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Abstract

In this paper, we consider the problem of testing equality of two mean vectors when the data
have three-step monotone pattern missing observations. We propose an approximate upper per-
centile of the Hotelling’s T2 type statistic where each of the data set has a three-step monotone
missing data and the population covariance matrices are equal. This result is an extension of
one sample problem given in Yagi and Seo (2014). Further, we consider multivariate multiple
comparisons procedure of pairwise differences of mean vectors with three-step monotone missing
data. Approximate simultaneous confidence intervals for pairwise multiple comparisons among
mean vectors are obtained by using Bonferroni’s approximate upper percentiles of T2, type

statistic. Finally, the accuracy of the approximation is investigated by Monte Carlo simulation.

Key Words and Phrases: T? type statistic; Maximum likelihood estimator; Three-step monotone
missing data; Simultaneous confidence intervals; Two-sample problem

1. Introduction

Consider the problem of testing for mean vectors with a three-step monotone missing data.
Suppose that we have a complete data set for n; observations with p; dimensions and two
incomplete data sets which have ny observations with ps dimensions and n3 observations with pg
dimensions. Such a data set is called a three-step monotone missing data pattern. The case when
the missing observations are of the monotone type has been considered by many authors (see Rao

(1956), Anderson (1957) and Bhargava (1962) among others). The closed form expressions for



the maximum likelihood estimators (MLESs) of the mean vector and the covariance matrix in the
case of the k-step monotone missing data under multivariate normality were derived by Jinadasa
and Tracy (1992). Kanda and Fujikoshi (1998) discussed the distribution of the MLEs in the
case of the k-step monotone missing data. Yagi and Seo (2014) gave a simplified Hotelling’s
T? type statistic for one-sample problem and its approximate upper percentiles when the data
have a three-step monotone missing data. This paper extends one-sample problem in Yagi and
Seo (2014) to two-sample or m-sample problem in the case of the three-step monotone missing
data. That is, using their idea, we develop an approximate upper percentile of T2 statistic for
two-sample problem. At first, in this paper, we consider the problem of testing Hy : p,(l) = u@)
vs. Hy : p) # p® when the data have monotone pattern missing observations. In the case
of a two-step monotone missing data, Seko, Kawasaki and Seo (2011) derived a Hotelling’s 72
type statistic and the likelihood ratio test statistic and their approximate upper percentiles.
Also, Yu, Krishnamoorthy and Pannala (2006) discussed the Hotelling’s T2 type statistic and
its approximate distribution by another approach. Recently, Seko (2012) discussed the tests for
mean vectors with two-step monotone missing data for m-sample problem. Under two-sample
or m-sample problem, in this paper, we propose a simplified Hotelling’s T? type statistic and
its approximate upper percentile in the case of a three-step monotone missing data, similar to
that in the case of a two-step monotone missing data.

The remainder of this paper is organized as follows. In Section 2, we present the some
notations as preliminaries and the MLEs of the mean vector and the covariance matrix for m-
sample problem that includes two-sample problem. In Section 3, we give the Hotelling’s 7 type
statistic for testing the equality of two mean vectors and its approximate upper percentiles. In
Section 4, we discuss the simultaneous confidence intervals for all pairwise differences of mean
vectors. In order to obtain the simultaneous confidence intervals, we derive an approximate

upper percentile of T2, type statistic by Bonferroni’s approximation method. In Section 5, we

ax

also give some simulation results.



2. Three-step monotone missing data and MLE

As preliminaries, we present some notations on vector and matrix needed to express the
three-step monotone missing data for two-sample or a general m-sample problem. Let & be
distributed as N,(u,X), and let &; = (x); be the vector of the first p; elements of . Then,
xi(= (x1,22,...,2p,)") is distributed as N, (p;,%;), i = 1,2, 3, where p; = ()i = (g1, ..., tip,)’
and X; is the p; x p; principal submatrix of ¥(= ¥;). Further, let (3;); be the principal
submatrix of 3; of order p; x p;, 1 <14 < j < 3. As the notations for the covariance matrix, we

define

Yir1 = (Z1)iq1, X1 =2 = <§/¢+1 EEHLQ)
i+1,2 41,3

and

> X
Zi = (Z:/H_1 2(172)) ) i = 17 27 3.
(4,2) (4,3)

Using the above notations, we consider the MLEs of the mean vectors and the common covari-
ance matrix for m-sample problem.
Let acl(-f), .., 2% be distributed as Npi(,u,(e),Zi) fori =1,2,3 and £ = 1,2,...,m, where
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Then we have the following theorem.

Theorem 1. Let wg), 1=1,2,3,5 = 1,2,...,n5£), {=1,2,...,m be the j-th random vector

from £-th population distributed as N, .(,ugz), Y;). Then the MLEs of “Z(z)’ £=1,2,....,mand 2

K3

are given by
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We note that the result of Theorem 1 is obtained in a straight forward method using one-
sample problem case of Yagi and Seo (2014). In the next section, in order to obtain a Hotelling’s
T? type statistic for testing equality of two mean vectors, we give the covariance matrix of
ﬁ(l) — ﬁ(Q), where ﬁ(é) = jge) + ngg) + Tngdgg). We note that the Hotelling’s T type statistic
with (To\v(ﬁ(l) — 1) instead of 6(;/(;7(1) — i) is adopted since @(ﬁ(l) — 1) is complicated
and C/O\V(ﬁ(l) — ﬁ(2)) is asymptotically equivalent to C/c;(ﬁ(l) — ﬁ(z)). For the related idea for

the case of one-sample problem, see Yagi and Seo (2014).

