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Abstract

The one of reasons that trees grow over the year but may gféevetitly could be relative spatial
conditions where trees have grown. From this, we introduce a statistical model called the varying
codficient model used in Satoh and Yanagihara (2010) and Tehdh (2010) to estimatefiects
on the tree growth from the age and relative space perspectives. This model is an appealing way to
understand the tree growth, which is because 1) the spesecan be added in the growth curve
model and visually checked by drawing contours and cubic diagrams, and 2) both the space and the
age dfects are with their confidence interval values, and also a hypothesis test can be conducted,
which attains the confidence of the estimation result. The model is applied to a @tgptdmeria
japonicain Yoshimotoet al. (2012), the longitude and latitude are used as the space information,
and the significant spatialfect of the DBH on the stem volume regarded as the tree growth was
seen from the estimation result.
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1. Introduction

It is known that trees grow over the year but may groffedently, even though they have planted
at the same time, which is because they haedint growth capacity, relative spatial conditions,
and other environmental factors. From this knowledge, by introducing a statistical method, we ex-
plain the state of the tree growth from two perspectives; the one is the age of the tree and the other
is relative spatial conditions.

The growth curve model is useful for finding the agteet on the tree growth, and it could be
very suitable for our case if the spatial conditions could be added in the model andftbeis are
examined from the estimation result. Satoh and Yanagihara (2010) suggested a new approach to a
growth curve model by using a varying dbeient model, which was originally proposed by Hastie
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and Tibshirani (1993), and applied the model to the dental fissures growth data infPartth&oy
(1964) which consists of measurements of the distanmeg from the center of the pituitary to the
pterygomaxillary fissure for 11 girls and 16 boys at their age 8, 10, 12, and 14. @ntl§2010)
applied the varying cdBcient model to a spatial data; Columbus Ohio crime data in the R for statis-
tical computing and graphics, which contains spatial information (easting and northing), the mean
housing value, and the household income, and they showedtdet of area on the crime rate;
residential burglaries and auto thefts per 1,000 households.

The varying co#ficient model used in Satoh and Yanagihara (2010) and Tenalaare basically
the same model, but the number of variables used for estimating varyifiictdgs are dferent,

Satoh and Yanagihara (2010) used one variable; age, on the other hand eTahd@010) used

two; easting and northing. The number of used variables comes fbeitedit graphical results of
varying codficients, a curve in the former case and a surface in the latter case, which theoretical
background is discussed in the next section.

Satoh and Yanagihara (2010) and Tordal. (2010) did not use the age and special conditions
variables together in the model, however, it is theoretically possible. We use both the age and spatial
conditions variable together in the varying @eent model for finding theseftects on the tree
growth.

Besides enabling adding spatial information in the growth curve model, the most attractive
achievement from Satoh and Yanagihara (2010) and Tendd (2010) is enabling calculating
confidence intervals of varying cfiients. The estimator of the varying dbeient curve or sur-
face is usually obtained by kernel smoothing methods which is essentially the linear regression
around fixed time or location that makesfaiult to construct a confidence interval as a function of
time or location. Hence, the point wise confidence intervals had been conducted. Satoh and Yanag-
ihara (2010) suggested to use a semiparametric estimation for varyifficiere model to obtain
the confidence interval of varying ciheients.

We apply a data o€ryptomeria japonican Yoshimotoet al. (2012) for introducing the varying
codficient model to see the tree growtfieets of age and spatial conditions.

This paper is organized as follows: In section 2, the varyindtement model proposed by Satoh
and Yanagihara (2010) and Tonetgal. (2010) is explained by adapting in our case. The data and
estimation result are presented in section 3. Section 4 contains a conclusion.

2. Method

2.1. Space-Time Varying Codficient Model

The y(u,v,t) is the response variable observed at the spaag &nd the timet. The expected
value ofy; E[y(u, v,1)], is assumed to be,

k
Ely(uo,t)] = a’B(u0,t) = >~ aiBj(u,v,1), 1)
=1

wherea = (ay,...,a) is a vector of explanatory variables that are independent from the space
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(u,v) and the time, andB(u, v,t) = (81(u,v,1),...,Bk(U,v,1))’ is a vector of the surfaces of varying
codficients which values change dependingionandt. Here, the notation™ denotes a transpose
of a vector or matrix.

