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Abstract

A growth curve model used for analyzing quantity of growth is characterized by a mathematical
function with respect to a time, which is called a growth function. Since results of analysis from a
growth curve model strongly depend on which growth functions are used for the analysis, a selec-
tion of growth functions is important. A choice of growth function based on the minimization of a
model selection criterion is one of the major selection methods. In this paper, we compare the per-
formances of growth-function-selection methods using these criteria (e.g., Mallipxgiterion)
through Monte Carlo simulations. As a result, we recommend the use of the selection method using
the BIC-type model selection criterion for a selection of growth functions.
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1. Introduction

A growth curve model used for analyzing quantity of growth is specified by a mathematical func-
tion, which is called the growth function. Since there are many growth functions used for analysis,
a growth-function-selection (GF-selection) is important because results of analysis from a growth
curve model are dlierent if used growth functions arefiidirent. A growth function with high pre-
diction performance is regarded as a better growth function. Hence, in the GF-selection, the best
model should be chosen to improve the accuracy of a prediction.

A choice of growth function based on the minimization of a model selection criterion (MSC)
is one of the major selection methods. A MSC consists of two terms; one is the goodness-of-fit
term, the other is the penalty term imposing the complexity of a model. In particular MSC whose
goodness-of-fit term is a residual sum of squares (RSS) is called a RSS-based MSC in this paper.
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A RSS-based MSC is often used for selecting the best model in many fields. Since several RSS-
based MSC can be regarded as an estimator of the risk function assessing the standardized mean
square error (MSE) of prediction, we can expect that the accuracy of a growth prediction will be
improved in the sense of making MSE small by minimizing a RSS-based MSC. However, there
are many RSS-based MSCs, e.g., Mallo@g’ criterion (Mallows, 1973). If MSC used for GF-
selection is dierent, a chosen growth function will be changed. Hence, the purpose of this study
is to compare the performances of GF-selection methods using RSS-based MSCs through Monte
Carlo simulations.

This paper is organized in the following ways: In Section 2, we introduce the growth curve model
and used growth functions. In section 3, we describe the RSS-based MSCs for GF-selection. In
Section 4, we compare GF-selection methods using the RSS-based MSCs by conducting numerical
experiments and give discussions.

2. Growth Curve Model

2.1. True and Candidate Models

Lety(t;) be a growth amount at the timig(i = 1, ..., n), wheren is the sample size. Suppose that
y(t;) is generated from the following true model:

y(t) = () + &.(t),

wherepu.(t) is the true expected value gftj), ande.(t1), ..., .(tn) are mutually independent true
error variables from the same distribution with the mean 0 and the vargn@&inceu. (t) expresses
the average variation of the true growth amou(t) is denoted by the growth function. However,
nobody knows the true model. Hence, the following candidate model is assumgg:to

y(ti) = u(t) + e(t),

whereu(t;) is the expected value gft;) under the candidate model, agd,), . . ., £(t,) are mutually

independent error variables from the same distribution with the mean 0 and the varfaridere,

we callu(t;) the candidate growth function. In practice, we have to prepare a specific function with

respect td, whose shape is determined by unknown parameters, as the candidate growth function.
Let u(t; 6,) denote the candidate growth function, whégis a g(u)-dimensional vectors. It

should be kept in mind thajf(.) denotes the number of unknown parameters of a candidate growth

functionu. In order to use the growth curve model, it is necessary to estiéhdtem a growth data.

In this paper, we estimatg, by the least square (LS) estimation. Let the residual sum of squares be

denoted by

n

RSSO, 1) = Y {y(t) - u(t: 6,))

i=1
Then, the LS estimator @ is derived by minimizing RS$ u) as

2

é,, = arg rginRSSG,,;,u).
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By usingé,l, a growth curve can be estimated fy; éﬂ).

2.2. Selection of Growth Functions

There are many available growth functions proposed in the literatures. In this paper, we consider
the following twelve candidate growth functions, which were described in Ziede (1993).

(1) Bertalafy: u(t; 0) = a(1 - &2 (0 = (a,B)).

(2) Chapman-Richardg,(t; 0) = a(1- ) (0 = (.5,7)).

