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Abstract

The one of reasons that trees grow over the year but may grow differently could be relative spatial
conditions where trees have grown. From this, we introduce a statistical model called the varying
coefficient model used in Satoh and Yanagihara (2010) and Tondaet al. (2010) to estimate effects
on the tree growth from the age and relative space perspectives. This model is an appealing way to
understand the tree growth, which is because 1) the space effects can be added in the growth curve
model and visually checked by drawing contours and cubic diagrams, and 2) both the space and the
age effects are with their confidence interval values, and also a hypothesis test can be conducted,
which attains the confidence of the estimation result. The model is applied to a data ofCryptomeria
japonica in Yoshimotoet al. (2012), the longitude and latitude are used as the space information,
and the significant spatial effect of the DBH on the stem volume regarded as the tree growth was
seen from the estimation result.
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1. Introduction

It is known that trees grow over the year but may grow differently, even though they have planted

at the same time, which is because they have different growth capacity, relative spatial conditions,

and other environmental factors. From this knowledge, by introducing a statistical method, we ex-

plain the state of the tree growth from two perspectives; the one is the age of the tree and the other

is relative spatial conditions.

The growth curve model is useful for finding the age effect on the tree growth, and it could be

very suitable for our case if the spatial conditions could be added in the model and their effects are

examined from the estimation result. Satoh and Yanagihara (2010) suggested a new approach to a

growth curve model by using a varying coefficient model, which was originally proposed by Hastie
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and Tibshirani (1993), and applied the model to the dental fissures growth data in Potthoff and Roy

(1964) which consists of measurements of the distance (mm) from the center of the pituitary to the

pterygomaxillary fissure for 11 girls and 16 boys at their age 8, 10, 12, and 14. Tondaet al. (2010)

applied the varying coefficient model to a spatial data; Columbus Ohio crime data in the R for statis-

tical computing and graphics, which contains spatial information (easting and northing), the mean

housing value, and the household income, and they showed the effect of area on the crime rate;

residential burglaries and auto thefts per 1,000 households.

The varying coefficient model used in Satoh and Yanagihara (2010) and Tondaet al. are basically

the same model, but the number of variables used for estimating varying coefficients are different,

Satoh and Yanagihara (2010) used one variable; age, on the other hand, Tondaet al. (2010) used

two; easting and northing. The number of used variables comes out different graphical results of

varying coefficients, a curve in the former case and a surface in the latter case, which theoretical

background is discussed in the next section.

Satoh and Yanagihara (2010) and Tondaet al. (2010) did not use the age and special conditions

variables together in the model, however, it is theoretically possible. We use both the age and spatial

conditions variable together in the varying coefficient model for finding these effects on the tree

growth.

Besides enabling adding spatial information in the growth curve model, the most attractive

achievement from Satoh and Yanagihara (2010) and Tondaet al. (2010) is enabling calculating

confidence intervals of varying coefficients. The estimator of the varying coefficient curve or sur-

face is usually obtained by kernel smoothing methods which is essentially the linear regression

around fixed time or location that makes difficult to construct a confidence interval as a function of

time or location. Hence, the point wise confidence intervals had been conducted. Satoh and Yanag-

ihara (2010) suggested to use a semiparametric estimation for varying coefficient model to obtain

the confidence interval of varying coefficients.

We apply a data ofCryptomeria japonicain Yoshimotoet al. (2012) for introducing the varying

coefficient model to see the tree growth effects of age and spatial conditions.

This paper is organized as follows: In section 2, the varying coefficient model proposed by Satoh

and Yanagihara (2010) and Tondaet al. (2010) is explained by adapting in our case. The data and

estimation result are presented in section 3. Section 4 contains a conclusion.

2. Method

2.1. Space-Time Varying Coefficient Model

The y(u, v, t) is the response variable observed at the space (u, v) and the timet. The expected

value ofy; E[y(u, v, t)], is assumed to be,

E[y(u, v, t)] = a′β(u, v, t) =
k∑

j=1

a jβ j(u, v, t), (1)

wherea = (a1, . . . ,ak)′ is a vector of explanatory variables that are independent from the space
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(u, v) and the timet, andβ(u, v, t) = (β1(u, v, t), . . . , βk(u, v, t))′ is a vector of the surfaces of varying

coefficients which values change depending onu, v andt. Here, the notation “′” denotes a transpose

of a vector or matrix.

