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Abstract

A growth curve model used for analyzing quantity of growth is characterized by a mathematical
function with respect to a time, which is called a growth function. Since results of analysis from a
growth curve model strongly depend on which growth functions are used for the analysis, a selec-
tion of growth functions is important. A choice of growth function based on the minimization of a
model selection criterion is one of the major selection methods. In this paper, we compare the per-
formances of growth-function-selection methods using these criteria (e.g., Mallows’Cp criterion)
through Monte Carlo simulations. As a result, we recommend the use of the selection method using
the BIC-type model selection criterion for a selection of growth functions.
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1. Introduction

A growth curve model used for analyzing quantity of growth is specified by a mathematical func-

tion, which is called the growth function. Since there are many growth functions used for analysis,

a growth-function-selection (GF-selection) is important because results of analysis from a growth

curve model are different if used growth functions are different. A growth function with high pre-

diction performance is regarded as a better growth function. Hence, in the GF-selection, the best

model should be chosen to improve the accuracy of a prediction.

A choice of growth function based on the minimization of a model selection criterion (MSC)

is one of the major selection methods. A MSC consists of two terms; one is the goodness-of-fit

term, the other is the penalty term imposing the complexity of a model. In particular MSC whose

goodness-of-fit term is a residual sum of squares (RSS) is called a RSS-based MSC in this paper.
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A RSS-based MSC is often used for selecting the best model in many fields. Since several RSS-

based MSC can be regarded as an estimator of the risk function assessing the standardized mean

square error (MSE) of prediction, we can expect that the accuracy of a growth prediction will be

improved in the sense of making MSE small by minimizing a RSS-based MSC. However, there

are many RSS-based MSCs, e.g., Mallows’Cp criterion (Mallows, 1973). If MSC used for GF-

selection is different, a chosen growth function will be changed. Hence, the purpose of this study

is to compare the performances of GF-selection methods using RSS-based MSCs through Monte

Carlo simulations.

This paper is organized in the following ways: In Section 2, we introduce the growth curve model

and used growth functions. In section 3, we describe the RSS-based MSCs for GF-selection. In

Section 4, we compare GF-selection methods using the RSS-based MSCs by conducting numerical

experiments and give discussions.

2. Growth Curve Model

2.1. True and Candidate Models

Let y(ti) be a growth amount at the timeti (i = 1, . . . ,n), wheren is the sample size. Suppose that

y(ti) is generated from the following true model:

y(ti) = µ∗(ti) + ε∗(ti),

whereµ∗(ti) is the true expected value ofy(ti), andε∗(t1), . . . , ε∗(tn) are mutually independent true

error variables from the same distribution with the mean 0 and the varianceσ2
∗. Sinceµ∗(t) expresses

the average variation of the true growth amount,µ∗(t) is denoted by the growth function. However,

nobody knows the true model. Hence, the following candidate model is assumed toy(ti):

y(ti) = µ(ti) + ε(ti),

whereµ(ti) is the expected value ofy(ti) under the candidate model, andε(t1), . . . , ε(tn) are mutually

independent error variables from the same distribution with the mean 0 and the varianceσ2. Here,

we callµ(ti) the candidate growth function. In practice, we have to prepare a specific function with

respect tot, whose shape is determined by unknown parameters, as the candidate growth function.

Let µ(t;θµ) denote the candidate growth function, whereθµ is a q(µ)-dimensional vectors. It

should be kept in mind thatq(µ) denotes the number of unknown parameters of a candidate growth

functionµ. In order to use the growth curve model, it is necessary to estimateθµ from a growth data.

In this paper, we estimateθµ by the least square (LS) estimation. Let the residual sum of squares be

denoted by

RSS(θµ; µ) =
n∑

i=1

{
y(ti) − µ(ti ;θµ)

}2
.

Then, the LS estimator ofθ is derived by minimizing RSS(θ; µ) as

θ̂µ = arg min
θµ

RSS(θµ; µ).
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By usingθ̂µ, a growth curve can be estimated byµ(t; θ̂µ).

2.2. Selection of Growth Functions

There are many available growth functions proposed in the literatures. In this paper, we consider

the following twelve candidate growth functions, which were described in Ziede (1993).

(1) Bertalanffy: µ1(t;θ) = α(1− e−βt)3 (θ = (α, β)′).