(3) Gompertzys(t; ) = a expt-pe™) (0 = (a.8,7)").

(4) Hossfeld-4u4(t; 0) = a(1+pt7) (8 = (a.8,7)).

(5) Korf: us(t; 0) = e exp(pt™) (0 = (a.B8,7)).

(6) Levakovic-3:us(t; 8) = a1+ Bt2) 7 (8 = (a..7)).

(7) Logistic: u7(t; 8) = (1 + e (0 = (a.B,7)).

(8) Monomolecularug(t; 8) = (1 - Be™) (0 = (@.B,7)).

(9) Weibull: ug(t; 8) = a(1 - ) (0 = (@.5,7)).
(10) Levakovic-1iuio(t; 0) = a(1 +8t7)° (0 = (a,B,7,9)).
(11) Sloboda ju11(t; 8) = @ expBe™) (8 = (., B, 7. 6)).
(12) Yoshida-1 u1a(t; 0) = a(1+Bt7) 1 +6 (0 = (., 7,6)).

In the above listt denotes a time and all parameters are restricted to positive values. The candidate
growth functions have been listed in order by the number of unknown parameters, i.e., the func-
tion u; includes two, the functiong, to ug include three and the functionsg to iy, include four
parameters.

Although an estimate of a growth curve can be obtained by the LS estimation, it is important
that which growth function is the most suitable to an obtained growth data. In this paper, we select
the best growth function by the RSS-based MSC minimization method. LetgMG( denote a
general form of a RSS-based MSC. Then the best growth function is determined as

p=arg min }MSCRss(,u).

HE{u, 12

2.3. Underspecified and Overspecified Models

From the equation of each growth function, it is seen that several growth functions have inclu-
sion relations (e.g., Bertalffig with y = 3 corresponds perfectly Chapman-Richards). In model
selection, these relationships sometimes play key roles, since several MSCs are derived under the
assumption that a candidate model includes the true model. We define following two specific can-
didate models,
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e An overspecified model: a growth function of a candidate model includes that of the true model,
i.e., the true growth function can be expressed as the special case of the growth function of the
overspecified model. In general, the true model is the overspecified model. However, in this
paper, we rule out the true model from the definition of an overspecified model.

¢ An underspecified model: the model is not the overspecified model and the true model.

In practice, there is no overspecified model in most cases. An overspecified model does not exist
except the following four cases:

(i) When the true growth function is Bertaldiy, the candidate model whose growth function is
Chapman-Richards is the overspecified model.

(i) When the true growth function is Gompertz, the candidate model whose growth function is
Sloboda is the overspecified model.

(ii) When the true growth function is Hossfeld-4, the candidate model whose growth function is
Levakovic-1 is the overspecified model.

(iv) When the true growth function is Levakovic-3, the candidate model whose growth function
is Levakovic-1 is the overspecified model.

3. RSS-Based Model Selection Criteria

In this section, we describe an explicit form of used RSS-based MSC for GF-selection.

When the penalty for the complexity of a model is imposed additively, an estimatet isfre-
quired to use a RSS-based MSC. In the general regression model, an estimatanahe full
model is usually used. However, it isflilcult to construct the full model in the growth curve model
because there is no candidate model which includes all candidate models. Hence, we use the fol-
lowing estimator ofr? derived from a local linear fitting, which was proposed by Gasser, Sroka and
Jennen-Steinmetz (1986),

s

52 - 1 ril (@yi-1 + biyis1 — yi)?
L n-2 4 a2+b?-1

where cofficientsa andb; are given by

tiva — 1 b = G-t
(|

a = =
tiyr —tica

St -ty
The 62 has a desirable property as an estimator-éf e.g., o> converges tar? asn — oo in

.....

Ele.(t)4] < co.
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3.1. Mallows’ C, Criterion

By using 2)(«) as the penalty term, Mallow€,, criterion is defined as

Rssey.u)

Cplw) = +2q(w). )

The Xy(u) was derived as the bias of R%(ﬂ)/&f to the risk function assessing the standardized
MSE of prediction under the assumption that the candidate model considered is not an underspeci-
fied model. Hence, there is a possibility that @gemay not evaluate correctly the complexity of an
underspecified model.