Let z(u,v,t) = (x(u,v,1),...,%q(u,v, 1)) denote a vector off basis functions with respect to
(u,v,t), and we assume the varying ¢beient has a linear structure;

Bu,v,t) = Ox(u,v,t), (2)

where® = (04, ...,6() is ak x g matrix of unknown parameters, afigl = (6;1,...,0)" is ag-
dimensional vector of unknown parameters. If we fit a polynomial surface in Ripley (1981); section
4 and in Venables and Ripley (2002); section 15, we h&liev) = (1, u,v,t)’ as a linear equation.
Other fittings are nonparametric methods, for example, takisgline or Gaussian basis functions,
e.g., Satotet al. (2003), Rupperet al. (2003); section 3, etc. Satoh and Yanagihara (2010) and
Satohet al. (2009) suggested a semiparametric estimation for the varyinfjicieat model and
assumed the linear structure in the varyingfioeent, so that they can make a confidence interval
and hypothesis test about the varyingftieéent. Historically, in the growth curve model, the single
element of® is focused, and a confidence interval and a hypothesis test @bas been studied
(see more details in Satoh and Yanagihara (2010)), however our interest is nffettieoka co-
variate on the cd@cient of a polynomial functioi®, but the éfects of covariates on the amount of
growth 3(u, v, t).

By substituting (2) into (1), we obtain the following,

E[y(u,v,t)] = a’Ox(u,v,1),

which is an interaction model between explanatory variablas amd basis functions ir(u, v, t)

such as,
q

k
Ely(u0.0] = D D Oiclax(u. vt} 3)
=1

=1
Thekq covariatesyjx,(u, v, t) in (3) are known, as far as the spaoguf and the time are given. Let
0 = (07,...,0,) be agk-dimensional vector of unknown parameters afd, v,t) = a ® z(u,v,t)
be agk-dimensional vector of explanatory variables, where the notatidménotes the Kronecker
product (see e.g., Harville (1997), chapter 16), we have,

E[y(u,v,1)] = 2(u,v,1)'0

Theith observationj = 1,...,n has a response variabje = y(u;,v;,t;) at the spacel, v;) and
the timet; and ak-dimensional vector of explanatory variables = (a1, ...,ak)’. We assume
thaty., ..., y, are mutually independent, ang ~ N(ai®x(u,v,t),0?). Lety = (y1,...,yn),
Z = (z1,...,2n), andz; = a;i ® x(u;,v;, 1), the estimator of is obtained by the least-square
method,

0=(2'2)'2Zy. (4)

The covariance matrix d is,
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Q- Qi
Q=0%(2'2)"= :
Q- O
Thed;, j = 1,...,k, is distributed as
éj ~ Nq(ej,ﬂjj).

The estimator of the varying cfiiient is obtained bﬁ’j(u, v,t) = é}:r,(u, v,1). The estimator of2

is derived by

_ 1 ’ _ ’ =1z
Sz—n_—qu {In-2(2"2)"Z"}y,

wherel, is the identity matrix of size. By usings’, we derive the estimator & is obtained by
ﬁll T ﬁlk
Q=22 = :
le to f\lkk
2.2. Model without Space-Time Interaction

In the space-time varying cficient model, it is common to assume that there is no interaction of
space and time, i.e., we assume that the varyingficentg;(u, v, t) of an explanatory variabla;
(j=1,...,K) can be decomposed as

Bi(u,v,1) = uj +yj1(u,v) +yj2(t),

wherey; is an unknown location parametet.i(u, v) andy;(t) are a surface and a curve of varying
codfticients which value changes depending op) andt, respectively. In particular, we assume
thaty;1(0,0) = 0 andy;»(0) = 0. The space and the time varying fiteents are given as

Bia(uv) = pj +yja(uv),  Bjat) = uj +yj2(t). (5)
Let us decompos@; andx(u, v, t) as
6] = (/J], 51,1’ 6}’2)/, J,‘(U, v, t) = (l, ’UJl(U, l)),, ’LUQ(t)/)/, (6)

wherew; (u, v) andw,(t) areq;- andg,-dimensional vectors of basis functions with respectio)(
andt, respectively. Then, the;(u, v, t) is expressed as

BiU.0.1) = 1 + €] gwa(U.0) + €] ywalt).

Estimators ofu;j, £, and&;, are derived fromf; in (4) because of; = (i;, Ajyl, Aj’z)’, where
i, &1 and§;, are estimators ofij, £j1 and§j», respectively. Letyj1(u,v) = gj’lwl(u, v) and
Yi2(t) = SE’sz(t). Estimators of the space and the time varyingfitcoents are obtained by
Bia(u.v) = fij +7j2(U,0) andBja(t) = fij + F2(t), respectively.

4



M. Yamamura, K. Fukui and H. Yanagihara

Moreover, we decomposféjj in (5) corresponding to the division éfj = (,&Jé]l é])z)’ as

~ ‘f’ii h i1 b ii.2
Qjj = ¥jj1 ¥iun iz |- (7)
Yij2 Yz P22
Then, we define
A i A i Y
ij,l — ( v 1l K ji,1 )’ ﬂjj,2 — [ T 1] K jj.2 . (8)
Yii1 i1l Yii2 Pij22

LetB1 = (1, £],) andfj2 = (@, &],)'. Itis clear that;;; and2j;2 in (8) are estimators of the
covariance matrices aﬁ‘j,l andé j.2, respectively.