(2) Chapman-Richards:µ2(t;θ) = α(1− e−βt)γ (θ = (α, β, γ)′).

(3) Gompertz:µ3(t;θ) = αexp(−βe−γt) (θ = (α, β, γ)′).

(4) Hossfeld-4:µ4(t;θ) = α(1+ βt−γ)−1 (θ = (α, β, γ)′).

(5) Korf: µ5(t;θ) = αexp(−βt−γ) (θ = (α, β, γ)′).

(6) Levakovic-3:µ6(t;θ) = α(1+ βt−2)−γ (θ = (α, β, γ)′).

(7) Logistic:µ7(t;θ) = α(1+ βe−γt)−1 (θ = (α, β, γ)′).

(8) Monomolecular:µ8(t;θ) = α(1− βe−γt) (θ = (α, β, γ)′).

(9) Weibull: µ9(t;θ) = α(1− e−βt
γ

) (θ = (α, β, γ)′).

(10) Levakovic-1:µ10(t;θ) = α(1+ βt−γ)−δ (θ = (α, β, γ, δ)′).

(11) Sloboda :µ11(t;θ) = αexp(−βe−γtδ) (θ = (α, β, γ, δ)′).

(12) Yoshida-1 :µ12(t;θ) = α(1+ βt−γ)−1 + δ (θ = (α, β, γ, δ)′).

In the above list,t denotes a time and all parameters are restricted to positive values. The candidate

growth functions have been listed in order by the number of unknown parameters, i.e., the func-

tion µ1 includes two, the functionsµ2 to µ9 include three and the functionsµ10 to µ12 include four

parameters.

Although an estimate of a growth curve can be obtained by the LS estimation, it is important

that which growth function is the most suitable to an obtained growth data. In this paper, we select

the best growth function by the RSS-based MSC minimization method. Let MSCRSS(µ) denote a

general form of a RSS-based MSC. Then the best growth function is determined as

µ̂ = arg min
µ∈{µ1,...,µ12}

MSCRSS(µ).

2.3. Underspecified and Overspecified Models

From the equation of each growth function, it is seen that several growth functions have inclu-

sion relations (e.g., Bertalanffy with γ = 3 corresponds perfectly Chapman-Richards). In model

selection, these relationships sometimes play key roles, since several MSCs are derived under the

assumption that a candidate model includes the true model. We define following two specific can-

didate models,
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• An overspecified model: a growth function of a candidate model includes that of the true model,

i.e., the true growth function can be expressed as the special case of the growth function of the

overspecified model. In general, the true model is the overspecified model. However, in this

paper, we rule out the true model from the definition of an overspecified model.

• An underspecified model: the model is not the overspecified model and the true model.

In practice, there is no overspecified model in most cases. An overspecified model does not exist

except the following four cases:

(i) When the true growth function is Bertalanffy, the candidate model whose growth function is

Chapman-Richards is the overspecified model.

(ii) When the true growth function is Gompertz, the candidate model whose growth function is

Sloboda is the overspecified model.

(iii) When the true growth function is Hossfeld-4, the candidate model whose growth function is

Levakovic-1 is the overspecified model.

(iv) When the true growth function is Levakovic-3, the candidate model whose growth function

is Levakovic-1 is the overspecified model.

3. RSS-Based Model Selection Criteria

In this section, we describe an explicit form of used RSS-based MSC for GF-selection.

When the penalty for the complexity of a model is imposed additively, an estimator ofσ2 is re-

quired to use a RSS-based MSC. In the general regression model, an estimator ofσ2 in the full

model is usually used. However, it is difficult to construct the full model in the growth curve model

because there is no candidate model which includes all candidate models. Hence, we use the fol-

lowing estimator ofσ2 derived from a local linear fitting, which was proposed by Gasser, Sroka and

Jennen-Steinmetz (1986),

σ̂2
L =

1
n− 2

n−1∑
i=2

(aiyi−1 + biyi+1 − yi)2

a2
i + b2

i − 1
,

where coefficientsai andbi are given by

ai =
ti+1 − ti

ti+1 − ti−1
, bi =

ti − ti−1

ti+1 − ti−1
.