3.2. Modified C;, Criterion

The weakness of th€, may be overcome by using the generalized degree of freedom (GDF)
proposed by Ye (1998) instead gfu). The GDF of the growth curve model was calculated by
Kamo and Yoshimoto (2013) as

4142 = o) + r{(L,0,) - 7,0,)) L.}

whereI,(6,) andJ,(6,) are matrices given by

1,(0,) = _Z ‘9ﬂ(tn 6,) Oulti; 6,)
/1

39,

u=Cu

~ O°u(t; 6,
16 = 3 320 -stti00) Ty

In this paper, &’” denotes a transpose of a vectwr Kamo and Yoshimoto (2013) proposed the
following modifiedC, (MC,) expressed by replacirggu) with d f(u) in (1) as

RS 5(9#1#)

L

MCp(u) = +2d f(u).

The terminology “modified” means that the bias of R@SL:)/&E to the risk function is corrected

even under an underspecified model. A modifigccriterion was originally proposed by Fujikoshi

and Satoh (1997) in the multivariate linear regression model. Sinc#gwas derived under

the assumption that the candidate model may be an underspecified modelCthmay evalu-

ate correctly the complexity of an underspecified model. If the candidate model considered is an
overspecified model, thehf (1) converges t@(u) asn — oo in probability.

3.3. BIC-Type C,, Criterion

The Bayesian information criterion (BIC) proposed by Schwarz (1978) is one of famous MSCs.
In the BIC, the penalty term is “(the number of parametetsyn”. By using q(u) logn instead of
2q(u) in (1), the BIC-typeC,, (BC,) can be proposed as

5
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RSS@,:
% + () logn.

BCp(w) =

Recall our purpose of GF-selection is to choose the growth function so that the growth-prediction of
the selected model will be improve. However, a consistency property, that a selection probability of
the true model by MSC goes to 1 asymptotically, is also important property of the model selection.
Since BIC has a consistency property, we can expecBfigialso has a consistency property.

3.4. Generalized Cross-Validation Criterion

A generalized cross-validation (GCV) criterion proposed by Craven and Wahba (1979) is one of
RSS-based MSCs. In GCV, the penalty to the complexity of a model is imposed not additively but
multiplicatively. The GCV based the GDF was proposed by Ye (1998). The GCV for GF-selection
is defined by
_ _RSS@,in)
C(1-dfE/n?
If 2 does not work well, there are possibilities i, MC, andBC, become instable. However,
even if &2 does not work well, the GCV does not become instable because GCV in (2) is defined
without an estimator of2.

GCV(u) (2)

4. Numerical Study

4.1. Setting

In this section, we compare the performance each criteria by conducting numerical experiments
under several sample sizes, variances and true growth functions. At first, we prepared the following
twelve true growth functions:

Case 1: u.(t) is Bertalarfy asp,(t) = 100(1— e 95)3,

Case 2: u.(t) is Chapman-Richards as(t) = 100(1- e 04)38,
Case 3: u.(t) is Gompertz ag, (t) = 90 exp(0.4e701Y).

Case 4: u.(t) is Hossfeld-4 ag. (t) = 100(1+ 5t~15)~1,

Case 5: pu.(t) is Korf asyu.(t) = 100 expE3tL).

Case 6: .(t) is Levakovic-3 agu,(t) = 100(1+ 5t72)~15,

Case 7: u.(t) is Logistic asu, (t) = 100(1+ 5e 04)-1,

Case 8: .(t) is Monomolecular ag, (t) = 100(1— 1.35¢702%),
Case 9: u.(t) is Weibull asu, (t) = 100(1— e 06",

Case 10: u.(t) is Levakovic-1 ag, (t) = 100(1+ 3t~23)2,

6
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Figure 1. The shapes of the true growth curves (case 1 to case 6)

Case 11: p.(t) is Sloboda ag. (t) = 100 exp-4e05°).
Case 12: u.(t) is Yoshida-1 ag. (t) = 80(1+ 5t-%4)~ + 20.

