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Abstract. In this paper, we consider the problem of simultaneous testing of the mean

vector and the covariance matrix when the data have a two-step monotone pattern that

is missing observations. We give the likelihood ratio test (LRT) statistic and propose an

approximate upper percentile of the null distribution using linear interpolation based on

an asymptotic expansion of the modified LRT statistic in the case of a complete data

set. As another approach, we give the modified LRT statistics with a two-step monotone

missing data pattern using the coefficient of the modified LRT statistic with complete

data. Finally, we investigate the asymptotic behavior of the upper percentiles of these

test statistics by Monte Carlo simulation.
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§1. Introduction

Let x1,x2, . . . ,xN1
be distributed as the p-dimensional normal distribution Np(µ,Σ)

and x1,N1+1,x1,N1+2, . . . ,x1N be distributed as the p1-dimensional normal distribution

Np1(µ1,Σ11), where

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

We partition xj into a p1 × 1 random vector and a p2 × 1 random vector as xj =

(x′
1j,x

′
2j)

′, where xij : pi × 1, i = 1, 2, j = 1, 2, . . . , N1.
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Such a data set has two-step monotone missing data:

x′
11 x′

21
...

...
x′
1N1

x′
2N1

x′
1,N1+1 ∗ · · · ∗
...

...
...

x′
1N ∗ · · · ∗


,

where p = p1 + p2, N1 > p, and “∗” indicates a missing observation.

Missing data is an important problem in statistical data analyses. A variety of statisti-

cal procedures to deal with missing data have been developed by many authors, including

Anderson (1957), Bhargava (1962), McLachlan and Krishnan (1997), and Little and Ru-

bin (2002). For a general missing pattern, Srivastava (1985) discussed the LRT for mean

vectors in one-sample and two-sample problems. Seo and Srivastava (2000) derived a test

of equality of means and the simultaneous confidence intervals for the monotone missing

data in a one-sample problem. Anderson (1957) developed an approach to derive the

MLEs of the mean vector and the covariance matrix by solving the likelihood equations

for monotone missing data with several missing patterns. Anderson and Olkin (1985)

derived the MLEs for two-step monotone missing data in a one-sample problem. For

the related discussion of the MLEs in cases of general k-step monotone missing data, see

Jinadasa and Tracy (1992) and Kanda and Fujikoshi (1998).

Further, by the use of the MLEs of the mean vector and the covariance matrix, the

LRT statistic and Hotelling’s T 2-type statistic for tests of mean vectors with two or

three-step monotone missing data has been discussed by Krishnamoorthy and Pannala

(1999), Chang and Richards (2009), Seko, Yamazaki and Seo (2012), and Yagi and Seo

(2014), among others. The problem of simultaneous testing of the mean and the variance

under univariate and non-missing normality has been discussed by Choudhari, Kundu

and Misra (2001) and Zhang, Xu and Chen (2012). For non-missing and multivariate

normality, Davis (1971) gave the modified LRT statistic (see Muirhead (1982) and Sri-

vastava (2002)). In this paper, the LRT and modified LRT statistics are given under
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multivariate normality with a two-step monotone missing data pattern.

The remainder of this paper is organized as follows. In Section 2, we consider the

case in which the missing observations are of the two-step monotone type and provide

an LRT statistic for the simultaneous testing of the mean vector and the covariance

matrix. In Section 3, an approximation to the upper percentile of the LRT statistic

and the modified LRT statistics are given. Finally, in Section 4, the accuracy of the

approximation and the asymptotic behavior of modified statistics are investigated by

Monte Carlo simulation.

§2. Likelihood ratio test statistic

In order to derive the LRT statistic of the simultaneous testing of the mean vector

and the covariance matrix in the case of a two-step monotone missing data pattern, we

present their MLEs, which are given by

µ̂ =

(
µ̂1

µ̂2

)
=

 1

N
(N1x(1)1 +N2x(2))

x(1)2 − Σ̂21

{
Σ̂11

}−1

(x(1)1 − µ̂1)

 ,(2.1)

Σ̂ =

(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)
(2.2)