3. Hotelling’s T type statistic

In this section, we consider the hypothesis test, Ho : p() = u® vs. Hy : p™) % p? when
the data have a three-step monotone missing data pattern. In order to test the hypothesis Hy,
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under the assumption of common population covariance matrix, we adopt the Hotelling’s T
type statistic given by
Ts = (0" — @) T (@ - a),
where ;7,(8) = E(Z)—i-f[pl]d(f)—i—f[pl]ﬂpl] di(f), ¢=1,2, and T is an estimator of I' = Cov(ﬁ(l)—ﬁ@)),
(é) = :Bg ) + TQd( ) + Tngd( ) 0= 1,2. Then, using the result for the one-sample problem in

Yagi and Seo (2014), we have

2 2 ( ) 2 (5) (5) ( )
= Lo\ qlet Flel] _ {(n +2(n$")*ny Pl
" (S ) - () (B )

=1 Ns

where P is the MLE for m = 2 in Theorem 1,

alpl alpl
o= (ég)) (@, Vil = (<§E§f),> @y @y
We note that, under Hy, the T} %S is asymptotically distributed as a x? distribution with p
degrees of freedom when nge), Ny) — 0o with ngg)/Ng) — 0¥ € (0,1], £ =1,2. However, it is
noted that y? approximation is not a good approximate upper percentile of the T%S when the
sample size is not large. In order to give a good approximation even for small sample, we have

the following theorem.

Theorem 2. Suppose that two data sets have the same three-step monotone missing data
pattern. Then, the two approximate upper 100a percentile of the T%S statistic is given by

(S +n$ps + (08 + 1 )ps

(ny (1 )-i—ng)—l—ng)—i—ngf))
0 P+ 0+ P
(nél) + ng) + né ) + né ))pl

t%(SMLE(O‘) = T1\2/ILE-n,a - (TMLE~n,a - T1\2/ILE-N,a) )

Rsunpla) = T[2JNB~n,a - (TUNB~n,a - T[2JNB~N,a) ;

where
np1 2 Np:
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MLEmn,a = -1 pin—pi—La, SMLE-N,a = 77 1 p1,N-p1—1,a,
2 (n —2)p1 2 (N —2)p
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N — P1— 1
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n = ngl) —I—n?), N = Nf) —i—Nf),

and F, 4 o s the upper 100 percentile of the F' distribution with p and q degrees of freedom.

1 _— p1—_ P11 — _—— P1

(1) (2)
1

L1

N N

Figure 1: Approximation for the upper percentiles of T %S

As in Figure 1, T1\2/[LE.N7Q (or TIQJNB.N@) and TI\Q/ILE%O( (or TIZJNB%O() are calculated from
complete data sets of left hand side ((Nf) X p1)+ (Nf) x p1)) and complete data sets of right
hand side ((ngl) X p1)+(n§2) xp1)), respectively. We note from Figure 1 that the upper percentiles
of T2 may be approximately between TI\Q/ILE,N@ (or T%NB.N,a) and TBQ/ILE%@ (or T%NB.n’a). Then,
we propose t%S,MLE(a) and t%S,UNB(a) as approximate upper percentiles of T%S using the linear
interpolations for the coordinates ((ngl) + n§2))p1,T1\2/ILE,n7a) and ((Nf) + Nf))pl,TfALE.N@)
and for the coordinates ((ngl) +n§2))p1, T%NB%Q) and ((Nil) + Nf))pl, TIQJNB,N@), respectively.
This approach is essentially based on the ones given in Yagi and Seo (2014) and Seko, Kawasaki
and Seo (2011). In addition, using the idea in Seko, Kawasaki and Seo (2011), we can propose
another approximations, which have a slightly different coefficient, are given by

t3vLe() :TI\Q/ILEn,a

1 2 1 2
L @ e =) + 0 4 =) | g
Npl MLEn,« MLE-N,a) »

P 2
tsuns (@) =TNB

L 0 ) (1= po) + (g 4 01— pa) | o 72
- - Npy ( UNBn,a — UNB~N,0¢) :

Further, as another approach by adjusting the degrees of freedom of F' distribution, we can

propose two approximate upper percentiles of - %S given by

*
2 n-p1
traLe(Q) = m —py— 1 Puntopislas
2 (n* —2)p;
tpuns(a) = n*—pp—1 p1,n*—p1—La
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where

n* =

2
Z {nﬁe)pl + ng)m + nz(f)ps} .
=1

Figure 2 shows that n* = (nil) + ng)) is the solution to the equation

1
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Figure 2: Approximation by adjusting the degrees of freedom of F' distribution

4. Simultaneous confidence intervals for pairwise comparisons among mean vectors

We consider the simultaneous confidence intervals for all pairwise differences of mean vectors
when each of the data set has three-step monotone missing observations.
Let :L'Z(?, . .,m@m be distributed as Npi(,uy),zi) fori =1,2,3and ¢ =1,2,...,m. Then,
l?’L,L‘

for any nonnull vector ¢ = (c1,...,¢p)’, the simultaneous confidence intervals for all the linear
combination ¢ (p(® — p®) of u@ — p® 1 <a < b<m are given by

(@ — pu® e @ —p®) + tmax.p(a)(c'f[p”c)% , 1<a<b<m, Yce R — {0},
where the values of t2, _(«) is the upper percentiles of T2, . statistic

max-p 1ax-p

5@ _ Oy TP -1 (5@ _ 5®
1§%§J“ p) (TP (' — pt).