We usedtj = 2+ 18/(n—1)( = 1,...,n) as time series witm = 30,50, 100, 300 and 500, we
generated error variables of the true model frif®, o2) with o2 = 1 and 2. The shapes of true
growth curves are shown in figures 1 and 2. In this paper, we assessed performances of GF-selection
methods by the following two properties that was derived frg@®0D repetitions.

e The prediction error (PE) of the best growth function chosen by minimizing MSC.
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Figure 2. The shapes of the true growth curves (case 7 to case 12)

e The selection probability (SP) of the true growth function chosen by minimizing the criterion.

Here, the PE is defined by
n+3n/10

PE= = > {u(t) - At 6:))

j=n+1

2

wheret; = 2 + 18j/(n - 1). Note that PE is more important property, since the aim of our study is
to select the growth function so that the growth prediction of the selection model will be improved.
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Table 1. The prediction error under each case Whem-f =1

casel n | C, MCp, BC, GCV|casel n | C, MC, BC, GCV
1* |30 (113 114 111 114 7 | 30|132 1.34 126 1.33
50 |1.09 1.09 1.06 1.09 50 |1.21 121 115 121
100|1.04 1.04 1.02 1.04 100|110 1.10 1.06 1.10
300101 1.01 101 1.0%1 300(1.02 1.02 1.02 1.02
500{1.01 1.01 100 1.01 500{1.01 1.01 1.01 1.02
2 | 30142 143 142 143| 8 | 30|153 156 152 155
50 |1.23 123 1.23 1.23 50 |1.34 1.34 1.30 1.33
100 1.09 1.09 1.08 1.09 100|115 1.15 112 1.15
300(1.02 1.02 1.02 1.02 300|1.04 104 1.03 1.04
500|1.01 1.03 1.01 1.02 500|1.02 1.03 1.01 1.03
3 [ 30(153 153 141 154| 9 | 30 |140 145 140 145
50 |1.33 1.33 1.22 1.34 50 1129 1.31 129 131
100|118 1.18 111 1.17 100|1.15 1.17 115 1.16
300|1.06 1.06 1.03 1.05 300 1.05 1.05 1.05 1.0§
500|1.02 1.02 1.01 1.03 500{1.03 1.03 1.02 1.03
4 | 30(149 149 149 148| 10 | 30 |1.22 125 123 1.25
50 |1.29 127 129 1.28 50 | 1.15 1.17 116 1.17
100113 1.13 113 1.12 100|1.07 1.08 1.09 1.08
300(1.03 1.03 1.02 1.03 300|1.02 1.02 1.03 1.02
500|1.02 1.02 1.01 1.02 500|1.14 114 1.16 1.13
5 130|136 136 136 136 11 | 30 |1.94 201 1.94 203
50 | 1.21 121 122 121 50 |1.68 171 170 171
100| 1.09 1.09 1.09 1.10 100|142 145 152 1.45
300{1.03 1.03 1.02 1.03 300126 130 135 1.30
500|1.01 1.02 1.01 1.02 500|1.04 1.04 1.05 1.05
6 |30 (131 131 131 131 12 | 30|1.60 158 160 1.58
50 | 1.17 116 1.16 1.16 50 | 1.43 143 1.44 143
100| 1.06 1.06 1.06 1.06 100| 1.27 1.26 1.30 1.26
300|1.02 1.02 1.02 1.02 300|112 112 124 112
500(1.01 1.01 1.01 1.0 500(1.02 1.02 1.02 1.02

4.2. Results

Tables 4.2 and 4.2 show PEs of the best growth functions wifea 1 and 2, respectively, and
tables 4.2 and 4.2 show SPs of the true growth functions wilen 1 and 2, respectively. The num-
ber in the column named “case” shows which growth function used as the true growth function. For
example, the number 1 indicates that simulation data are generated from the true growth function of
the case 1, i.e., Bertalfig. Furthermore} denotes the case that there is the overspecified model. In
the tables, bold fonts indicate the smallest PEs of the best growth functions, and the highest SPs of
the true growth functions.