Let x(u, v, t) = (x1(u, v, t), . . . , xq(u, v, t))′ denote a vector ofq basis functions with respect to

(u, v, t), and we assume the varying coefficient has a linear structure;

β(u, v, t) = Θx(u, v, t), (2)

whereΘ = (θ1, . . . ,θk)′ is a k × q matrix of unknown parameters, andθ j = (θ j1, . . . , θ jk)′ is a q-

dimensional vector of unknown parameters. If we fit a polynomial surface in Ripley (1981); section

4 and in Venables and Ripley (2002); section 15, we havex(u, v) = (1,u, v, t)′ as a linear equation.

Other fittings are nonparametric methods, for example, takingB-spline or Gaussian basis functions,

e.g., Satohet al. (2003), Ruppertet al. (2003); section 3, etc. Satoh and Yanagihara (2010) and

Satohet al. (2009) suggested a semiparametric estimation for the varying coefficient model and

assumed the linear structure in the varying coefficient, so that they can make a confidence interval

and hypothesis test about the varying coefficient. Historically, in the growth curve model, the single

element ofΘ is focused, and a confidence interval and a hypothesis test aboutΘ has been studied

(see more details in Satoh and Yanagihara (2010)), however our interest is not the effect of a co-

variate on the coefficient of a polynomial functionΘ, but the effects of covariates on the amount of

growthβ(u, v, t).

By substituting (2) into (1), we obtain the following,

E[y(u, v, t)] = a′Θx(u, v, t),

which is an interaction model between explanatory variables ina and basis functions inx(u, v, t)

such as,

E[y(u, v, t)] =
k∑

j=1

q∑
ℓ=1

θ jℓ{a j xℓ(u, v, t)}. (3)

Thekqcovariatesa j xℓ(u, v, t) in (3) are known, as far as the space (u, v) and the timet are given. Let

θ = (θ′1, . . . ,θ
′
k)
′ be aqk-dimensional vector of unknown parameters andz(u, v, t) = a ⊗ x(u, v, t)

be aqk-dimensional vector of explanatory variables, where the notation “⊗” denotes the Kronecker

product (see e.g., Harville (1997), chapter 16), we have,

E[y(u, v, t)] = z(u, v, t)′θ

The ith observation,i = 1, . . . , n has a response variableyi = y(ui , vi , ti) at the space (ui , vi) and

the time ti and ak-dimensional vector of explanatory variablesai = (ai1, . . . ,aik)′. We assume

that y1, . . . , yn are mutually independent, andyi ∼ N(aiΘx(ui , vi , ti), σ2). Let y = (y1, . . . , yn)′,

Z = (z1, . . . , zn)′, andzi = ai ⊗ x(ui , vi , ti), the estimator ofθ is obtained by the least-square

method,

θ̂ = (Z′Z)−1Z′y. (4)

The covariance matrix of̂θ is,
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Ω = σ2(Z′Z)−1 =


Ω11 · · · Ω1k

...
. . .

...

Ωk1 · · · Ωkk

 .
Theθ̂ j , j = 1, . . . , k, is distributed as

θ̂ j ∼ Nq(θ j ,Ω j j ).

The estimator of the varying coefficient is obtained bŷβ j(u, v, t) = θ̂′jx(u, v, t). The estimator ofσ2

is derived by

s2 =
1

n− kq
y′{In −Z(Z′Z)−1Z′}y,

whereIn is the identity matrix of sizen. By usings2, we derive the estimator ofΩ is obtained by

Ω̂ = s2(Z′Z)−1 =


Ω̂11 · · · Ω̂1k

...
. . .

...

Ω̂k1 · · · Ω̂kk

 .
2.2. Model without Space-Time Interaction

In the space-time varying coefficient model, it is common to assume that there is no interaction of

space and time, i.e., we assume that the varying coefficientβ j(u, v, t) of an explanatory variablea j

( j = 1, . . . , k) can be decomposed as

β j(u, v, t) = µ j + γ j,1(u, v) + γ j,2(t),

whereµ j is an unknown location parameter,γ j,1(u, v) andγ j,2(t) are a surface and a curve of varying

coefficients which value changes depending on (u, v) and t, respectively. In particular, we assume

thatγ j,1(0,0) = 0 andγ j,2(0) = 0. The space and the time varying coefficients are given as

β j,1(u, v) = µ j + γ j,1(u, v), β j,2(t) = µ j + γ j,2(t). (5)

Let us decomposeθ j andx(u, v, t) as

θ j = (µ j , ξ
′
j,1, ξ

′
j,2)′, x(u, v, t) = (1,w1(u, v)′,w2(t)′)′, (6)

wherew1(u, v) andw2(t) areq1- andq2-dimensional vectors of basis functions with respect to (u, v)

andt, respectively. Then, theβ j(u, v, t) is expressed as

β j(u, v, t) = µ j + ξ
′
j,1w1(u, v) + ξ′j,2w2(t).