T2

max-p

We note that TP is an estimator of ' = Cov(ﬁ(a) — ﬁ(b)) and is calculated using the pooled

estimator S[P!I for m-sample problem in Theorem 1.
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However, it is not easy to get the upper percentiles of T2 statistic. Therefore, we give

ax-p

Bonferroni’s approximation which is one of the solution to this problem. Since the distributions

of all Tazb are identical for ngg) =mn; 1=1,2,3, £ =1,2,...,m. Under the assumption that

()

the number of observations n,” is equal for m populations, the upper percentile of T%S with

Bonferroni’s approximation can be the solution to the equation
Pr{T3, > thon(a*)} = o,

where

2xy

2 — (gl _ Oy (=1 g@ _ 50y ox —
Tab (H H ) (F ) (H K )a «Q m(m — 1)

2

Using the approximations in Section 3 to 5,

(a*), we can obtain the approximate simultaneous

confidence intervals for all pairwise difference of mean vectors.

5. Simulation studies

To investigate the accuracy of some approximations, we compute the upper percentiles of

the T%S statistic and T2 statistic using the Monte Carlo simulation. For each parameter,

ax-p
the simulation was carried out for 1,000,000 trials based on three-step monotone missing data
sets.

Simulation results related to the upper percentiles of T%S and their approximations are

summarized in Tables 1 ~ 3. Computations are made for the following three cases:

Case I : (p1,p2,p3) = (12,8,4), ngl) = n§2) = 13,15, 20, 25,
(8 0y = (), nl?) = (5,5), (10,10), o = 0.05,0.01,
Case T : (p1,p2,ps) = (12,8,4), niY = n'? = 30,50,100,200, 300,
(8, n) = (), nl?) = (10,10), (20, 20), o = 0.05,0.01,
Case I : (p1,pa,ps) = (12,8,4), (n{", n{?) = (13,37), (15,35), (20, 30), (25, 25),

8 n) = (P, nl?) = (5,5), (10,10), o = 0.05,0.01,



Tables 1 ~ 3 represent the results of Cases I ~ III, respectively. Tables 1 ~ 3 list the

simulated upper percentiles of T2 statistic (t2,,, («)), the approximate upper percentiles of T

simu
(s mrr (@) Brsuns (@) trame (), trons (@), tane(a), tuns(@)), and the upper percentiles
of x? distribution with p degrees of freedom (X;Q;, o) It may be noted from Tables 1 and 2 that the
simulated values are not close to the upper percentiles of x? distribution even when the sample

(0)

size n; ' is moderately large. However, it is seen that the proposed approximations are good
even for cases where ngg) is not large. In particular, it is noted that the values of t%S‘MLE(a)
is considerably good for all cases. That is, the simulated coverage probabilities for t%(s,MLE ()
are considerably close to the nominal level 1 — . Further, Table 3 gives the simulated result
and its approximations for the unbalanced cases where ngl) #+ n§2) such that ngl) + n§2) =50. It
may be noted that the proposed approximations are good and t%S,MLE(a) is also considerably

close to the simulated value t% (). Therefore, it can be concluded that the approximation

simu
t3g g (@) is very good even for small samples and unbalanced cases.

Next, in order to investigate the accuracy of the approximation to the upper percentile of
T I%ax,p statistic and to compare the some approximate values with the simulated value, the

Monte Carlo simulation was made for two cases that m = 3,6. For parameters, we set them as

follows:

Case IV (m =3): (p1,p2,p3) = (12,8,4), o = 0.05,0.01,
(i) n' =13,15,20,25, (n{?,n{?) = (5,5), (10, 10),
(ii) n” = 30,50,100,200, (nY”,n{") = (10,10), (20,20),

Case V (m

3) : (p1,p2,p3) = (20,12,6),
'Y = 30,50,100,200, (n,n{”) = (10,10), (20,20), o = 0.05,0.01,
Case VI (m =6): (p1,p2,p3) = (20,12,6),
n'? = 30,60,100, (nY,n{") = (10,10), o = 0.05,0.01,
Case VII (m = 6) : (p1,p2,p3) = (30,20,10),

n\? = 40,60,100, (nY,n{") = (10,10), o = 0.05,0.01,



Case VII (m - 6) : (p17p27p3) - (507 307 15)7

n'? = 60,100, (n{?, n{") = (10,10), a = 0.05,0.01.

Tables 4-a, 4-b, 5 ~ 8 list the simulated upper 100c percentiles of T2, statistic (£2,, (@),

ax-p

2

the simulated upper 100a* percentiles of be statistic (150 simu

(a*)), that is the Bonferroni’s ap-
proximation by Monte Carlo simulation, the approximate upper 100a* percentiles of Tgb statistic
(g e (@), g unp (@), thyLe(e®) and t% ;g (a*)) and the upper 100a* percentiles of x?

distribution with p degrees of freedom (X%,a*)' It may be noted from Tables 4-a, 4-b and 5 that

2

the simulated values t3 .  («*) are larger than the simulated values ¢, .

