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Abstract

In this paper, we evaluate the asymptotic behaviors of thiEerdnces between the log-
determinants of two random matrices distributed according to the Wishart distribution by using a
high-dimensional asymptotic framework in which the sizes of the matrices and the degrees of free-
doms approachko simultaneously. We consider two structures of random matrices: a matrix is
completely included in another matrix, and a matrix is partially included in another matrix. As
an application of our result, we derive the condition needed to ensure consistency for a given log-
likelihood-based information criterion for selecting variables in a canonical correlation analysis.
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1. Introduction

Let W1 andW; be p x p symmetric random matrices distributed according to the Wishart distri-
bution (Wishart matrices). In this paper, we study the asymptotic behavior offfeeetlice between
the log-determinants of two Wishart matrices, i.e.,

o (W
log|W>| - log|W1| = log Wil (1)

The diterence between the log-determinants of two Wishart matrices plays a key role in multivari-
ate analysis, because many statistics in multivariate analysis (e.qg., the log-likelihood ratio statistic
under the normality assumption) can be expressed dkeaatice (see, e.g., Muirhead, 1982; Siotani

et al, 1985; Anderson, 2003). Hence, to prove the asymptotic behavior gi¥Wgig| W1 | is of major
interest in multivariate analysis. A common approach to the study of asymptotic behavior is to use
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a large sample (LS) asymptotic framework such that the samplensizhich is also the number

of degrees of freedom of the Wishart matrix, approackesSince high-dimensional data analysis

has been attracting the attention of many researchers in recent years, it is important to study the
asymptotic behavior in terms of the following high-dimensional (HD) asymptotic framework.

¢ HD asymptotic frameworkn — p and p/n are approachingo andc € [0, 1), respectively. It
should be emphasized that the ordinary LS asymptotic framework is included in the HD asymp-
totic framework as a special case.

An aim of this paper is to evaluate the asymptotic behavior ofWiggl/|W3|, using the HD asymp-
totic framework. LetOg , be ad x p matrix of zeros. We will consider the following structures for
Wishart matrices:

Case 1. Thé¥/; includesW; completely, i.e.,
Wi ~Wo(n-K Ip), Wo=Wi1+Z'Z ~Wp(n-k+d, I), (2)

wherek andd are positive integers independeninaindp, andW; andZ are independent
random matrices defined by

Z ~ Ndxp(od,p, Ip ® Id)~

Case 2. Thé¥, includesW, patrtially, i.e.,
Wi =U'U ~Wp(n-k, Ip), Wp = (ZT' +U) (ZT’ +U) ~ Wy(n—k, I, +TT), (3)

whereT' is ap x r constant matrixk andr are positive integers independentroénd p,
andU and Z are independent random matrices defined by

U~ N(n—k)xp(on—k,p, Ip ® In—k), Z ~ N(n—k)xr(on—k,h Ir ® In—k)-

Cases 1 and 2 correspond to the log-likelihood ratio statistics of models with an inclusion relation
and without an inclusion relation, respectively.

As an application of our result, we derive the condition for ensuring the consistency of a log-
likelihood-based information criterion (LLBIC) for selecting variables in a canonical correlation
analysis (CCA) that analyzes the correlation of two linearly combined variables; note that this is
an important method in multivariate analysis. An optimized solution of can be found by solving
an eigenvalue problem. CCA has been introduced in many textbooks on applied statistical analy-
sis (see, e.g., Srivastava, 2002, chap. 14.7; Timm, 2002, chap. 8.7), and it is widely used in many
applied fields (e.g., Doeswijit al, 2011; Khalilet al,, 2011; and Vahedia, 2011). The family of
LLBICs includes many famous information criteria, e.g., Akaike’s information criterion (AIC), the
bias-corrected AIC (Alg), Takeuchi's information criterion (TIC), the Bayesian information cri-
terion (BIC), the consistent AIC (CAIC), and the Hannan and Quinn information criterion (HQC).
Under a general model, the AIC, AICTIC, BIC, CAIC, and HQC were proposed by Akaike (1973;
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1974), Hurvich and Tsai (1989), Takeuchi (1976), Schwarz (1978), Bozdogan (1987), and Hannan
and Quinn (1979), respectively. The AIC and Alfor selecting variables in CCA were proposed
by Fujikoshi (1985), and the TIC for selecting variables in CCA was proposed by Hashgtama
al. (2014). By using the AIC for CCA and the definitions of the original information criteria, we
formulate the BIC, CAIC, and HQC for selecting variables in CCA. In this paper, if the asymptotic
probability that an information criterion selects the true model approaches 1, then we say that the
information criterion is consistent. Under the HD asymptotic framework, Yanagétai (2012)
and Fujikoshiet al. (2014) studied the consistency of an information criterion in a multivariate
linear regression model. For CCA, there are no results in the literature on the consistency of an
information criterion under the HD asymptotic framework, although several authors (e.g., &ishii
al., 1988) have studied consistency under the LS asymptotic framework.