=

 1

N
(W(1)11 +W(2)) Σ̂11

{
W(1)11

}−1
W(1)12

W(1)21

{
W(1)11

}−1
Σ̂11

1

N1

W(1)22·1 + Σ̂21

{
Σ̂11

}−1

Σ̂12

 ,

where

x(1) =

(
x(1)1

x(1)2

)
, x(1)1 =

1

N1

N1∑
j=1

x1j, x(1)2 =
1

N1

N1∑
j=1

x2j,

x(2) =
1

N2

N∑
j=N1+1

x1j,
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and

W(1) =

(
W(1)11 W(1)12

W(1)21 W(1)22

)
=

N1∑
j=1

(xj − x(1))(xj − x(1))
′,

W(2) =
N∑

j=N1+1

(x1j − x(2))(x1j − x(2))
′ +

N1N2

N
(x(1)1 − x(2))(x(1)1 − x(2))

′,

W(1)22·1 = W(1)22 −W(1)21

{
W(1)11

}−1
W(1)12 .

These results follow from the results in Anderson and Olkin (1985) and Kanda and

Fujikoshi (1998).

In the derivation, we use the following transformed parameters (η,∆) :

η =

(
η1

η2

)
=

(
µ1

µ2 −∆21µ1

)
,

∆ =

(
∆11 ∆12

∆21 ∆22

)
=

(
Σ11 Σ−1

11 Σ12

Σ21Σ
−1
11 Σ22·1

)
,

where Σ22·1 = Σ22 − Σ21Σ
−1
11 Σ12. We note that (η,∆) are in one-to-one correspondence

to (µ,Σ). After multiplying the observation vector xj by the transformation matrix

A =

(
Ip1 O

−∆21 Ip2

)
on the left side, the log likelihood function is derived, and the results can then be obtained

by differentiation.

We consider the following hypothesis test when the data set is of a two-step monotone

pattern.

H0 : µ = µ0, Σ = Σ0 vs. H1 : not H0.(2.3)

Without loss of generality, we can assume that µ = 0 and Σ = Ip. Then, from the MLEs

in (2.1) and (2.2), we obtain the following theorem.

Theorem 2.1. Suppose that the data have a two-step monotone pattern that is missing

observations and that λm is the likelihood ratio (LR) in the case of the two-step monotone
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missing data. Then, the LR of the hypothesis test (2.3) is given by

λm = |Σ̂11|
N
2 |Σ̂22·1|

N1
2

etr

(
−1

2

N∑
i=1

x1ix
′
1i

)
etr

(
−1

2

N1∑
i=1

x2ix
′
2i

)

exp

(
−1

2
Np1

)
exp

(
−1

2
N1p2

) .

Further, the LR can be expressed as

λm =
( e

N

) 1
2
Np1

|W(1)11 +W(2)|
1
2
N

× etr

[
−1

2

{
W(1)11+W(2) +

1

N
(N1x(1)1+N2x(2))(N1x(1)1+N2x(2))

′
}]

×
(

e

N1

) 1
2
N1p2

|W(1)22·1|
1
2
N1etr

{
−1

2
(W(1)22 +N1x(1)2x

′
(1)2)

}
.

The result in Theorem 2.1 coincides with the result in Hao and Krishnamoorthy (2001).

We note that under H0, −2 log λm is asymptotically distributed as a χ2 distribution with

g = p(p+ 3)/2 degrees of freedom when N1, N → ∞ with N1/N → δ ∈ (0, 1]. However,

when the sample size is not large, the χ2 distribution is not a good approximation to the

upper percentile of −2 log λm. Further, it is not easy to find the exact distribution of the

LRT statistic −2 log λm. In the next section, we give an approximate upper percentile of

−2 log λm and propose modified LRT statistics whose upper percentile is close to that of

the χ2 distribution even for small samples.

§3. The modified LRT statistics and an approximate upper
percentile of the LRT statistic

In this section, we propose an approximate upper percentile of the null distribution of

−2 log λm using linear interpolation based on an asymptotic expansion of the modified

LRT statistic in the case of a complete data set. Further, as another approach, we give

the modified LRT statistics using the coefficient of the modified LRT statistic for the

complete data.
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3.1. Modified coefficient approximation procedure

We first consider the LR in the case of a complete data set. Let x1,x2, . . . ,xN, ∼

Np(µ,Σ), and let λc be the LR for the complete data set. Then, the LR is given by

λc =
( e

N

)Np
2 |V |

N
2 etr

{
−1

2
(V +Nxx′)

}
,

where

x =
1

N

N∑
i=1

xi, V =
N∑
i=1

(xi − x)(xi − x)′.