(a). Because it

holds theoretically that the Bonferroni’s approximation is always an overestimate for T2, type

2

statistic. It may be seen from Tables that the simulated value t; .

() is closer to the value
of 3.q ynp(@*) than that of t3¢\;p(a*) for all cases. Tables 6 ~ 8 give the simulated results
and their approximations for the case where the dimensions are large. In these cases, it may

be noted that the approximations are too conservative. The simulation studies show that the

2

max-simu

t3g.unp(@®) is close to ¢ (o) and a good approximation in most cases.
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Table 1: Simulated and approximate values and coverage probabilities for Case I

Sample size

Upper percentile
(Coverage probability)

nt? 1y 17 20 (@) Brsarn(@) Bsunp(@) Bame@ one@) Bare(@ Bowm@) e
a = 0.05
13 5 5 | 50.71 48.47 45.32 41.39 39.09 40.55 38.33  21.03
(0.94)  (0.93)  (0.90)  (0.88)  (0.90)  (0.88) (0.53)
15 5 5 | 43.28 41.62 39.29 3791 36.01 36.35 34.63  21.03
(0.94)  (093)  (0.92)  (0.90)  (0.91)  (0.89) (0.60)
20 5 5 | 34.72 34.00 32.55 32.83 31.52 31.40 30.25  21.03
(0.95)  (0.93)  (0.94)  (0.92)  (0.92)  (0.91) (0.71)
25 5 5 | 30.93 30.61 29.55 30.10 29.09 29.02 28.14  21.03
(0.95)  (0.94)  (0.94)  (0.93)  (0.93)  (0.92) (0.77)
13 10 10| 46.24 45.74 42.90 34.45 32.95 39.14 37.07  21.03
(0.95)  (0.93)  (0.87)  (0.85)  (0.91)  (0.90) (0.59)
15 10 10| 40.21 39.40 37.32 32.83 31.52 34.68 33.14  21.03
(0.95)  (0.93)  (0.89)  (0.88)  (0.91)  (0.90) (0.65)
20 10 10| 3291 32.56 31.28 30.10 29.09 29.89 2891  21.03
(0.95)  (0.94)  (0.93)  (0.91)  (0.92)  (0.91) (0.74)
25 10 10| 29.66 29.60 28.65 28.39 27.58 27.81 27.06  21.03
(0.95)  (0.94)  (0.94)  (0.93)  (0.93)  (0.92) (0.80)
a=0.01
13 5 5 | 76.54 70.75 66.09 57.74 54.53 57.02 53.85  26.22
(0.99)  (0.98)  (0.97)  (0.96)  (0.97)  (0.96) (0.69)
15 5 5 | 62.29 58.54 55.22 52.01 49.41 49.76 47.37  26.22
(0.99)  (0.98)  (0.98)  (0.97)  (0.97)  (0.97) (0.75)
20 5 5 | 47.29 45.83 43.87 43.90 42.15 41.71 40.18  26.22
(0.99)  (0.98)  (0.98)  (0.98)  (0.98)  (0.98) (0.85)
25 5 5 | 41.09 40.47 39.06 39.65 38.33 38.02 36.86  26.22
(0.99)  (0.99)  (0.99)  (0.98)  (0.98)  (0.98) (0.90)
13 10 10| 69.73 66.50 62.27 46.45 44.43 55.25 52.24  26.22
(0.99)  (0.98) (095  (0.94)  (0.97)  (0.97) (0.74)
15 10 10| 57.73 55.10 52.14 43.90 42.15 47.36 45.21  26.22
(0.99)  (0.98)  (0.97)  (0.96)  (0.97)  (0.97) (0.79)
20 10 10| 44.71 43.64 41.90 39.65 38.33 39.46 38.15  26.22
(0.99)  (0.99)  (0.98)  (0.98)  (0.98)  (0.98) (0.87)
25 10 10| 39.27 38.95 37.70 37.04 35.98 36.21 35.23  26.22
(0.99)  (0.99)  (0.99)  (0.98)  (0.98)  (0.98) (0.91)
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Table 2: Simulated and approximate values and coverage probabilities for Case I

Sample size

Upper percentile
(Coverage probability)