Estimators ofµ j , ξ j,1 andξ j,2 are derived fromθ̂ j in (4) because of̂θ j = (µ̂ j , ξ̂
′
j,1, ξ̂

′
j,2)′, where

µ̂ j , ξ̂ j,1 and ξ̂ j,2 are estimators ofµ j , ξ j,1 andξ j,2, respectively. Let ˆγ j,1(u, v) = ξ̂′j,1w1(u, v) and

γ̂ j,2(t) = ξ̂′j,2w2(t). Estimators of the space and the time varying coefficients are obtained by

β̂ j,1(u, v) = µ̂ j + γ̂ j,1(u, v) andβ̂ j,2(t) = µ̂ j + γ̂ j,2(t), respectively.
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Moreover, we decomposêΩ j j in (5) corresponding to the division of̂θ j = (µ̂ j , ξ̂
′
j,1, ξ̂

′
j,2)′ as

Ω̂ j j =


ψ̂ j j ψ̂′j j,1 ψ̂′j j,2
ψ̂ j j,1 Ψ̂ j j,11 Ψ̂ j j,12

ψ̂ j j,2 Ψ̂ j j,12 Ψ̂ j j,22

 . (7)

Then, we define

Ω̂ j j,1 =

 ψ̂ j j ψ̂′j j,1
ψ̂ j j,1 Ψ̂ j j,11

 , Ω̂ j j,2 =

 ψ̂ j j ψ̂′j j,2
ψ̂ j j,2 Ψ̂ j j,22

 . (8)

Let θ̂ j,1 = (µ̂ j , ξ̂
′
j,1)′ andθ̂ j,2 = (µ̂ j , ξ̂

′
j,2)′. It is clear thatΩ̂ j j,1 andΩ̂ j j,2 in (8) are estimators of the

covariance matrices of̂θ j,1 andθ̂ j,2, respectively.

2.3. Confidence Interval and Hypothesis Tests

We consider confidence intervals and hypothesis tests aboutβ j,1(u, v) and β j,2(t) in (5) which

are the surface and the curve of the varying coefficients for the explanatory variablea j in a =

(a1, . . . ,ak)′. Let x1(u, v) = (1,w1(u, v)′)′ and x2(t) = (1,w2(t)′)′, wherew1(u, v) andw2(t)

are in (6). Variances of̂β j,1(u, v) and β̂ j,2(t) are obtained bŷλ j,1(u, v) = x1(u, v)′Ω̂ j j,1x1(u, v) and

λ̂ j,2(u, v) = x2(t)′Ω̂ j j,2x2(t), whereΩ̂ j j,1 andΩ̂ j j,2 are given by(8). The 100α% confidence intervals

of the varying coefficient surfaceβ j,1(u, v) and curveβ j,2(t) are obtained by

I j,1,α(u, v) =

[
β̂ j,1(u, v) −

√
λ̂ j,1(u, v)cm1(α), β̂ j,1(u, v) +

√
λ̂ j,1(u, v)cm1(α)

]
, (9)

I j,2,α(t) =

[
β̂ j,2(t) −

√
λ̂ j,2(t)cm2(α), β̂ j,2(t) +

√
λ̂ j,2(t)cm2(α)

]
, (10)

wherecm(α) is the upper 100α% point of the chi-square distribution withmdegrees of freedom, i.e.,

Pr(χ2
m ≥ cm(α)) = α, andm1 = q1 + 1 andm2 = q2 + 1. Hereq1 andq2 are dimensions of vectors

w1(u, v) andw2(t), respectively.

For hypothesis tests, null hypotheses can specify that varying coefficient surface and curve have

uniform shapes, i.e., null hypotheses are written as,

H0, j,1 : β j,1(u, v) = 0 (for any (u, v)), H0, j,2 : β j,2(t) = 0 (for anyt). (11)

We have a test statistic forH0, j,d (d = 1,2) as

T j,d = ξ̂
′
j,dΨ̂

−1
j j,ddξ̂ j,d,

whereξ̂ j,d is the estimator ofξ j,d given in (6), andΨ̂ j j,dd is given by (7). The test statistic asymp-

totically follows chi-square distribution withqd degrees of freedom, and the null hypothesisH0, j,d

is rejected at the 100α% significant level. See Tondaet al. (2010) for more details about theoretical

exposition.
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3. Analysis

3.1. Data

We use the growth data ofCryptomeria japonicain Yoshimotoet al. (2012) obtained from a

survey conducted at Hoshino village of Fukuoka Prefecture in Kyushu, Japan. The data consists

of growth measurements from 30 trees. Each sample has growth information about “Age (year)”,