Further, the modified LRT statistic is given by −2ρN,p log λc, where ρN,p = 1− (2p2 +

9p+ 11)/ {6N(p+ 3)}, and its cumulative distribution function can be expanded as

Pr(−2ρN,p log λc ≤ x) = Gg(x) +
γ

M2
{Gg+4(x)−Gg(x)}+O(M−3),(3.1)

where

M = ρN,pN, γ =
p

288(p+ 3)
(2p4 + 18p3 + 49p2 + 36p− 13),

and Gg(x) and Gg+4(x) are the cumulative distribution functions of the χ2 distribution

with g(= p(p+ 3)/2) and g + 4 degrees of freedoms, respectively.

This result was derived by Davis (1971) (see Muirhead (1982) and Srivastava (2002)).

This means that if the χ2 distribution is used as an approximation to the distribution of

−2ρN,p log λc, the error involved is not of order M−1 but of order M−2.

If we denote the coefficients of the modified LRT statistics in the case of complete data

sets N and N1 by ρN,p and ρN1,p, respectively, then it may be noted that ρmiss is between

ρN,p and ρN1,p, where ρmiss is the coefficient of the modified LRT statistic −2ρmiss log λm.

From the linear interpolation, we propose an approximation to the modified LRT statis-

tic in the case of two-step monotone missing data. Calculating the approximate coeffi-

cient ρ∗miss = (p1ρN,p + p2ρN1,p)/p, we can obtain an approximate modified LRT statistic

−2ρ∗miss log λm, where

ρ∗miss = 1− 1

N

(
1 +

N2p2
N1p

)
2p2 + 9p+ 11

6(p+ 3)
.
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3.2. Asymptotic expansion approximation procedure

In this subsection, we give an approximate upper percentile of −2 log λm when the data

have a two-step monotone pattern that is missing observations. First, in the case of a

complete data set, we obtain the following lemma.

Lemma 3.1. Suppose that x1,x2, . . . ,xN are distributed as Np(µ,Σ). Then, under the

null hypothesis H0 in (2.3), the upper percentile of the modified LRT statistic,−2ρN,plogλc,

can be expanded as

qMLR·c(α) = χ2
g(α) +

1

M2

2γ

g(g + 2)
χ2
g(α)

{
χ2
g(α) + g + 2

}
+ o(M−2),

where

M = ρN,pN, ρN,p = 1− 2p2 + 9p+ 11

6N(p+ 3)
, g =

1

2
p(p+ 3),

and χ2
g(α) is the upper percentile of the χ2 distribution with g degrees of freedom.

Proof. Putting the upper percentile of −2ρN,p log λc with

qMLR·c(α) = χ2
g(α) +

1

M2
h+ o(M−2),

where h is a constant, we have

1− α = Gg(qMLR·c(α))− gg(χ
2
g(α))

1

M2
h+ o(M−2),(3.2)

where Gg(x) and gg(x) are, respectively, the cumulative distribution function and the

density function of the χ2 distribution with g degrees of freedom. On the other hand,

from (3.1), we can write

1− α = Pr {−2ρN,p log λc ≤ qMLR·c(α)}

= Gg(qMLR·c(α)) +
γ

M2
{Gg+4(qMLR·c(α))−Gg(qMLR·c(α))}(3.3)

+ o(M−2).

Therefore, using Gg+2j(x) = −2gg+2j(x)+Gg+2(j−1)(x), j = 0, 1, 2 and comparing (3.2)

with (3.3), we obtain

h =
2γ

g(g + 2)
χ2
g(α)

{
χ2
g(α) + g + 2

}
+ o(M−2).



8 MIKI HOSOYA AND TAKASHI SEO

From Lemma 3.1 and M−2 = N−2 + O(N−3), we can expand the upper percentile of

−2 log λc as

qLR·c(α) = χ2
g(α) +

ν

N
χ2
g(α) +

1

N2
χ2
g(α)

{
ν2+

2γ

g
+

2γ

g(g + 2)
χ2
g(α)

}
+o(N−2),

where

ν =
2p2 + 9p+ 11

6(p+ 3)
.