nt? 18 nf 12000 Brsnrn(@) Bsunp(@ ame@ Bone(@) Bare(@ Bo@) G
a=0.05
30 10 10| 27.85 27.91 27.15 27.22 26.54 26.60 25.99  21.03
095  (0.94)  (0.94)  (0.94)  (0.94)  (0.93) (0.83)
50 10 10| 24.86 24.96 24.53 24.81 24.40 24.42 24.05  21.03
(0.95)  (0.95  (0.95)  (0.94)  (0.94)  (0.94) (0.89)
100 10 10| 22.90 22.96 22.75 22.95 22.74 22.81 22.61  21.03
095  (0.95)  (0.95)  (0.95)  (0.95)  (0.95) (0.92)
200 10 10| 21.99 22.00 21.89 21.99 21.89 21.95 21.85  21.03
0.95)  (0.95) (095 (095  (0.95)  (0.95) (0.94)
300 10 10| 21.64 21.67 21.60 21.67 21.60 21.65 21.58  21.03
(0.95)  (0.95)  (0.95)  (0.95)  (0.95)  (0.95) (0.94)
30 20 20| 26.89 27.15 26.47 25.73 25.21 25.88 25.35  21.03
095  (0.95)  (0.94)  (0.93)  (0.94)  (0.93) (0.85)
50 20 20| 24.14 24.57 24.18 24.20 23.85 23.93 23.61 21.03
(0.95)  (0.95)  (0.95)  (0.95)  (0.95)  (0.94) (0.90)
100 20 20| 22.57 22.83 22.64 22.77 22.58 22.60 22.43  21.03
095  (0.95)  (0.95)  (0.95)  (0.95)  (0.95) (0.93)
200 20 20| 21.87 21.96 21.85 21.95 21.85 21.88 21.79  21.03
(0.95) (095  (0.95)  (0.95)  (0.95)  (0.95) (0.94)
300 20 20| 21.60 21.65 21.59 21.65 21.58 21.62 21.55  21.03
095  (0.95)  (0.95)  (0.95)  (0.95)  (0.95) (0.94)
a=0.01
30 10 10| 36.45 36.35 35.36 35.28 34.39 34.37 33.57  26.22
0.99)  (0.99)  (0.99)  (0.99)  (0.99)  (0.98) (0.93)
50 10 10| 31.76 31.92 31.37 31.70 31.17 31.11 30.64  26.22
(0.99)  (0.99)  (0.99)  (0.99)  (0.99)  (0.99) (0.96)
100 10 10| 28.94 29.00 28.73 28.97 28.71 28.77 28.52  26.22
0.99)  (0.99)  (0.99)  (0.99)  (0.99)  (0.99) (0.98)
200 10 10| 27.61 27.60 27.47 27.60 27.47 27.54 27.41  26.22
(0.99)  (0.99)  (0.99)  (0.99)  (0.99)  (0.99) (0.98)
300 10 10| 27.13 27.14 27.05 27.14 27.05 27.11 27.03  26.22
0.99)  (0.99)  (0.99)  (0.99)  (0.99)  (0.99) (0.99)
30 20 20| 35.00 35.22 34.34 33.05 32.39 33.32 32.63  26.22
(0.99)  (0.99)  (0.99)  (0.98)  (0.99)  (0.98) (0.94)
50 20 20| 30.90 31.35 30.86 30.79 30.35 30.41 30.01  26.22
0.99)  (0.99)  (0.99)  (0.99)  (0.99)  (0.99) (0.97)
100 20 20| 28.47 28.81 28.56 28.72 28.48 28.47 28.26  26.22
(0.99)  (0.99)  (0.99)  (0.99)  (0.99)  (0.99) (0.98)
200 20 20| 27.44 27.54 27.42 27.53 27.41 27.44 27.32 26.22
(0.99)  (0.99)  (0.99)  (0.99)  (0.99)  (0.99) (0.99)
300 20 20| 27.05 27.11 27.03 27.11 27.02 27.06 26.98  26.22
0.99)  (0.99)  (0.99)  (0.99)  (0.99)  (0.99) (0.99)
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Table 3: Simulated and approximate values and coverage probabilities for Case III

Sample size

Upper percentile
(Coverage probability)

nf nf 0l 0l ol P2 0(0) B s (@) Rs.uns (@) s (@) hons (@) Baes(@) Bons(@) X
a=0.05
13 5 5 37 5 5 30.14 30.61 29.55 30.10 29.09 29.02 28.14 21.03
(0.95)  (0.94)  (0.95) (0.94) (0.94) (0.93) (0.79)
15 5 5 35 5 5| 3047 30.61 29.55 30.10 29.09 29.02 28.14  21.03
(0.95)  (0.94)  (0.95) (0.94) (0.94) (0.93) (0.78)
20 5 5 30 5 5| 30.88 30.61 29.55 30.10 29.09 29.02 28.14  21.03
(0.95)  (0.94)  (0.94) (0.93) (0.93) (0.92) (0.77)
25 5 5 25 5 5| 30.93 30.61 29.55 30.10 29.09 29.02 28.14  21.03
(0.95)  (0.94)  (0.94) (0.93) (0.93) (0.92) (0.77)
13 10 10 37 10 10| 29.00 29.60 28.65 28.39 27.58 27.81 27.06 21.03
(0.95)  (0.95)  (0.94) (0.94) (0.94) (0.93) (0.81)
15 10 10 35 10 10| 29.31 29.60 28.65 28.39 27.58 27.81 27.06 21.03
(0.95)  (0.94)  (0.94) (0.93) (0.94) (0.93) (0.81)
20 10 10 30 10 10| 29.57 29.60 28.65 28.39 27.58 27.81 27.06 21.03
(0.95)  (0.94)  (0.94) (0.93) (0.93)  (0.92) (0.80)
25 10 10 25 10 10| 29.66 29.60 28.65 28.39 27.58 27.81 27.06 21.03
(0.95)  (0.94)  (0.94)  (0.93) (0.93) (0.92) (0.80)
a=0.01
13 5 5 37 5 51 40.06 40.47 39.06 39.65 38.33 38.02 36.86  26.22
(0.99)  (0.99)  (0.99) (0.99) (0.99) (0.98) (0.91)
15 5 5 35 5 5| 4048 40.47 39.06 39.65 38.33 38.02 36.86  26.22
(0.99)  (0.99)  (0.99)  (0.99)  (0.99)  (0.98) (0.90)
20 5 5 30 5 5| 40.94 40.47 39.06 39.65 38.33 38.02 36.86  26.22
(0.99)  (0.99)  (0.99) (0.98) (0.98)  (0.98) (0.90)
25 5 5 25 5 5| 41.09 40.47 39.06 39.65 38.33 38.02 36.86  26.22
(0.99)  (0.99)  (0.99) (0.98)  (0.98)  (0.98) (0.90)
13 10 10 37 10 10| 38.39 38.95 37.70 37.04 35.98 36.21 35.23 26.22
(0.99)  (0.99)  (0.99) (0.98) (0.99) (0.98) (0.92)
15 10 10 35 10 10| 38.80 38.95 37.70 37.04 35.98 36.21 35.23  26.22
(0.99)  (0.99)  (0.99) (0.98)  (0.98)  (0.98) (0.92)
20 10 10 30 10 10| 39.17 38.95 37.70 37.04 35.98 36.21 35.23  26.22
(0.99)  (0.99)  (0.99)  (0.98) (0.98) (0.98) (0.91)
25 10 10 25 10 10| 39.27 38.95 37.70 37.04 35.98 36.21 35.23  26.22
(0.99)  (0.99)  (0.99) (0.98) (0.98) (0.98) (0.91)
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Table 4-a: Simulated and approximate values and coverage probabilities for Case IV (a = 0.05)