This paper is organized as follows: In Section 2, we present our main results. In Section 3, we
show a condition for ensuring the consistency of the LLBIC for CCA. Technical details are provided
in the Appendix.

2. Main Results

In this section, we evaluate the asymptotic behavior ofWigl/|W73| in (1) within the HD asymp-
totic framework. We begin by considering case 1, and we have the following theorem (the proof is
given in Appendix A):

Theorem 1 Suppose thatW; and W5, are Wishart matrices given ). Then, we have

|Wo| VP p )
— = - —|1-= 4
l0g 571 = ~dlog(1—p/m) + - (1 n)tr(V) + Op(pri2), (4)
whereV is ad x d random matrix with the orde®,(1), which is given by
_n 1 P
V= lo(zw1 z n_k_p_lld), ®)

andtr(V) is asymptotically distributed as

(xd,—dp)/vP  (pisbounde}

6
N(O,2d/(1 - C)3) (p— ) ©)

tr(v) S {
Wakaki (2006) derived a result similar to Theorem 1 by using a property of Wilks’ lambda distribu-
tion, whereas we used a property of the Wishart distribution to prove it.

Notice that
p

—% Iog(l— ﬁ) =1+0(pn?),

and

A (1= 2)- 50X =dm = Lx—dp+ O )

whereX is a random variable distributed according to the chi-square distributiord\pitiegrees of
freedom. Hence, from Theorem 1, the following corollary is obtained:
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Corollary 1  Suppose thaWW; and W, are Wishart matrices given l{@). Then, we have

W5
log —= = —dlog(1-c) + 0,(1), 7
9] g(1-c) +0p(1) (7
and W
n 2
—log —= = R+ 0p(1),
D 9|W1| p(1)

whereR is defined by

_ { X/p, X~ x5, (pisbounde}

dg(c) (p — )
Here,g(X) is a function with domairx € [0, 1), which is given by
1 (x=0)
90 = { —xllog(l-x (xe(0,1) ®

From elementary calculus calculations, it turns out th#@) is defined to be equal to
limyo0+{—x"1log(1 - x)} and thaty(X) is a strictly monotonically increasing function ine [0, 1).
In this paper, we have derived Corollary 1 through Theorem 1. Although it is necessary to clarify
the asymptotic distribution of ti() in order to prove Theorem 1, (7) can be derived without the
asymptotic distribution of t&’), using only the expectation of ¥{).

Next, we consider case 2, and we have the following theorem (the proof is given in Appendix B):

Theorem 2 Suppose thaW; and W5 are Wishart matrices given ). Then, we have

|[Wo|
log—= =log|I, + I'T’| + 0,(1). 9
9|W1| gllp |+ 0p(1) 9)

3. Application

3.1. Redundancy Model in CCA

In this section, we show an example of an application of Theorems 1 and 2 to an actual statistical
problem. We derive conditions to separately ensure consistency and inconsistency of the LLBIC for
selecting variables in CCA.