From the linear interpolation, letting qLR·m(α) be the upper percentile of −2 log λm, an

approximate upper percentile of −2 log λm can be obtained as

q∗LR·m(α) = χ2
g(α) +

1

N

(
p1 +

1

c1
p2

)
ν

p
χ2
g(α)

+
1

N2

(
p1 +

1

c21
p2

)
χ2
g(α)

p

{
ν2 +

2γ

g
+

2γ

g(g + 2)
χ2
g(α)

}
+ o(N−2),

where c1 = N1/N.

3.3. The LRT statistic’s decomposition procedure

In this section, we give other modified LRT statistics by the decomposition of λm. We

first consider the following test problem for Σ.

H01 : Σ = Σ0 = I vs. H11 : Σ ̸= Σ01.

Hao and Krishnamoorthy (2001) derived the modified LRT statistic λm·Σ in the case of

two-step monotone missing data, which is given by

λm·Σ =
( e
n

) 1
2
np1 ∣∣W(1)11 +W(2)

∣∣ 12n exp{−1

2
tr(W(1)11 +W(2))

}
×
(

e

n1

) 1
2
n1p2 ∣∣W(1)22·1

∣∣ 12n1 exp

{
−1

2
trW(1)22·1

}
× exp

{
−1

2
tr(W(1)22 −W(1)22·1)

}
,
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where n = N−1, n1 = N1−p1−1. We note that the modified LRT statistic −2 log λm·Σ is

an unbiased test statistic (see Hao and Krishnamoorthy (2001) and Chang and Richards

(2010)). Further, after modifying and rearranging some terms, they expressed the mod-

ified LR for H0 in (2.3) as λm·Σλ1λ2, where

λ1 = exp

{
− 1

2N
(N1x(1)1 +N2x(2))

′(N1x(1)1 +N2x(2))

}
,

λ2 = exp

{
−1

2
N1x

′
(1)2x(1)2

}
.

If we denote

λ3 =
( e

N

) 1
2
Np1

|W(1)11 +W(2)|
1
2
N exp

{
−1

2
tr(W(1)11 +W(2))

}
,

λ4 =

(
e

N1

) 1
2
N1p2

|W(1)22·1|
1
2
N1 exp

{
−1

2
tr(W(1)22·1)

}
,

λ5 = exp

{
−1

2
tr(W(1)21W

−1
(1)11W(1)12)

}
,

we can express λm =
∏5

i=1 λi. Since λ1λ3 and λ2λ4 are of the form of LR for H0 under

non-missing normality, we can give the modified LRT statistics, −2ρN,p1 log λ1λ3 and

−2ρN1,p2 log λ2λ4, respectively, where

ρN,p1 = 1− 2p21 + 9p1 + 11

6N(p1 + 3)
, ρN1,p2 = 1− 2p22 + 9p2 + 11

6N1(p2 + 3)
.

Thus, we propose a new modified LRT statistic given by −2 log τ , where

τ = (λ1λ3)
ρN, p1 (λ2λ4)

ρN1, p2λ5 .

In addition, we denote

λ∗
3 =

( e
n

) 1
2
np1

|W(1)11 +W(2)|
1
2
n exp

{
−1

2
tr(W(1)11 +W(2))

}
,

λ∗
4 =

(
e

n1

) 1
2
n1p2

|W(1)22·1|
1
2
n1 exp

{
−1

2
tr(W(1)22·1)

}
.

Then, we can propose the modified LRT statistic −2 log τ ∗, where

τ ∗ = λ1λ2(λ
∗
3)
ρn, p1 (λ∗

4)
ρn1, p2λ5
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and

ρn,p1 = 1− 2p21 + 3p1 − 1

6n(p1 + 1)
, ρn1,p2 = 1− 2p22 + 3p2 − 1

6n1(p2 + 1)
.

§4. Simulation studies

We evaluate the accuracy and the asymptotic behaviors of the χ2 approximations by

Monte Carlo simulation (106 runs).