Sample size Upper percentile
(Coverage probability)

© _® n:(f) ‘ 2 2

N mascsim (%) Bonsinn (@) Hsmie(@) Rsuns(@) thue(@) tHuns(@) Xpar
a=0.05
13 5 5 40.35 41.29 43.11 40.38 52.40 49.49 24.63
(0.96) (0.95) (0.99) (0.98)  (0.66)
15 5 5 37.87 38.71 39.53 37.35 47.45 45.07  24.63
(0.96) (0.95) (0.99) (0.98)  (0.69)
20 5 5 33.95 34.65 34.81 33.34 40.37 38.76 24.63
(0.96) (0.94) (0.98) (0.98)  (0.77)
25 5 5 31.73 32.26 32.43 31.31 36.63 35.41  24.63
(0.96) (0.95) (0.98) (0.98)  (0.81)
13 10 10 36.98 37.83 41.11 38.68 42.61 40.75 24.63
(0.97) (0.96) (0.98) (0.97)  (0.73)
15 10 10 35.22 35.96 37.88 35.94 40.37 38.76  24.63
(0.97) (0.96) (0.98) (0.97)  (0.75)
20 10 10 32.28 32.86 33.70 32.39 36.63 35.41 24.63
(0.96) (0.95) (0.98) (0.97)  (0.81)
25 10 10 30.52 31.05 31.63 30.62 34.32 33.34 24.63
(0.96) (0.95) (0.98) (0.97)  (0.84)
30 10 10 29.42 29.85 30.37 29.55 32.75 31.93 24.63
(0.96) (0.95) (0.98) (0.97)  (0.86)
50 10 10 27.39 27.77 28.02 27.54 29.56 29.07 24.63
(0.96) (0.95) (0.97) (0.97)  (0.90)
100 10 10 25.92 26.21 26.34 26.10 27.12 26.87 24.63
(0.96) (0.95) (0.96) (0.96)  (0.93)
200 10 10 25.14 25.45 25.49 25.37 25.88 25.76 24.63
(0.95) (0.95) (0.96) (0.96)  (0.94)
30 20 20 28.51 28.92 29.73 29.00 30.77 30.15  24.63
(0.96) (0.96) (0.97) (0.97)  (0.88)
50 20 20 26.71 27.05 27.69 27.26 28.75 28.34 24.63
(0.96) (0.96) (0.97) (0.97)  (0.92)
100 20 20 25.60 25.90 26.22 26.00 26.89 26.67  24.63
(0.96) (0.96) (0.97) (0.96)  (0.93)
200 20 20 25.07 25.33 25.46 25.34 25.82 25.70 24.63
(0.96) (0.95) (0.96) (0.96)  (0.94)

Note: a* = 2a/[m(m — 1)].
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Table 4-b: Simulated and approximate values and coverage probabilities for Case IV (o = 0.01)

Sample size

Upper percentile
(Coverage probability)

O]