Letz = (z',y') = (X1,...,%q, ¥1,...,yp) be a @+ p)-dimensional random vector distributed
according to thed+ p)-variates multivariate normal distribution with the following mean vector and
covariance matrix:

S
E[z]:u:(“x], Cm[z]zzz[ ,XX X”]
Ly My By

Suppose thaj denotes a subset of = {1,..., g} containingq; elements, anct; denotes they;-
dimensional vector consisting afindexed by the elements ¢f For example, ifj = {1, 2, 4}, then
x;j consists of the first, second, and fourth elements.ofVe will also letj denote the complement
of the setj, i.e., j = j°. Of course, it holds that,, = = andq, = g. Without loss of generality,
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we dividex into two subvectore = (m’j, sr:}—)’, wherezxjis a (@ - g;)-dimensional random vector.
Expressions ok, andXy, corresponding to the division af are

E.
, zxyz[ ”’].
Ejy

These imply that another expressiondtorresponding to the division is

i Xy

Sy =
XX E]]— >

1

X Xy Xy
> = 2}1.— X5 Xy . (10)
¥, 5%,

Let z1,..., 201 be (0 + 1) independent random vectors from and letS be the usual unbiased
estimator ofE given byS = nt X™(z — 2)(z - 2), wherez = (n+ 1)~ X! 2. Following the
same method that we used fBrin (10), we divideS as

Sii Sii Sy
Sxx S
S S s S-S
iy iy by

One of the interests in CCA is to determine whetheis irrelevant. Fujikoshi (1985) determined
thatzxyis irrelevant if the following equation holds:

(S 2, T,) = (S5, 2, %)) (12)
In particular, we note that (11) is equivalent to
2j, — B8, = Ogqpp (12)
Consequently, the candidate model in whighis irrelevant can be expressed as
NS ~ Wpq(n, ) st. tr(E55 Xy, 2, X),) = tr(Z12, X, 5). (13)

In CCA, the above model is called the redundancy mgaelsimply the modej. If the modelj is
selected as the best model, then we can regaas irrelevant and; as relevant.
An estimator ofX in (13) is given by

3 = arg rgin{F(S, %) St ANy By, B,) = (32,2, 50,)
whereF (S, X)) is given by
F(S.%) = {t(=7S) - log 1= S| - (p+ Q).

It is easy to see thatF(S, X) is the Kullback—Leibler (KL) discrepancy function assessed by the
Wishart density. In the analysis of covariance structure, the discrepancy function is frequently called
the maximum likelihood discrepancy functiord(@skog, 1967). Although we do not present it here,

fJ,— can be derived in a closed form (see, e.g., Fujikoshi & Kurata, 2008; Fujikbshj 2010, chap.

11.5).
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3.2. AClass of Information Criteria for CCA

Let J be a set of candidate models denotedby: {ji, ..., jk}, whereK is the number of mod-
els. We separatd into two sets such that one is a set of overspecified models, and the other is a set
of underspecified models. L&, denote the set of overspecified models, which is defined by

T, = {j € JIt(S Ty ;0 y,) = t1(Z] 2, 2,03} -

vy
Suppose that the true model is expressed as the overspecified model having the smallest number of
elements, i.e.,
Je = arg]_rer}qu.
For simplicity, we writeg;, asc.. On the other hand, Igf_ denote the set of underspecified models,
which is defined by
J =9.nJ.

For the general expression for apg 7, 3,,.; andS,,.; are defined as

Epyi =y - Z}yzj_jlzjy’ Syyj = Syy — S]ysulsly (14)

In particular, we writex,,., = X,,.x andS,,., = S,,.x. From Fujikoshiet al. (2010, chap. 11.5)
and the fact that tﬁJjS) = p+ g, the minimum value oF (X, S) under the modej is given by

Fuini) = F(S, ) = log 121!
B

In the modelj, various information criteria can be defined by adding a penalty term for the model
complexitym(j) to nFqin(j), i.e., several information criteria are included in the following class of
information criteria:

ICm(J) = NFmin(j) + m(j). (15)

By changingm(j), (15) can express the following specific criteria:

2(pg; + (P + PP + g+ p)/2} (AIC)
n{b(a) + b(q; + p) — b(a;) — (@ + p)} (AIC,)
m(j) = 2{pq; + (P + P? + g+ P)/2} + &y +K(jy —k; (TIC) ’ (16)
{pq; + (6% + p*+ g+ p)/2} logn (BIC)
{pg; + (? + p? + q+ p)/2)(logn + 1) (CAIC)
2{pg; + (* + P* + g+ p)/2} log logn (HQC)

whereb(g) is a function ofq defined byng/(n — g — 1), and«;, kj, and«(, are estimators of
multivariate kurtoses af, x;, and (n}y’)’, respectively, which are defined by

kx = k(Dy), kj = k(Dj), k(i) = K(Dyjy)-

Herek(D) is an estimator of multivariate kurtosis of tHevariates extracted froma by D’ z, which
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is defined by
n+1
k(D) = Fll ; {(zi -2YD(D'SD)D'(z - z_)}2 —d(d +2), (17)

whereD is a @ + p) x d matrix whose elements are 0 or 1, and satisfié® = Iy, e.g.,

I (0] I,
sz[ K ],Dy=[ q’p],DF( @ ]’D(i,y)z(Di’Dy)-
Opq I, Opg-q,.9,

Additionally, we assume that there exists a nonzero fungjgn, p) such that

g = plim ™) =m.)

, 0O< i) < oco. 18
N—p—o0,p/N—C am(n, p) IBm(J)l ( )

We regard as the best model the candidate model that makahéGmallest, i.e., the best model
chosen by IG, can be expressed as

Jm = arg Jfglynlcm(l)-

Let oy, be an asymptotic probability such thtjm = j.) — amasn - p — o andp/n — c. The
ICh, is consistent ifvy, = 1, and it is inconsistent it < 1.

3.3. Conditions for Consistency in CCA
We begin with the following lemma (the proof is given in Appendix C):
Lemmal The following equations are derived:

1. Let
W1=W, W2=W+Z/Z,

whereW; and W, are independent random matrices defined by
W ~Wp(n—=0j, Ip),  Z ~ Nigi-q)xp(Og;-q..p: Ip ® Igj—q.)-

Then, for anyj € J:\{j«}, Fmin(j) = Fmin(j«) can be rewritten as
Fmin(J) = Fmin(j.) = —log —=. (19)

2. Let
W1 =U'U = W3+ U,U,, W, = (ZT5 + U)(ZT5 + U), W3 = U Uy,
whereU = (U;,Uy)’, U1, Uz, and Z are mutually independent random matrices defined by
Ui ~ Nin-axp(On-gp- In-q ® Ip), Uz ~ Nig-g)xp(Og-q;,p Lg-; ® 1),
Z ~ N(n—q,)X(q—qJ)(On—q,,q—q,’Iq—q, ® In—q.),
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andT'j is a p x (q — g;) nonrandom matrix defined by

o s-l2p / s-lxv. yysa-1/2
T = 2,055 - T,y 52 (20)

HereX,, « is given by(14), and X7 is defined by

. _ ’ -1 _
i) = B - By (21)

Then, for anyj € J_, Fnin(j) — Fmin(w) can be rewritten as

. W- W-
Frin(i) = Frin() = log 02 1 jog W2l

. 22
Wl \4Z] (22)

Letd; = log|Ip + sl It is known thats; > 0 with equality if and only ifj € 7., because
T'j = Opq-q holds if and only ifj € 7. Moreover,s; can be rewritten as
132yl
DIl

dj = log|Ip + I';I}| = log (23)

(the proof is given in Appendix D). Notice thaj depends orp notn. It should be kept in mind
that sometimes ligL... 6; becomes infinite and other times it is finite (see examples in Appendix
E). The size of a convergent value and the ordef;gilay an important role in deciding whether a
criterion is consistent. In addition, we assume thatlims; > O for j € J_.
Whenj € J.\{j.}, it follows from Corollary 1 and Lemma 1 th&&min(j) — Fmin(j«) = 0p(1).
Notice that
Fmin(i) = Fmin(J«) = Fmin(]) = Fmin(®) + Fmin(®w) = Fmin(j+)-