In Table 1, we provide the simulated upper 100α percentiles of −2 log λm and

−2ρ∗miss log λm and the approximate upper percentiles of −2 log λm, that is, q∗LR·m(α) for

(p1, p2) = (8, 4); α = 0.05, 0.01; and for the following three cases of (N1, N2),

(N1, N2) =


(m,m), m = 20, 40, 80, 160, 320,
(2m,m), m = 10, 20, 40, 80, 160,
(m, 2m), m = 20, 40, 80, 160.

In Table 2, we provide the same upper percentiles as those given in Table 1 for (p1, p2) =

(8, 4); α = 0.05, 0.01; (N1, N2) = (m1,m2),m1 = 40, 80, 160, 320, m2 = 10, 30, 60, 120,

where the sets of (N1, N2) are combinations of m1 and m2.

It may be noted from Tables 1 and 2 that the simulated values are closer to the upper

percentile of the χ2 distribution when the sample size becomes large. In addition, it

can be seen from both tables that the upper percentile of −2ρ∗miss log λm is considerably

better than that of −2 log λm even for small sample sizes. Further, Tables 1 and 2 list the

simulated coverage probabilities for the upper percentiles of −2 log λm and −2ρ∗miss log λm

as well as q∗LR·m(α), which are given by

CPm(χ
2) = 1− Pr

{
−2 log λm > χ2

g(α)
}
,

CP∗
m(χ

2) = 1− Pr
{
−2ρ∗miss log λm > χ2

g(α)
}
,

and

CP(q∗LR·m) = 1− Pr {−2 log λm > q∗LR·m(α)} ,
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respectively. It appears from the simulated results that the approximate value q∗LR·m(α)

based on the asymptotic expansion is good for all cases, even when N1 < N2. Therefore,

it can be concluded that our approximation procedures are very accurate for most of the

cases.

In Tables 3 and 4, we provide the simulated upper percentiles of −2 log τ and −2 log τ ∗

for the same cases as those in Tables 1 and 2. It may also be noted that the upper

percentiles of −2 log τ ∗ are considerably good even for small sample sizes. Tables 3

and 4 list the simulated coverage probabilities for the upper percentiles of −2 log τ and

−2 log τ ∗, which are given by

CPτ (χ
2) = 1− Pr

{
−2 log τ > χ2

g(α)
}

and

CPτ∗(χ
2) = 1− Pr

{
−2 log τ ∗ > χ2

g(α)
}
,

respectively. The results for coverage probabilities also show that our modified LRT

statistic −2 log τ ∗ yields considerably good χ2 approximations for cases in which the

sample size is small.

In conclusion, we have developed the approximate upper percentiles of the LRT statis-

tic −2 log λm and some modified LRT statistics for simultaneous testing of the mean

vector and the covariance matrix for the case of two-step monotone missing data. The

null distribution of the modified LRT statistic −2 log τ ∗ proposed in this paper has con-

siderably good approximation to the χ2 distribution even when the sample size is small.
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Table 1: The simulated values for −2 log λm and −2ρ∗miss log λm, and the approximate
value for −2 log λm, and the simulated coverage probabilities when (p1, p2) = (8, 4)

Sample Size Upper Percentile Coverage Probability

N1 N2 −2 log λm −2ρ∗miss log λm q∗LR·m(α) CPm(χ
2) CP∗

m(χ
2) CP(q∗LR·m)