The σ̂2
L has a desirable property as an estimator ofσ2, e.g., σ̂2

L converges toσ2 as n → ∞ in

probability if µ∗(t) is twice continuously differentiable, lim supn→∞maxi=2,...,n−1 |ti − ti−1| < ∞ and

E[ε∗(ti)4] < ∞.
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3.1. Mallows’ Cp Criterion

By using 2q(µ) as the penalty term, Mallows’Cp criterion is defined as

Cp(µ) =
RSS(̂θµ; µ)

σ̂2
L

+ 2q(µ). (1)

The 2q(µ) was derived as the bias of RSS(θ̂µ; µ)/σ̂2
L to the risk function assessing the standardized

MSE of prediction under the assumption that the candidate model considered is not an underspeci-

fied model. Hence, there is a possibility that theCp may not evaluate correctly the complexity of an

underspecified model.

3.2. Modified Cp Criterion

The weakness of theCp may be overcome by using the generalized degree of freedom (GDF)

proposed by Ye (1998) instead ofq(µ). The GDF of the growth curve model was calculated by

Kamo and Yoshimoto (2013) as

d f(µ) = q(µ) + tr
{(
Iµ(θ̂µ) − Jµ(θ̂µ)

)−1
Iµ(θ̂µ)

}
,

whereIµ(θ̂µ) andJµ(θ̂µ) are matrices given by

Iµ(θ̂µ) =
1
n

n∑
i=1

∂µ(ti ;θµ)

∂θµ

∂µ(ti ;θµ)

∂θ′µ

∣∣∣∣∣∣∣
θµ=θ̂µ

,

Jµ(θ̂µ) =
1
n

n∑
i=1

{
y(ti) − µ(ti ;θµ)

} ∂2µ(ti ;θµ)

∂θµ∂θ′µ

∣∣∣∣∣∣∣
θµ=θ̂µ

.

In this paper, “a′” denotes a transpose of a vectora. Kamo and Yoshimoto (2013) proposed the

following modifiedCp (MCp) expressed by replacingq(µ) with d f(µ) in (1) as

MCp(µ) =
RSS(̂θµ; µ)

σ̂2
L

+ 2d f(µ).

The terminology “modified” means that the bias of RSS(θ̂µ; µ)/σ̂2
L to the risk function is corrected

even under an underspecified model. A modifiedCp criterion was originally proposed by Fujikoshi

and Satoh (1997) in the multivariate linear regression model. Since theMCp was derived under

the assumption that the candidate model may be an underspecified model, theMCp may evalu-

ate correctly the complexity of an underspecified model. If the candidate model considered is an

overspecified model, thend f(µ) converges toq(µ) asn→ ∞ in probability.

3.3. BIC-Type Cp Criterion

The Bayesian information criterion (BIC) proposed by Schwarz (1978) is one of famous MSCs.

In the BIC, the penalty term is “(the number of parameters)× logn”. By usingq(µ) logn instead of

2q(µ) in (1), the BIC-typeCp (BCp) can be proposed as
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BCp(µ) =
RSS(̂θµ; µ)

σ̂2
L

+ q(µ) logn.

Recall our purpose of GF-selection is to choose the growth function so that the growth-prediction of

the selected model will be improve. However, a consistency property, that a selection probability of

the true model by MSC goes to 1 asymptotically, is also important property of the model selection.

Since BIC has a consistency property, we can expect thatBCp also has a consistency property.

3.4. Generalized Cross-Validation Criterion

A generalized cross-validation (GCV) criterion proposed by Craven and Wahba (1979) is one of

RSS-based MSCs. In GCV, the penalty to the complexity of a model is imposed not additively but

multiplicatively. The GCV based the GDF was proposed by Ye (1998). The GCV for GF-selection

is defined by

GCV(µ) =
RSS(̂θµ; µ)

{1− d f(µ)/n}2
. (2)

If σ̂2
L does not work well, there are possibilities thatCp, MCp andBCp become instable. However,

even if σ̂2
L does not work well, the GCV does not become instable because GCV in (2) is defined

without an estimator ofσ2.

4. Numerical Study

4.1. Setting

In this section, we compare the performance each criteria by conducting numerical experiments

under several sample sizes, variances and true growth functions. At first, we prepared the following

twelve true growth functions:

Case 1: µ∗(t) is Bertalanffy asµ∗(t) = 100(1− e−0.5t)3.

Case 2: µ∗(t) is Chapman-Richards asµ∗(t) = 100(1− e−0.4t)3.8.