From tables, we obtained the following results:

e When the number of parameters of the true growth function was not large, i.e., cases 1 to 9,
BC,, was the high-performance MSC in most cases. In particular, when the sample size was not

9
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Table 2. The prediction error under each case Whem-f =2

casel n | C, MCp, BC, GCV|casel n | C, MC, BC, GCV
1* | 30 | 253 257 243 257| 7 | 30|3.20 3.24 3.09 3.25
50 | 2.39 240 2.27 240 50 | 2.85 287 2.67 287
100|216 217 211 217 100|248 249 231 249
300|2.06 2.06 203 2.06 300|213 213 208 213
500(2.03 2.06 2.02 2.06 500|2.06 2.06 2.04 2.07
2 | 30347 355 351 357 8 | 30|412 4.26 403 4.30
50 | 291 295 295 295 50 | 3.49 3.61 3.49 359
100|250 252 250 252 100|2.81 283 2.76 284
300|214 214 212 214 300|222 222 216 221
500|2.06 212 2.04 211 500|211 212 2.08 2.12
3 | 30(383 392 379 395| 9 | 30 |3.18 322 3.18 3.24
50 | 3.00 3.10 2.88 3.09 50 | 2.80 2.84 2.80 284
100|252 253 2.34 254 100| 2.43 248 243 248
300|223 223 212 223 300|218 221 218 221
500|211 2.14 2.06 2.15 500|212 214 213 214
4 | 30(353 349 355 350 10 | 30 |2.76 278 292 279
50 | 299 296 2.98 296 50 | 2.46 247 251 247
100|256 255 255 255 100|225 227 226 2.27
300|2.18 218 218 218§ 300209 211 211 211
500|2.10 210 211 2.10 500|238 2.38 272 2.36
5 130|358 352 359 353 11 | 30 |4.36 456 4.44 4.60
50 | 295 292 295 292 50 | 3.57 3.69 3.62 3.71
100|251 251 251 251 100|295 3.03 3.02 3.03
300|213 213 213 213 300|253 2.56 257 2.56
500|2.08 2.08 2.07 2.08 500|210 2.13 210 212
6 | 30 312 3.05 314 304| 12 | 30 |3.59 351 359 353
50 | 2.69 268 270 2.67 50 | 3.06 3.04 3.07 3.04
100| 2.34 2.34 233 234 100| 2.66 2.65 2.67 2.66
300|210 210 211 2.10 300|233 231 234 231
500|2.05 205 2.05 2.0§ 500(2.08 2.08 2.09 2.08

small, SPs of the true growth function 1BC, was always highest among all the MSCs. The
differences of SPs were large in the case that the overspecified model exists, i.e., cases 1, 3, 4
and 6. This is becaudtC, has a consistency art}, MC, and GCV do not have a consistency,

i.e., the SPs oBC, converge to 1 asymptotically although those&Cgf MC,, and GCV do not in

the cases 1, 3, 4 and 6.

When the number of parameters of the true growth function was large, i.e., cases 18@,12,

was not the high-performance MSC. This is because the penalty teB@0f too large in the

cases 10 to 12. In gener&@(C, tends to choose the model having the smaller number of known
parameters than the true model. Reversgly,MC, and GCV tend to choose the model having

the larger number of known parameters than the true model. In the cases 10 to 12, there were
no models having the larger number of known parameters than the true model. Hence, the SPs
of C,, MCp, and GCV tended to be higher than thoseB@f,. Although PEs of the best models

10
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Table 3. The selection probability under each case wheu—f =1