α = 0.05

20 20 149.97 127.36 134.65 0.406 0.798 0.818

40 40 126.88 117.32 122.79 0.798 0.917 0.920

80 80 119.32 114.82 117.69 0.897 0.938 0.939

160 160 116.12 113.94 115.35 0.928 0.945 0.945

320 320 114.59 113.51 114.23 0.940 0.947 0.948

20 10 152.74 125.88 138.65 0.359 0.819 0.836

40 20 128.09 116.83 124.50 0.779 0.921 0.925

80 40 119.79 114.52 118.47 0.891 0.940 0.941

160 80 116.39 113.83 115.72 0.925 0.945 0.945

320 160 114.73 113.47 114.41 0.939 0.948 0.948

20 40 147.56 129.02 130.99 0.449 0.773 0.797

40 80 125.81 117.91 121.16 0.815 0.912 0.916

80 160 118.85 115.11 116.93 0.902 0.936 0.936

160 320 115.87 114.05 114.98 0.930 0.944 0.944

α = 0.01

20 20 165.26 140.35 147.80 0.642 0.929 0.939

40 40 139.32 128.82 134.71 0.931 0.980 0.981

80 80 130.99 126.05 129.11 0.973 0.987 0.987

160 160 127.35 124.95 126.53 0.983 0.989 0.989

320 320 125.71 124.52 125.31 0.987 0.989 0.989

20 10 168.20 138.62 152.21 0.594 0.939 0.947

40 20 140.52 128.16 136.60 0.922 0.982 0.983

80 40 131.41 125.63 129.97 0.971 0.987 0.988

160 80 127.74 124.93 126.94 0.983 0.989 0.989

320 160 125.95 124.56 125.51 0.987 0.989 0.989

20 40 162.72 142.28 143.76 0.682 0.916 0.928

40 80 138.16 129.48 132.93 0.939 0.978 0.979

80 160 130.39 126.30 128.27 0.975 0.986 0.986

160 320 127.10 125.10 126.13 0.984 0.988 0.988

Note. The closest to 1− α in coverage probabilities CPm(χ
2), CP∗

m(χ
2), and CP(q∗LR·m) of each low is

in bold. χ2
g(0.05) = 113.145, χ2

g(0.01) = 124.116.
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Table 2: The simulated values for −2 log λm and −2ρ∗miss log λm, and the approximate
value for −2 log λm, and the simulated coverage probabilities when (p1, p2) = (8, 4)

Sample Size Upper Percentile Coverage Probability

N1 N2 −2 log λm −2ρ∗miss log λm q∗LR·m(α) CPm(χ
2) CP∗

m(χ
2) CP(q∗LR·m)

α = 0.05

40 10 129.12 116.46 125.92 0.763 0.925 0.929

80 10 120.61 114.30 119.55 0.883 0.942 0.943

160 10 116.78 113.61 116.35 0.922 0.947 0.947

320 10 115.01 113.41 114.75 0.937 0.948 0.948

40 30 127.40 117.11 123.51 0.790 0.919 0.923

80 30 120.07 114.52 118.76 0.889 0.940 0.941

160 30 116.65 113.70 116.12 0.923 0.946 0.947

320 30 114.88 113.35 114.68 0.937 0.949 0.949

40 60 126.21 117.65 121.80 0.808 0.914 0.918

80 60 119.57 114.74 118.02 0.894 0.938 0.939

160 60 116.48 113.79 115.86 0.924 0.946 0.946

320 60 114.86 113.41 114.60 0.938 0.948 0.948

40 120 125.31 118.22 120.38 0.822 0.908 0.913

80 120 119.07 115.03 117.23 0.900 0.936 0.937

160 120 116.28 113.94 115.51 0.926 0.945 0.945

320 120 114.69 113.37 114.48 0.939 0.948 0.949

α = 0.01

40 10 141.67 127.79 138.17 0.914 0.982 0.984

80 10 132.28 125.36 131.15 0.968 0.988 0.988

160 10 128.08 124.60 127.63 0.982 0.989 0.989

320 10 126.09 124.34 125.87 0.986 0.990 0.990

40 30 139.93 128.63 135.51 0.928 0.980 0.982

80 30 131.67 125.58 130.28 0.970 0.987 0.988

160 30 127.85 124.62 127.38 0.982 0.989 0.989

320 30 126.12 124.44 125.81 0.986 0.989 0.989

40 60 138.51 129.11 133.63 0.936 0.979 0.980

80 60 131.18 125.88 129.47 0.972 0.987 0.987

160 60 127.63 124.68 127.09 0.983 0.989 0.989

320 60 126.04 124.45 125.72 0.986 0.989 0.989

40 120 137.51 129.74 132.07 0.943 0.977 0.979

80 120 130.65 126.22 128.60 0.974 0.986 0.986

160 120 127.40 124.83 126.71 0.983 0.989 0.989

320 120 125.74 124.29 125.58 0.987 0.990 0.990

Note. The closest to 1− α in coverage probabilities CPm(χ
2), CP∗

m(χ
2), and CP(q∗LR·m) of each low is

in bold. χ2
g(0.05) = 113.145, χ2

g(0.01) = 124.116.
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Table 3: The simulated values for −2 log τ and −2 log τ ∗, and the simulated coverage
probabilities when (p1, p2) = (8, 4)