Case 3: µ∗(t) is Gompertz asµ∗(t) = 90 exp(−0.4e−0.1t).

Case 4: µ∗(t) is Hossfeld-4 asµ∗(t) = 100(1+ 5t−1.5)−1.

Case 5: µ∗(t) is Korf asµ∗(t) = 100 exp(−3t−1).

Case 6: µ∗(t) is Levakovic-3 asµ∗(t) = 100(1+ 5t−2)−1.5.

Case 7: µ∗(t) is Logistic asµ∗(t) = 100(1+ 5e−0.4t)−1.

Case 8: µ∗(t) is Monomolecular asµ∗(t) = 100(1− 1.35e−0.25t).

Case 9: µ∗(t) is Weibull asµ∗(t) = 100(1− e−0.6t0.7).

Case 10: µ∗(t) is Levakovic-1 asµ∗(t) = 100(1+ 3t−2.3)−2.
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Figure 1. The shapes of the true growth curves (case 1 to case 6)

Case 11: µ∗(t) is Sloboda asµ∗(t) = 100 exp(−4e−0.5t0.8).

Case 12: µ∗(t) is Yoshida-1 asµ∗(t) = 80(1+ 5t−1.4t)−1 + 20.

We usedti = 2 + 18i/(n − 1) (i = 1, . . . ,n) as time series withn = 30, 50,100,300 and 500, we

generated error variables of the true model fromN(0, σ2
∗) with σ2

∗ = 1 and 2. The shapes of true

growth curves are shown in figures 1 and 2. In this paper, we assessed performances of GF-selection

methods by the following two properties that was derived from 1,000 repetitions.

• The prediction error (PE) of the best growth function chosen by minimizing MSC.
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Figure 2. The shapes of the true growth curves (case 7 to case 12)

• The selection probability (SP) of the true growth function chosen by minimizing the criterion.

Here, the PE is defined by

PE=
1
n

n+3n/10∑
j=n+1

{
µ∗(t j) − µ̂(t j ; θ̂µ̂)

}2
,

wheret j = 2+ 18j/(n− 1). Note that PE is more important property, since the aim of our study is

to select the growth function so that the growth prediction of the selection model will be improved.
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Table 1. The prediction error under each case whenσ2
∗ = 1