“DBH (cm)”, “Height (m)”, and “Volume (m3)” of the tree, and spatial information about “Lon-

gitude”, “Latitude” and “Altitude” where the tree had grown. The number of samples are 658,

observed from 30 trees at their 23 age points with missing 25, 5, and 2 trees observation at age 1,

2, and 3, respectively. The growth information, “DBH”, “Height”, and “Volume”, are observed by

conducting a stem analysis in Philip (1994). The “DBH”, which stands for diameter at breast height,

is the measurement of tree diameter at 1.3mabove ground level. The “Volume” is the stem volume.

In our data of ofCryptomeria japonica, theu andv are the “Longitude” and “Latitude”, respec-

tively, thet is “Age”, they is “Volume”, and thea is a three-dimensional vector which components

are 1, “Height”, and “DBH””, i.e.,a = (1, “height”, “DBH”) ′. Excluding samples with 0 value in

DBH, because these samples were less than 1.3mand not observed DBH, we have 588 samples for

estimation.

3.2. Estimation Result

We fit the liner model to estimate the varying coefficient surface or curve, i.e.,̂β j(u, v, t) =

θ̂′jx(u, v, t). For applying the model to any complicated varying coefficient surface or curve shape,

we assume that thêθ′jx(u, v, t) is one of either linear, quadratic or cubic expression with their inter-

action each. For the linear, quadratic, and cubic expressions byu andv, we have

w1(u, v) =


(u, v)′ (r1 = 1)

(u, v,u2, v2,uv)′ (r1 = 2)

(u, v,u2, v2,uv, u3, v3,u2v, uv2)′ (r1 = 3)

,

and those byt,

w2(t) =


(t) (r2 = 1)

(t, t2)′ (r2 = 2)

(t, t, t3)′ (r2 = 3)

,

where rd (d = 1,2) denotes the degree of a polynomial. The following subsets of explanatory

variables were considered as the candidate subsets.

a =


(1, “Height”, “DBH”) ′ (case 1)

(1, “Height”)′ (case 2)

(1, “DBH”) ′ (case 3)

,

The best expression form ofz, i.e.,a⊗x(u, v, t), is selected by Bayesian information criterion (BIC)

in Schwarz (1978), which results are shown in Table 1. From the result in Table 1, the cubic expres-

sion for the space and the quadratic expression for the age are selected as the best model such as
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Table 1. Variables selection forz by BIC

Degree of a polynomial BIC

(r1 , r2) Case 1 Case 2 Case 3

(1 , 1) -4094.87 -3321.48 -4060.77

(1 , 2) -4367.03 -3539.00 -4231.29

(1 , 3) -4352.28 -3559.74 -4229.61

(2 , 1) -4116.45 -3366.48 -4081.04

(2 , 2) -4395.87 -3571.30 -4261.03

(2 , 3) -4381.67 -3591.55 -4262.97

(3 , 1) -4125.56 -3386.51 -4079.40

(3 , 2) -4410.95 -3589.31 -4235.54

(3 , 3) -4399.19 -3611.78 -4239.51

x(u, v, t) = (1,u, v, u2, v2,uv, u3, v3,u2v, uv2, t, t2) in case 1.

From a result of the least square estimation (4), the estimate ofΘ is,

Θ̂ =


θ̂′1
θ̂′2
θ̂′3

 =

µ̂1 ξ̂′1,1 ξ̂′1,2
µ̂2 ξ̂′2,1 ξ̂′2,2
µ̂3 ξ̂′3,1 ξ̂′3,2

 ,
where

θ̂′1 = (−2.1× 10−2,−2.6× 10−3,−2.0× 10−3,−2.9× 10−4,

− 1.1× 10−4,3.3× 10−4,−8.8× 10−6,6.7× 10−7,

1.2× 10−5,−6.5× 10−6, 7.5× 10−3,−9.3× 10−4),

θ̂′2 = (8.2× 10−3,1.1× 10−3,−2.5× 10−3,2.3× 10−5,

− 2.7× 10−4,1.7× 10−5,−8.9× 10−7,−7.5× 10−6,

4.0× 10−6,2.5× 10−6, 3.5× 10−4,8.0× 10−6),

and

θ̂′3 = (−1.2× 10−2,−8.6× 10−4,2.3× 10−3,9.1× 10−7,

2.4× 10−4,−6.4× 10−5,1.5× 10−6,6.1× 10−6,

− 5.3× 10−6,−1.2× 10−6, 6.6× 10−4,1.9× 10−5).

