ21 ≥ · · · ≥ ρ2q be the squares of the

sample and population canonical correlations between x; p × 1 and y; q × 1

with p ≥ q, based on a sample of size N = n + 1 from Np+q(µ,Σ). Let

d2j = r2j/(1 − r2j ), γ2
j = ρ2j/(1 − ρ2j), j = 1, . . . , q. We assume that the

number of nonzero population canonical correlations is a, and hence ρ1 ≥
· · · ≥ ρa > ρa+1 = · · · ρq = 0. For the limiting behaviors of r21 > · · · > r2q and

d21 > · · · > d2q under a high-dimensional asymptotic framework

p → ∞, n → ∞, p/n → c ∈ [0, 1).

we have the following results:

(1) Suppose that for any j(0 ≤ j ≤ a), ρ2j = O(1) and

lim
p/n→c

ρ2j = ρ2j0 > 0. Then

r2j
p→ ρ2j + c(1− ρ2j), d2j

p→ c

1− c
+

1

1− c
γ2
j0; j = 1, . . . , a,

r2j
p→ c, d2j

p→ c

1− c
; j = a+ 1, . . . , q.
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(2) Suppose that for any j(0 ≤ j ≤ a), γ2
j = pθ2j = O(p), and

lim
p/n→c

θj = θj0 > 0. Then

1

p

r2j
1− r2j

p→ 1

1− c
θ2j0,

1

p
d2j

p→ 1

1− c
θ2j0; j = 1, . . . , a,

r2j
p→ c, d2j

p→ c

1− c
; j = a+ 1, . . . , q.j = a+ 1, . . . , q.

Proof. Let A = nS, which is distributed as a Wishart distribution Wq+p(n,Σ)

with Σ given by (3.6). We partition A as

A =

(
A11 A12

A21 A22

)
,

corresponding to a partition of S. In the following we consider the limiting

behavior of d21 > · · · > d2q defined by d2j = r2j/(1 − r2j ), which are the char-

acteristic roots of A21A
−1
11 A12A

−1
22·1, instead of instead of r21 > · · · > r2q . Here

A22·1 = A22−A21A
−1
11 A12. It is known (see Fujikoshi and Sakurai (2010)) that

(i) A22·1 ∼ Wq(m, Iq), where m = n − p. (ii) A21A
−1
11 A12 ∼ Wq(p, Ip;ΓGΓ),

when the first q × q matrix G of A11 is given. Here, Γ = diag(γ1, . . . , γq).

Further, G ∼ W(n, Iq). (iii) A21A
−1
11 A12 and A22·1 are independent. Let

U =
1
√
p
(A21A

−1
11 A12 − pIq −Ω), Ω = ΓGΓ,

V =
1√
m
(A22·1 −mIq), Z =

1√
n
(G− nIq).

Then the limiting distributions of U, V and Z are normal. When Γ = O(1),

we have

(A22·1)
−1/2A21A

−1
11 A12(A22·1)

−1/2 =
p

m

(
Iq +

1√
m
V

)−1/2

×
(
Iq +

n

p
Γ2 +

n

p
√
n
Z+

1√
n
U

)(
Iq +

1√
m
V

)−1/2

p→ c

1− c

(
Iq +

1

c
Γ2

0

)
,

30



where limΓ = Γ0, and Γ0 = diag(γ10, . . . , γa0, 0, . . . , 0). From the result we

can see the first result (1).

Next we consider the case Γ =
√
pΘ. We have

1

np
A21A

−1
11 A12 = Θ2 +

1√
n
ΘZΘ+

1

n
Iq +

1

n
√
p
U,(

1

m
A22·1

)−1/2

= Iq −
1

2
√
m
V +

3

8m
V2 +O(m−3/2).

Therefore

m

np
A−1/2

22·1 A21A
−1
11 A12A

−1/2
22·1 =

(
Θ2

1 O
O O

)
+

1√
m

(
T11 T12

T21 T22

)
, (B.4)

where Θ1 = diag(θ1, . . . , θa),

T11 = −1

2
(V11Θ

2
1 +Θ2

1V11) +Θ1ZΘ1 +O(m−1/2),

T12 = T′
21 = −1

2
Θ2

1V11 +O(m−1/2),

T22 =

√
m

n
Iq−a +

1

4
√
m
V21Θ

2
1V12 +O(m−1).

From (B.4) it is easy to see that

1

p
(d21, . . . , d

2
a)

p→ 1

1− c
(θ210, . . . , θ

2
a0).

Further, applying Lawley (1959) to (B.4), the larst q− a characteristic roots

of {m/(np)}(d2a+1, . . . , ℓ
2
q) are the same as the ones of

1√
m
T22 −

1

m
T21Θ1T12 +O(m−/2)

=
1

n
Iq−a +O(m−/2).

This shows that d2j
p→ c/(1− c) for j = a+ 1, . . . , q.

The proofs of Theorems 3.1 and 3.2

31



We can prove by the same way as in the proof of Theorems 2.1 and 2.2.

In fact, noting that 1 − r2j = (1 + d2j)
−1, the difference between AICj and

AICj0 is expressed in terms of d21, . . . , d
2
q as, for j > j0

AICj − AICj0 = −n log(1 + d2j0+1) · · · (1 + d2j) + 2(j − j0)(p+ q − j − j0),

and for j < j0

AICj − AICj0 = n log(1 + r2j+1) · · · (1 + d2j0) + 2(j − j0)(p+ q − j − j0).

Similarly the difference between Cp,j and Cp,j0 is expressed in terms of d21, . . . , d
2
q

as, for j > j0

Cp,j − Cp,j0 = −n(d2j0+1 + · · ·+ d2j) + 2(j − j0)(p+ q − j − j0),

and for j < j0

Cp,j − Cp,j0 = n(d2j+1 + · · ·+ d2j0) + 2(j − j0)(p+ q − j − j0).

The limiting behaivior of (d21, . . . , d
2
q) is given in Lemma A.3, which are cor-

responding to the one of (ℓ1, . . . , ℓq) in multivariate linear model.

The proof of Theorem 3.3

We can prove by a parallel argument as in the proof of Theorem 2.3, using

the conditional set-up stated in the proof of Lemma A.3 and a probability

inequality in Fujikoshi and Isogai (1976). Its details are omitted.
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