case n Cp MCp BCp GCV case n Cp MCp BCp GCV

1∗ 30 1.13 1.14 1.11 1.14 7 30 1.32 1.34 1.26 1.33

50 1.09 1.09 1.06 1.09 50 1.21 1.21 1.15 1.21

100 1.04 1.04 1.02 1.04 100 1.10 1.10 1.06 1.10

300 1.01 1.01 1.01 1.01 300 1.02 1.02 1.02 1.02

500 1.01 1.01 1.00 1.01 500 1.01 1.01 1.01 1.02

2 30 1.42 1.43 1.42 1.43 8 30 1.53 1.56 1.52 1.55

50 1.23 1.23 1.23 1.23 50 1.34 1.34 1.30 1.33

100 1.09 1.09 1.08 1.09 100 1.15 1.15 1.12 1.15

300 1.02 1.02 1.02 1.02 300 1.04 1.04 1.03 1.04

500 1.01 1.03 1.01 1.02 500 1.02 1.03 1.01 1.03

3∗ 30 1.53 1.53 1.41 1.54 9 30 1.40 1.45 1.40 1.45

50 1.33 1.33 1.22 1.34 50 1.29 1.31 1.29 1.31

100 1.18 1.18 1.11 1.17 100 1.15 1.17 1.15 1.16

300 1.06 1.06 1.03 1.05 300 1.05 1.05 1.05 1.05

500 1.02 1.02 1.01 1.03 500 1.03 1.03 1.02 1.03

4∗ 30 1.49 1.49 1.49 1.48 10 30 1.22 1.25 1.23 1.25

50 1.29 1.27 1.29 1.28 50 1.15 1.17 1.16 1.17

100 1.13 1.13 1.13 1.12 100 1.07 1.08 1.09 1.08

300 1.03 1.03 1.02 1.03 300 1.02 1.02 1.03 1.02

500 1.02 1.02 1.01 1.02 500 1.14 1.14 1.16 1.13

5 30 1.36 1.36 1.36 1.36 11 30 1.94 2.01 1.94 2.03

50 1.21 1.21 1.22 1.21 50 1.68 1.71 1.70 1.71

100 1.09 1.09 1.09 1.10 100 1.42 1.45 1.52 1.45

300 1.03 1.03 1.02 1.03 300 1.26 1.30 1.35 1.30

500 1.01 1.02 1.01 1.02 500 1.04 1.04 1.05 1.05

6∗ 30 1.31 1.31 1.31 1.31 12 30 1.60 1.58 1.60 1.58

50 1.17 1.16 1.16 1.16 50 1.43 1.43 1.44 1.43

100 1.06 1.06 1.06 1.06 100 1.27 1.26 1.30 1.26

300 1.02 1.02 1.02 1.02 300 1.12 1.12 1.24 1.12

500 1.01 1.01 1.01 1.01 500 1.02 1.02 1.02 1.02

4.2. Results

Tables 4.2 and 4.2 show PEs of the best growth functions whenσ2
∗ = 1 and 2, respectively, and

tables 4.2 and 4.2 show SPs of the true growth functions whenσ2
∗ = 1 and 2, respectively. The num-

ber in the column named “case” shows which growth function used as the true growth function. For

example, the number 1 indicates that simulation data are generated from the true growth function of

the case 1, i.e., Bertalanffy. Furthermore,∗ denotes the case that there is the overspecified model. In

the tables, bold fonts indicate the smallest PEs of the best growth functions, and the highest SPs of

the true growth functions.

From tables, we obtained the following results:

• When the number of parameters of the true growth function was not large, i.e., cases 1 to 9,

BCp was the high-performance MSC in most cases. In particular, when the sample size was not

9
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Table 2. The prediction error under each case whenσ2
∗ = 2

case n Cp MCp BCp GCV case n Cp MCp BCp GCV

1∗ 30 2.53 2.57 2.43 2.57 7 30 3.20 3.24 3.09 3.25

50 2.39 2.40 2.27 2.40 50 2.85 2.87 2.67 2.87

100 2.16 2.17 2.11 2.17 100 2.48 2.49 2.31 2.49

300 2.06 2.06 2.03 2.06 300 2.13 2.13 2.08 2.13

500 2.03 2.06 2.02 2.06 500 2.06 2.06 2.04 2.07

2 30 3.47 3.55 3.51 3.57 8 30 4.12 4.26 4.03 4.30

50 2.91 2.95 2.95 2.95 50 3.49 3.61 3.49 3.59

100 2.50 2.52 2.50 2.52 100 2.81 2.83 2.76 2.84

300 2.14 2.14 2.12 2.14 300 2.22 2.22 2.16 2.21

500 2.06 2.12 2.04 2.11 500 2.11 2.12 2.08 2.12

3∗ 30 3.83 3.92 3.79 3.95 9 30 3.18 3.22 3.18 3.24

50 3.00 3.10 2.88 3.09 50 2.80 2.84 2.80 2.84

100 2.52 2.53 2.34 2.54 100 2.43 2.48 2.43 2.48

300 2.23 2.23 2.12 2.23 300 2.18 2.21 2.18 2.21

500 2.11 2.14 2.06 2.15 500 2.12 2.14 2.13 2.14

4∗ 30 3.53 3.49 3.55 3.50 10 30 2.76 2.78 2.92 2.79

50 2.99 2.96 2.98 2.96 50 2.46 2.47 2.51 2.47

100 2.56 2.55 2.55 2.55 100 2.25 2.27 2.26 2.27

300 2.18 2.18 2.18 2.18 300 2.09 2.11 2.11 2.11

500 2.10 2.10 2.11 2.10 500 2.38 2.38 2.72 2.36

5 30 3.58 3.52 3.59 3.53 11 30 4.36 4.56 4.44 4.60

50 2.95 2.92 2.95 2.92 50 3.57 3.69 3.62 3.71

100 2.51 2.51 2.51 2.51 100 2.95 3.03 3.02 3.03

300 2.13 2.13 2.13 2.13 300 2.53 2.56 2.57 2.56

500 2.08 2.08 2.07 2.08 500 2.10 2.13 2.10 2.12

6∗ 30 3.12 3.05 3.14 3.04 12 30 3.59 3.51 3.59 3.53

50 2.69 2.68 2.70 2.67 50 3.06 3.04 3.07 3.04

100 2.34 2.34 2.33 2.34 100 2.66 2.65 2.67 2.66

300 2.10 2.10 2.11 2.10 300 2.33 2.31 2.34 2.31

500 2.05 2.05 2.05 2.05 500 2.08 2.08 2.09 2.08

small, SPs of the true growth function byBCp was always highest among all the MSCs. The

differences of SPs were large in the case that the overspecified model exists, i.e., cases 1, 3, 4

and 6. This is becauseBCp has a consistency andCp, MCp and GCV do not have a consistency,

i.e., the SPs ofBCp converge to 1 asymptotically although those ofCp, MCp and GCV do not in

the cases 1, 3, 4 and 6.