Sample Size Upper Percentile Coverage Probability

N1 N2 −2 log τ −2 log τ∗ CPτ (χ
2) CPτ∗(χ2)

α = 0.05

20 20 140.32 114.86 0.572 0.938

40 40 123.20 113.82 0.850 0.945

80 80 117.59 113.43 0.914 0.948

160 160 115.34 113.31 0.934 0.949

320 320 114.17 113.20 0.943 0.950

20 10 141.20 115.61 0.556 0.932

40 20 123.55 114.11 0.846 0.943

80 40 117.81 113.60 0.912 0.947

160 80 115.37 113.37 0.934 0.949

320 160 114.29 113.30 0.942 0.949

20 40 139.63 114.28 0.585 0.942

40 80 122.95 113.64 0.854 0.947

80 160 117.53 113.35 0.915 0.949

160 320 115.19 113.22 0.935 0.950

α = 0.01

20 20 154.54 126.08 0.788 0.987

40 40 135.06 124.78 0.955 0.989

80 80 129.00 124.41 0.979 0.990

160 160 126.44 124.28 0.986 0.990

320 320 125.23 124.20 0.988 0.990

20 10 155.31 126.80 0.776 0.985

40 20 135.48 125.19 0.953 0.988

80 40 129.25 124.64 0.978 0.989

160 80 126.51 124.33 0.985 0.990

320 160 125.38 124.32 0.988 0.990

20 40 153.67 125.34 0.798 0.988

40 80 135.00 124.69 0.956 0.989

80 160 128.91 124.36 0.979 0.990

160 320 126.50 124.30 0.986 0.990

Note. The closer to 1− α in coverage probabilities CPτ (χ
2) and CPτ∗(χ2) of each low is in bold.

χ2
g(0.05) = 113.145, χ2

g(0.01) = 124.116.
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Table 4: The simulated values for −2 log τ and −2 log τ ∗, and the simulated coverage
probabilities when (p1, p2) = (8, 4)

Sample Size Upper Percentile Coverage Probability

N1 N2 −2 log τ −2 log τ∗ CPτ (χ
2) CPτ∗(χ2)

α = 0.05

40 10 123.78 114.33 0.843 0.942

80 10 118.00 113.71 0.911 0.946

160 10 115.51 113.49 0.933 0.948

320 10 114.31 113.28 0.942 0.949

40 30 123.39 113.97 0.848 0.944

80 30 117.90 113.68 0.912 0.946

160 30 115.38 113.39 0.934 0.948

320 30 114.33 113.29 0.942 0.949

40 60 123.05 113.74 0.853 0.946

80 60 117.73 113.54 0.913 0.947

160 60 115.41 113.39 0.933 0.948

320 60 114.29 113.29 0.942 0.949

40 120 122.78 113.46 0.856 0.948

80 120 117.62 113.39 0.914 0.948

160 120 115.24 113.25 0.935 0.949

320 120 114.17 113.18 0.943 0.950

α = 0.01

40 10 135.92 125.47 0.952 0.988

80 10 129.33 124.76 0.978 0.989

160 10 126.68 124.45 0.985 0.989

320 10 125.34 124.18 0.988 0.990

40 30 135.30 125.05 0.954 0.988

80 30 129.35 124.62 0.978 0.989

160 30 126.71 124.42 0.985 0.990

320 30 125.33 124.28 0.988 0.990

40 60 135.00 124.70 0.956 0.989

80 60 129.15 124.55 0.979 0.989

160 60 126.61 124.43 0.985 0.989

320 60 125.42 124.35 0.988 0.990

40 120 134.60 124.49 0.958 0.989

80 120 129.06 124.45 0.979 0.989

160 120 126.52 124.24 0.986 0.990

320 120 125.27 124.16 0.988 0.990

Note. The closer to 1− α in coverage probabilities CPτ (χ
2) and CPτ∗(χ2) of each low is in bold.

χ2
g(0.05) = 113.145, χ2

g(0.01) = 124.116.
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