2.3. Confidence Interval and Hypothesis Tests

We consider confidence intervals and hypothesis tests ghe(t, v) andg;(t) in (5) which
are the surface and the curve of the varyingfiioents for the explanatory variablg in a =
(a,...,a)’. Letzi(u,v) = (1, wi(u,v)) andzy(t) = (1, wo(t)), wherew:(u,v) and wy(t)
are in (6). Variances gf;1(u,v) andj;(t) are obtained byl;1(u,v) = 21(u,v)’2j;121(u,v) and
2j2(u, v) = ®2(t)' 2 22(t), where2j; 1 and€2j;.» are given by(8). The 16®% confidence intervals
of the varying cofficient surfacgs;1(u, v) and curves;»(t) are obtained by

T1a(u) = [ﬁj,l(u, 9~ 2 )om(@). B ) + A v)%(a)], ©)
Ti2al) = [Bj,z(t) S 200m(@), Bialt) + \/i;,z(ncmz(a)], (10)

wherecq(a) is the upper 100% point of the chi-square distribution with degrees of freedom, i.e.,
Pry2, > cm(@)) = @, andm, = g, + 1 andm, = o + 1. Hereq; andg, are dimensions of vectors
w1 (U, v) andw,(t), respectively.

For hypothesis tests, null hypotheses can specify that varyintjaeat surface and curve have
uniform shapes, i.e., null hypotheses are written as,

Hoj1 : Bja(u,v) = 0 (forany (,v)), Hojz2 : Bj2(t) = O (for anyt). (11)
We have a test statistic fédg 4 (d = 1,2) as
Tia = &g ¥iaa€ia

whereé,-,d is the estimator of;4 given in (6), and¥ ijdd is given by (7). The test statistic asymp-
totically follows chi-square distribution withy degrees of freedom, and the null hypothesis 4

is rejected at the 1086 significant level. See Tonda al. (2010) for more details about theoretical
exposition.



Varying Codficient Model for Tree Growth

3. Analysis

3.1. Data

We use the growth data @ryptomeria japonican Yoshimotoet al. (2012) obtained from a
survey conducted at Hoshino village of Fukuoka Prefecture in Kyushu, Japan. The data consists
of growth measurements from 30 trees. Each sample has growth information about “Age (year)”,
“DBH (cm)”, “Height (m)”, and “Volume ()" of the tree, and spatial information about “Lon-
gitude”, “Latitude” and “Altitude” where the tree had grown. The number of samples are 658,
observed from 30 trees at their 23 age points with missing 25, 5, and 2 trees observation at age 1,
2, and 3, respectively. The growth information, “DBH”, “Height”, and “Volume”, are observed by
conducting a stem analysis in Philip (1994). The “DBH”, which stands for diameter at breast height,
is the measurement of tree diameter atrh.&8bove ground level. The “Volume” is the stem volume.

In our data of ofCryptomeria japonicatheu andv are the “Longitude” and “Latitude”, respec-
tively, thet is “Age”, they is “Volume”, and thea is a three-dimensional vector which components
are 1, “Height”, and “DBH", i.e.,a = (1, “height”,“DBH") ’. Excluding samples with 0 value in
DBH, because these samples were less tham®Bd not observed DBH, we have 588 samples for
estimation.

3.2. Estimation Result

We fit the liner model to estimate the varying @dgent surface or curve, i.e,éj(u, v,t) =
é]m(u, v,1). For applying the model to any complicated varyingfticeent surface or curve shape,
we assume that tmﬁm(u, v,1) is one of either linear, quadratic or cubic expression with their inter-
action each. For the linear, quadratic, and cubic expressionshygv, we have

(u,v) (rn=1)
wi(U,v) =1 (u,v, U, v?, w)’ (ri=2) ,
(u, v, U2, v%, up, U3, V3, U0, w?)’  (r1 =3)

and those by,
(®) (rz=1)
wy(t) =§ (L) (r2=2) ,
ttt3y (rz=3)
wherery (d = 1,2) denotes the degree of a polynomial. The following subsets of explanatory
variables were considered as the candidate subsets.