Calculation results of surfaces or curves of varying coefficients and their confidence intervals

are shown in figure 1 to 9. The Figure 1 to 6 show estimated varying coefficient surface ofu

andv. Numbers in contours in Figure 1, 3, and 5 provide values ofβ̂1,1(u, v) = µ̂1 + ξ̂
′
1,1w1(u, v),

β̂2,1(u, v) = µ̂2 + ξ̂
′
2,1w1(u, v), and β̂3,1(u, v) = µ̂3 + ξ̂

′
3,1w1(u, v) at certain level of longitude and

latitude, respectively. Thêβ1,1(u, v), β̂2,1(u, v), andβ̂3,1(u, v) are varying coefficients for the constant

term, “Height”, and “DBH”, respectively. Black circles in Figures 1, 3, and 5 indicate spaces where

sample trees had grown. The vertical axes in Figures 2, 4, and 6 signify values ofβ̂k(u, v); the

gray colored varying coefficient surfaces arêβ j,1(u, v), and upper and lower non-colored surfaces
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Figure 1. (a) Const. term Figure 2. (b) Const. term
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describe the upper and lower boundaries of confidence intervals ofβ j,1(u, v) in (9). From results of

the hypothesis test in (11), null hypotheses are rejected inβ2,1(u, v) andβ3,1(u, v), which implies that

β2,1(u, v) andβ3,1(u, v) are not 0 and those values are significant. From Figure 3 to 6, trees seem to be

higher and thinner at the southeast, but confidence intervals are large at this area, which is because

there are not may samples in the corner and theβ may not be well estimated.

In the similar way, Figures 7, 8 and 9 show estimated varying coefficient curves oft; the solid

lines describeŝβ j,2(t) = ξ̂′j,2w2(t), and the dashed lines describes upper and lower boundaries of

confidence intervals ofβ j,2(t) in (10). The null hypotheses in (11) are rejected inβ1,2(t) andβ3,2(t),

which implies that the height of tree does not explain the stem volume growth. The Figure 9 tells

that the DBH positively affects the volume of the tree more with age.
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4. Conclusion

In this paper, we introduced the varying coefficient model used in Satoh and Yanagihara (2010)

and Tondaet al. (2010) to estimate effects on the tree growth from the tree’s age and the space

where the tree had grown.

From the estimated results of varying coefficient surfaces through the point of the space, the tree

growth state in the relative space was well graphically understood. As an example, from the Figure

3 and 4 showing significant effects on the tree growth, since varying coefficient values are lower at

the middle of the sample area than those at the corner especially southeast in Figure 3, trees at the

middle area may have thinner stem wood volume than those at the corner, however the state of the

growth at the corner is obscure since small sample at the southeast causes large confidence interval

result in Figure 4. From results of varying coefficient curve through the point of the age, the tree

growth state at each their age points were well described in Figure 7 to 9, however the Figure 8 was

not the significant result. The reason that the effect of height was not significant could be that the

DBH has a stronger effect on the stem volume than the height.

From the above, the varying coefficient model is an appealing way to estimate a tree growth,

which is because 1) space effects can be added in the growth curve model and visually checked by

drawing contours and cubic diagrams like Figure 1 to 6, and 2) both the space and the age effects

are shown by interval values and a hypothesis test is conducted, which attains a confidence of the

estimation result.

In our data, we considered interaction effects about the space but not the space and the age. If

the space have some change with time; for example, the day length at a certain space changes with

month affects monthly observation values about a tree growth, we can try to add interaction effects

about space and time in the model.

The confidence interval calculation (9, 10) proposed by Tondaet al. (2010) was used in this paper,

9



Varying Coefficient Model for Tree Growth

5 10 15 20 25

−
0.

5
−

0.
3

−
0.

1
0.

1

Age

C
oe

f.

5 10 15 20 25

−
0.

5
−

0.
3

−
0.

1
0.

1

5 10 15 20 25

−
0.

5
−

0.
3

−
0.

1
0.

1

5 10 15 20 25

−
0.

04
0.

00
0.

04

Age

C
oe

f.

5 10 15 20 25

−
0.

04
0.

00
0.

04

5 10 15 20 25

−
0.

04
0.

00
0.

04

Figure 7. (g) Const. term Figure 8. (h) Height
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Figure 9. (i) DBH

however Tonda and Satoh (2013) has improved the accuracy of approximation of a coverage prob-

ability of the confidence interval. We can use this updated confidence interval for our estimation

too.
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