o1 ng) ”g)‘ mascsim (©) Bonsinn (@) Hsmre(@) Rsuns(@) thve(@) thuns(@) Xpar
a=0.01
13 5 5 53.57 54.11 55.72 52.17 69.83 65.95 29.49
(0.99) (0.99) (1.00) (1.00)  (0.81)
15 5 5 49.17 49.52 50.37 47.58 62.22 59.11  29.49
(0.99) (0.99) (1.00) (1.00)  (0.84)
20 5 5 43.12 43.46 43.53 41.68 51.64 49.57 29.49
(0.99) (0.99) (1.00) (1.00)  (0.89)
25 5 5 39.75 40.17 40.15 38.76 46.19 44.65 29.49
(0.99) (0.99) (1.00) (1.00)  (0.92)
13 10 10 48.81 49.35 52.92 49.75 54.94 52.55 29.49
(0.99) (0.99) (1.00) (0.99)  (0.86)
15 10 10 45.73 46.07 48.06 45.58 51.64 49.57  29.49
(0.99) (0.99) (1.00) (0.99)  (0.88)
20 10 10 40.76 41.16 41.99 40.35 46.19 44.65 29.49
(0.99) (0.99) (1.00) (1.00)  (0.92)
25 10 10 38.16 38.40 39.05 37.81 42.88 41.66 29.49
(0.99) (0.99) (1.00) (1.00)  (0.94)
30 10 10 36.55 36.83 37.29 36.28 40.66 39.65 29.49
(0.99) (0.99) (1.00) (1.00)  (0.95)
50 10 10 33.58 33.80 34.06 33.48 36.20 35.60 29.49
(0.99) (0.99) (1.00) (0.99)  (0.97)
100 10 10 31.53 31.62 31.78 31.49 32.84 32.55  29.49
(0.99) (0.99) (0.99) (0.99)  (0.98)
200 10 10 30.51 30.61 30.64 30.49 31.17 31.02 29.49
(0.99) (0.99) (0.99) (0.99)  (0.99)
30 20 20 35.26 35.42 36.43 35.53 37.88 37.12  29.49
(0.99) (0.99) (0.99) (0.99)  (0.96)
50 20 20 32.72 32.87 33.61 33.09 35.08 34.58 29.49
(0.99) (0.99) (0.99) (0.99)  (0.98)
100 20 20 31.09 31.18 31.62 31.35 32.54 32.27 29.49
(0.99) (0.99) (0.99) (0.99)  (0.98)
200 20 20 30.37 30.54 30.59 30.45 31.09 30.94 29.49
(0.99) (0.99) (0.99) (0.99)  (0.99)

Note: a* = 2a/[m(m — 1)].
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Table 5: Simulated and approximate values and coverage probabilities for Case V

Sample size Upper percentile
(Coverage probability)

@ 0 _(O,2 2 2 2 2 2 2
n;- Ny 7N ‘tmax-simu(a) tBonsimu (@) WsmLe(®) tysung(@®) trape(@®) thyns(a®) Xp,a*

a = 0.05
30 10 10 48.62 49.32 49.62 48.23 56.71 55.25 35.70
(0.96) (0.95) (0.99) (0.98) (0.71)
50 10 10 42.80 43.29 43.43 42.66 47.47 46.67 35.70
(0.96) (0.95) (0.98) (0.98) (0.83)
100 10 10 39.00 39.39 39.43 39.07 41.30 40.92 35.70
(0.95) (0.95) (0.97) (0.97) (0.90)
200 10 10 37.21 37.50 37.55 37.37 38.43 38.25 35.70
(0.95) (0.95) (0.96) (0.96) (0.93)
30 20 20 46.65 47.19 48.27 47.02 51.23 50.16 35.70
(0.96) (0.95) (0.98) (0.97) (0.75)
50 20 20 41.62 42.06 42.75 42.05 45.52 44.86 35.70
(0.96) (0.95) (0.98) (0.97) (0.85)
100 20 20 38.49 38.89 39.20 38.86 40.82 40.47 35.70
(0.96) (0.95) (0.97) (0.97) (0.91)
200 20 20 37.01 37.33 37.48 37.31 38.31 38.14 35.70
(0.96) (0.95) (0.96) (0.96) (0.93)
a = 0.01
30 10 10 58.85 59.25 59.46 57.79 69.02 67.25 41.37
(0.99) (0.99) (1.00) (1.00) (0.86)
50 10 10 50.86 51.07 51.29 50.39 56.63 55.67 41.37
(0.99) (0.99) (1.00) (1.00) (0.93)
100 10 10 45.87 46.01 46.13 45.70 48.55 48.11 41.37
(0.99) (0.99) (1.00) (0.99) (0.97)
200 10 10 43.62 43.69 43.72 43.51 44.86 44.64 41.37
(0.99) (0.99) (0.99) (0.99) (0.98)
30 20 20 56.41 56.51 57.70 56.20 61.63 60.35 41.37
(0.99) (0.99) (1.00) (0.99) (0.89)
50 20 20 49.42 49.69 50.41 49.59 54.06 53.27 41.37
(0.99) (0.99) (1.00) (1.00) (0.95)
100 20 20 45.32 45.54 45.83 45.43 47.93 47.52 41.37
(0.99) (0.99) (0.99) (0.99) (0.97)
200 20 20 43.38 43.48 43.63 43.43 44.70 44.50 41.37
(0.99) (0.99) (0.99) (0.99) (0.98)

Note: a* = 2a/[m(m — 1)].
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Table 6: Simulated and approximate values and coverage probabilities for Case VI

Sample size Upper percentile
(Coverage probability)

@ 0 _(O,2 2 2 2 2 2 2
n;- Ny 7N ‘tmax-simu(a) tBonsimu (@) WsmLe(®) tysung(@®) trape(@®) thyns(a®) Xp,a*

a = 0.05
30 10 10 46.96 47.53 49.65 48.28 69.02 67.25 41.37
(0.97) (0.96) (1.00) (1.00) (0.85)
60 10 10 44.44 44.99 45.47 44.79 53.83 53.05 41.37
(0.96) (0.95) (1.00) (0.99) (0.90)
100 10 10 43.15 43.73 43.85 43.44 48.55 48.11 41.37
(0.96) (0.95) (0.99) (0.99) (0.92)

a=0.01
30 10 10 54.15 54.32 56.69 55.12 81.37 79.29 46.60
(0.99) (0.99) (1.00) (1.00) (0.95)
60 10 10 50.79 50.90 51.56 50.80 61.99 61.10 46.60
(0.99) (0.99) (1.00) (1.00) (0.97)
100 10 10 49.21 49.35 49.59 49.13 55.41 54.90 46.60
(0.99) (0.99) (1.00) (1.00) (0.98)

Note: a* = 2a/[m(m — 1)].