(1,“Height”,“DBH") " (case 1)
a =< (1,“Height”)’ (case 2) ,
(1,"DBH")’ (case 3)
The best expression form ef i.e.,a®x(u, v, 1), is selected by Bayesian information criterion (BIC)

in Schwarz (1978), which results are shown in Table 1. From the result in Table 1, the cubic expres-
sion for the space and the quadratic expression for the age are selected as the best model such as
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Table 1. Variables selection fog by BIC

Degree of a polynomial BIC
(r1,r2) Casel| Case2 | Case3
1,1) -4094.87| -3321.48| -4060.77
1,2 -4367.03| -3539.00| -4231.29
1,3) -4352.28| -3559.74| -4229.61
2,1) -4116.45| -3366.48| -4081.04
2,2 -4395.87| -3571.30| -4261.03
(2,3) -4381.67| -3591.55| -4262.97
3,1) -4125.56| -3386.51| -4079.40
3,2 -4410.95| -3589.31| -4235.54
(3,3 -4399.19| -3611.78| -4239.51

x(u,v,t) = (1, u,0, U2, v?, Uy, U3, v3, UPv, w?, t, t?) in case 1.
From a result of the least square estimation (4), the estima@eisf

(0 (M &y &
0= BAé =| 2 §§1 §§2 ’
Bé /13 5&,1 5&,2
where
0; = (-21x102-26x107°,-20x 103, -29x 104,
-11x10%33x10%-88x10°,6.7x107,
12x10° -65%x10° 75x1073,-9.3x 1074,
6, =(82x10°11x1073,-25%x103,23%x 107,
-27x10%17%x10°,-89x107,-75x 10°°,
40%x106,25%x10°35%x10%80x107°),
and

0, =(-12x 102 -86x10%423%x107%,9.1x 107,
24%x10% -64x10°,15%x10°6.1x10°,
-53x10%-12x10°6.6x10%19x%107).

Calculation results of surfaces or curves of varyingfioents and their confidence intervals
are shown in figure 1 to 9. The Figure 1 to 6 show estimated varyinfficieat surface ol
ando. Numbers in contours in Figure 1, 3, and 5 provide values;efu,v) = i1 + f’l,lwl(U, v),
Ba(uv) = fio + & wi(u.v), andBaa(u,v) = fiz + €, wa(u,v) at certain level of longitude and
latitude, respectively. They1(u,v), B21(u, v), andBs1(u, v) are varying cofiicients for the constant
term, “Height”, and “DBH", respectively. Black circles in Figures 1, 3, and 5 indicate spaces where
sample trees had grown. The vertical axes in Figures 2, 4, and 6 signify valr@uaf); the
gray colored varying cdBcient surfaces ar)éj,l(u, v), and upper and lower non-colored surfaces
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describe the upper and lower boundaries of confidence intervglg @f, v) in (9). From results of
the hypothesis test in (11), null hypotheses are rejectgghifu, v) andgBs 1 (u, v), which implies that
B2.1(u,v) andBs 1 (u, v) are not 0 and those values are significant. From Figure 3 to 6, trees seem to be
higher and thinner at the southeast, but confidence intervals are large at this area, which is because
there are not may samples in the corner and3tmeay not be well estimated.

In the similar way, Figures 7, 8 and 9 show estimated varyingfioient curves ot; the solid
lines describeﬁj,z(t) = éizwz(t), and the dashed lines describes upper and lower boundaries of
confidence intervals gf;(t) in (10). The null hypotheses in (11) are rejecte@in(t) andBza(t),
which implies that the height of tree does not explain the stem volume growth. The Figure 9 tells
that the DBH positively fiects the volume of the tree more with age.
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4. Conclusion

In this paper, we introduced the varying @d@ent model used in Satoh and Yanagihara (2010)
and Tondaet al. (2010) to estimatefiects on the tree growth from the tree’s age and the space
where the tree had grown.

From the estimated results of varying @a@ent surfaces through the point of the space, the tree
growth state in the relative space was well graphically understood. As an example, from the Figure
3 and 4 showing significantfects on the tree growth, since varying fit@ent values are lower at
the middle of the sample area than those at the corner especially southeast in Figure 3, trees at the
middle area may have thinner stem wood volume than those at the corner, however the state of the
growth at the corner is obscure since small sample at the southeast causes large confidence interval
result in Figure 4. From results of varying ¢beient curve through the point of the age, the tree
growth state at each their age points were well described in Figure 7 to 9, however the Figure 8 was
not the significant result. The reason that tifie@ of height was not significant could be that the
DBH has a strongerfiect on the stem volume than the height.

From the above, the varying déieient model is an appealing way to estimate a tree growth,
which is because 1) spacéexts can be added in the growth curve model and visually checked by
drawing contours and cubic diagrams like Figure 1 to 6, and 2) both the space and tlteetse e
are shown by interval values and a hypothesis test is conducted, which attains a confidence of the
estimation result.

In our data, we considered interactiofieets about the space but not the space and the age. If
the space have some change with time; for example, the day length at a certain space changes with

month dfects monthly observation values about a tree growth, we can try to add interétticts e
about space and time in the model.

The confidence interval calculation (9, 10) proposed by Tat@#h (2010) was used in this paper,
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however Tonda and Satoh (2013) has improved the accuracy of approximation of a coverage prob-
ability of the confidence interval. We can use this updated confidence interval for our estimation
too.
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