• When the number of parameters of the true growth function was large, i.e., cases 10 to 12,BCp

was not the high-performance MSC. This is because the penalty term ofBCp is too large in the

cases 10 to 12. In general,BCp tends to choose the model having the smaller number of known

parameters than the true model. Reversely,Cp, MCp and GCV tend to choose the model having

the larger number of known parameters than the true model. In the cases 10 to 12, there were

no models having the larger number of known parameters than the true model. Hence, the SPs

of Cp, MCp and GCV tended to be higher than those ofBCp. Although PEs of the best models

10



K. Fukui, M. Yamamura and H. Yanagihara

Table 3. The selection probability under each case whenσ2
∗ = 1

case n Cp MCp BCp GCV case n Cp MCp BCp GCV

1∗ 30 71.9 71.8 85.5 71.1 7 30 80.8 79.7 89.0 79.4

50 72.7 72.1 90.9 73.3 50 85.5 85.0 93.8 85.2

100 74.8 74.7 93.8 74.9 100 89.6 89.3 97.6 89.5

300 81.0 80.7 97.9 80.6 300 93.1 93.0 99.5 92.7

500 82.8 83.0 98.9 64.7 500 89.3 89.2 99.3 77.6

2 30 74.1 74.1 78.8 74.2 8 30 76.1 75.3 77.9 75.7

50 79.2 79.3 85.3 80.3 50 80.8 80.3 83.6 80.7

100 88.7 89.3 95.1 89.2 100 88.2 88.2 90.1 88.2

300 93.8 94.0 98.8 93.8 300 97.1 96.8 97.9 96.8

500 97.2 96.5 98.9 95.1 500 98.8 98.3 99.3 98.2

3∗ 30 63.1 63.2 74.2 63.8 9 30 25.9 18.0 26.0 17.9

50 67.0 67.0 80.9 66.8 50 28.2 21.3 28.5 21.1

100 73.8 73.6 89.6 73.6 100 38.2 32.0 38.8 32.0

300 77.0 77.0 96.1 77.5 300 52.8 50.2 58.6 49.9

500 88.6 88.3 98.5 81.2 500 60.8 60.3 67.0 55.9

4∗ 30 57.3 55.2 57.7 55.5 10 30 2.3 4.0 0.2 5.6

50 70.3 67.3 70.9 67.7 50 12.7 12.1 1.6 11.7

100 80.0 75.7 83.6 76.0 100 38.6 36.2 7.2 36.4

300 81.2 75.6 98.6 75.5 300 77.5 77.3 55.7 77.1

500 87.2 77.2 98.9 68.4 500 49.3 50.1 46.7 50.4

5 30 85.3 55.7 87.5 56.1 11 30 1.2 1.2 0.5 1.2

50 87.9 56.9 90.5 57.2 50 4.6 4.8 1.0 4.5

100 89.1 55.4 95.7 54.9 100 12.9 13.2 2.9 13.4

300 87.4 52.8 98.4 52.4 300 24.9 25.3 15.2 25.6

500 95.8 79.4 99.6 77.1 500 61.1 61.6 38.0 64.4

6∗ 30 54.8 54.1 55.4 54.5 12 30 1.5 4.9 0.0 3.3

50 63.7 63.1 65.6 63.0 50 3.6 6.5 0.1 5.3

100 71.4 70.3 77.4 70.8 100 12.8 17.5 0.3 17.1

300 83.5 81.9 90.4 82.1 300 53.8 52.3 11.8 52.0

500 88.3 88.1 95.2 82.3 500 8.7 10.8 2.8 16.7

chosen byCp, MCp and GCV tended to be smaller than those chosen byBCp, the differences

were not so large.

From the simulation results, the use of the selection method usingBCp for a selection of growth

functions.
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