Table 7: Simulated and approximate values and coverage probabilities for Case VII

Sample size Upper percentile
(Coverage probability)

00,0 2

ny Ny traxcsimu () tBonsimu (@) Bsare(@) Bsuns(@*) thame(@®) thuns(@) Xjar
a=0.05
40 10 10 63.01 63.78 66.40 65.01 96.53 94.60 55.24
(0.97) (0.97) (1.00) (1.00)  (0.81)
60 10 10 61.04 61.74 62.60 61.68 80.04 78.90 55.24
(0.96) (0.96) (1.00) (1.00)  (0.85)
100 10 10 58.78 59.38 59.65 59.11 69.00 68.37 55.24
(0.96) (0.95) (1.00) (0.99)  (0.90)
a=0.01
40 10 10 71.13 71.42 74.37 72.81 111.42 109.19 61.15
(0.99) (0.99) (1.00) (1.00)  (0.93)
60 10 10 68.55 68.77 69.84 68.82 91.00 89.70 61.15
(0.99) (0.99) (1.00) (1.00)  (0.95)
100 10 10 65.79 66.19 66.35 65.74 77.57 76.87 61.15
(0.99) (0.99) (1.00) (1.00)  (0.97)

Note: o* = 2a/[m(m — 1)].
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Table 8: Simulated and approximate values and coverage probabilities for Case VIII

Sample size Upper percentile

(Coverage probability)

nge) ng) ng)‘ﬁ

imasimu (@) t2Bon~simu(a*) t%(SMLE(O‘*) t%(SUNB(O‘*) t%.MLE(Of*) t%.UNB(Oé*) X]%,a*

a = 0.05
60 10 10 95.34 96.22 98.68 97.22 153.99 151.76  81.36
(0.97) (0.96) (1.00) (1.00)  (0.69)
100 10 10 90.19 91.08 91.41 90.56 116.84 115.76  81.36
(0.96) (0.95) (1.00) (1.00)  (0.81)

a=0.01
60 10 10 105.22 105.50 108.25 106.64 173.75 171.24  88.37
(0.99) (0.99) (1.00) (1.00)  (0.86)
100 10 10 99.00 99.62 99.86 98.94 129.50 128.31  88.37
(0.99) (0.99) (1.00) (1.00)  (0.93)

Note: a* = 2a/[m(m — 1)].

Acknowledgements

The authors wish to thank Ms. Miki Hosoya for her help with the Monte Carlo simulation

in numerical examinations. The second author’s research was in part supported by Grant-Aid
for Scientific Research (C) (26330050).

References

1]

Anderson, T. W. (1957). Maximum likelihood estimates for a multivariate normal distribu-
tion when some observations are missing. Journal of the American Statistical Association,

52, 200-203.

Anderson, T. W. and Olkin, I. (1985). Maximum-likelihood estimation of the parameters
of a multivariate normal distribution. Linear Algebra and Its Applications, 70, 147-171.

Chang, W. -Y. and Richards, D. St. P. (2009). Finite-sample inference with monotone
incomplete multivariate normal data, 1. Journal of Multivariate Analysis, 100, 1883—-1899.

Jinadasa, K. G. and Tracy, D. S. (1992). Maximum likelihood estimation for multivariate
normal distribution with monotone sample. Communication in Statistics — Theory and
Methods, 21, 41-50.

Kanda, T. and Fujikoshi, Y. (1998). Some basic properties of the MLE’s for a multivariate
normal distribution with monotone missing data. American Journal of Mathematical and

Management Sciences, 18, 161-190.

18



[6]

[7]

[10]
[11]

[13]

Krishnamoorthy, K. and Pannala, M. K. (1999). Confidence estimation of a normal mean

vector with incomplete data. Canadian Journal of Statistics, 27, 395—-407.

Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd ed.
Wiley, New York.

Rao, C. R. (1956). Analysis of dispersion with missing observations. Journal of the Royal
Statistical Society: Series B, 18, 259-264.

Seko, N., Yamazaki, A. and Seo, T. (2012). Tests for mean vector with two-step monotone

missing data. SUT Journal of Mathematics, 48, 13-36.
Srivastava, M. S. (2002). Methods of Multivariate Statistics. Wiley, New York.

Srivastava, M. S. and Carter, E. M. (1983). An Introduction to Applied Multivariate
Statistics. North-Holland, New York.

Yagi, A. and Seo, T. (2014). A test for mean vector and simultaneous confidence intervals

with three-step monotone missing data. to appear in American Journal of Mathematical

and Management Sciences, 33.

Yu, J., Krishnamoorthy, K. and Pannala, K. M. (2006). Two-sample inference for normal
mean vectors based on monotone missing data. Journal of Multivariate Analysis, 97,

2162-2176.

19