casel n | C, MCp, BC, GCV|casel n | C, MC, BC, GCV
1* |30 |719 718 855 711| 7 | 30|80.8 79.7 89.0 79.4
50 | 72.7 721 90.9 733 50 | 855 85.0 93.8 852
100| 74.8 74.7 93.8 74.9 100| 89.6 89.3 97.6 895
300|81.0 80.7 97.9 80.6 300|93.1 93.0 995 927
500(82.8 83.0 98.9 64.7 500(89.3 89.2 99.3 77.6
2 |30 (741 741 788 742| 8 | 30|76.1 753 779 757
50 | 79.2 79.3 85.3 803 50 | 80.8 80.3 83.6 80.7
100|88.7 89.3 95.1 89.2 100|882 88.2 90.1 882
300|938 94.0 98.8 93.8 300|97.1 96.8 97.9 96.8
500|97.2 965 989 95.1 500|98.8 98.3 99.3 98.2
3 | 30(631 632 742 638| 9 | 30259 18.0 26.0 179
50 | 67.0 67.0 80.9 66.8 50 | 28.2 213 285 211
100| 73.8 73.6 89.6 73.6 100|382 32.0 38.8 320
300|77.0 77.0 96.1 775 300|52.8 50.2 58.6 49.9
500|88.6 88.3 985 81.2 500| 60.8 60.3 67.0 55.9
4 | 30|57.3 552 577 555| 10 | 30 | 23 40 02 56
50 | 70.3 67.3 70.9 67.7 50 | 12.7 121 16 117
100| 80.0 75.7 83.6 76.0 100|38.6 36.2 7.2 364
300|812 75.6 98.6 755 300|775 773 557 77.1
500|87.2 77.2 98.9 68.4 500|49.3 50.1 46.7 50.4
5 130|8.3 557 875 561 11 |30 |12 12 05 12
50 | 87.9 56.9 90.5 57.2 50| 46 48 10 45
100| 89.1 554 957 549 100|129 132 29 134
300|87.4 528 98.4 524 300|249 253 15.2 256
500|958 79.4 99.6 77.1 500|61.1 61.6 38.0 64.4
6" | 30 | 548 54.1 554 545| 12 | 30|15 49 00 33
50 | 63.7 63.1 65.6 63.0 50|36 65 01 53
100| 71.4 70.3 77.4 70.8 100|128 175 03 17.1
300|835 819 904 821 300|538 523 118 520
500(88.3 88.1 952 823 500| 8.7 10.8 28 16.7

chosen byC,, MC, and GCV tended to be smaller than those choseB®y, the diferences
were not so large.

From the simulation results, the use of the selection method &agor a selection of growth
functions.
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Table 4. The selection probability under each case wheu—f =2

casel n | C, MCp BC, GCV|casel n | C, MC, BCp GCV
1" | 30 |629 616 79.1 621| 7 | 30 |658 642 750 64.7
50 | 65.2 64.0 855 65.1 50 | 724 71.1 83.0 705
100| 69.1 68.1 91.1 68.2 100| 76.2 753 91.6 76.4
300| 75.7 75.1 958 75.3 300|87.6 87.0 98.0 87.3
500| 79.2 78.6 98.4 73.2 500| 86.5 86.4 98.8 82.3
2 | 30 |46.2 455 449 46.2| 8 | 30 | 485 46.0 48.7 457
50 | 56.7 56.1 56.9 56.2 50 | 543 529 54.6 53.0
100| 69.9 69.5 73.6 69.9 100| 66.0 64.8 67.1 65.3
300| 84.6 84.6 93.8 84.9 300|83.3 833 86.6 834
500(90.6 88.3 98.5 86.8 500| 89.7 89.1 935 884
3 |30 |509 507 578 51.1| 9 |30|109 76 109 7.6
50 | 54.2 53.7 66.1 535 50 | 146 8.2 148 8.0
100| 61.2 61.2 764 613 100|199 129 20.0 129
300| 72.2 723 90.0 721 300|35.2 28.8 355 288
500| 84.4 83.0 952 79.1 500|425 39.9 428 395
4 | 30(298 277 304 279| 10| 30|10 77 05 74
50 | 375 35.0 381 350 50|18 73 06 74
100|475 451 48.4 451 100| 5.2 101 09 100
300|742 71.0 750 715 300|225 200 11 196
500| 83.6 72.7 86.3 70.0 500(35.0 37.0 13.0 38.1
5 |30|696 403 711 402| 11 | 30| 01 02 01 03
50 | 71.7 456 73.2 456 5000 01 00 01
100| 78.2 47.9 80.9 47.9 100/ 0.1 03 00 03
300| 86.6 54.1 93.7 543 300| 58 58 03 56
500|915 75.1 97.7 745 500|179 183 0.6 241
6" | 30 1283 284 284 285| 12 30|05 23 00 21
50 375 373 376 376 50|07 31 00 30
100| 47.0 459 47.1 457 100| 1.1 43 0.0 40
300| 65.9 643 68.7 64.4 300 5.8 103 0.0 94
500|741 73.3 78.7 70.8 500| 26 6.7 03 77
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