Sincew € J+, Fmin(w) — Fmin(j«) = 0p(1) holds. By using this result, Theorem 2, and Lemma 1,
we have

Frin(J) = Fmin(j.) = 6; + 0p(1) ("] € J2). (24)
Let us defineR; by
, (25)

(9j - g.)g(c) (p— )

whereg(x) is the function given by (8). By applying Corollary 1 to the case of CCA through Lemma
1, we derive

o { Xi/p, Xj NX(Zqi—q*)p (p is boundedl
=

n . . . .
o {Fmin(j) = Fmin(j.)) = =Rj + 0p(1) ("} € T:\{j.). (26)
From Lemma A.3 in Yanagihara (2013), we can see that the LLBIC is consistent if the following
equations hold:

. 1 . . . .
plim 5{|Cm(J)—|Cm(J*)}>0 ("j € T\,

n—p—co,p/n—cC

. 1 . . .
plim  —{ICu(j) = ICm(j.)} > O ('jeJgo).

n—-p—oo,p/N—C

Besides, if there is a modg¢lsuch that either of the above two inequities is not satisfied, the LLBIC
is not consistent. Recall that {Cj) = nFnmin(j) + m(j). Hence, from the above equations, (24), and
(26), conditions for consistency are obtained as in the following theorem:

8



Yanagihara, H., Hashiyama, Y. & Fujikoshi, Y.

Theorem 3 ThelCy,is consistentwhen-p — oo andp/n — c € [0, 1) if the following conditions
are satisfied simultaneously:

C1. Foranyj € 3 \{j.},

_ : p :
Rj (n_p_!jm) N p)) < Bm()); (@7)

whereR; is given by(25), andan(n, p) andBm(j) are given in(18).

C2. Foranyje J_,

nd;
lim ! —Bm(j), 28
n—pﬂclm,p/nﬂc am(n, p) > ﬂm(]) ( )

whered; is given by(23).

If either of the above two conditions is not satisfied, lifig is not consistent whem— p — o and
p/n— ce[0,1).

If pis boundedP(R;j| > €) # 07e > 0, becauseR; is a positive random variable distributed
according to the chi-square distribution. Hence, wpeas bounded, the condition C1 is equivalent
to liMp_ e am(n, p) = co.

Although a condition for consistency has been derived, we still do not know which criteria satisfy
that condition. Therefore, the conditions for the consistency of specific criteria in (16) are clarified
in the following corollary (the proof is given in Appendix F):

Corollary 2 Let
S-={jeJ-lg.-q;>0}, ca=arg S%I\ll)ee—g(x) +2=0}~0797 (29)
x€[0,
Necessary and gfcient conditions for the consistency of specific criteria are as follows:

néj

AIC & TIC: ,c€[0,cy), and for anyj € S_, lim —>1
L] p — &0 [ a) y] N—p—sco,p/N—C 2p(q* _ ql)

AIC and for anyj € S lim 91~ o 1
. TP — oo, ceS_, _— > 1.
e P Y n-p-oo,p/n-c 0 — G;)(2 - ©)
. . no;
e BIC & CAIC. foranyje S, lim —_—>1
n-p-eo.p/n—c P(Q. — dj) logn

e HQC. foranyjeS_,
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Appendix
A. Proof of Theorem 1

It follows from a basic property of a determinant (see, e.g., Harville, 1997, cor. 18.1.2) that

log :v‘;_z: = log|I, + W, Y22’ ZW?| = log|Iy + ZW*Z'\. (A1)
1

Notice that
E[ZZ'] = pls, E[tr{(Z2')?}] = d(p+d + D)p, E[{tr(Z2"))*| = d(dp+ 2)p.

By using the above results, the assumption #iandW; are independent, and th. 2.2.8 in Fujikoshi
et al. (2010), we derive

E[zw;tz] = h—llE[ZZ’] - h—rild,

1 o 1
mE[tr{(ZZ) }] L
_d(p+d+1)p d(dp+2)p

hohs  © hohiha

E|tr{(zw;z)]

E[{tr(Z 2"

whereh; = n— k- p—i. Hence, the following equation is obtained:

_ d(d+1)p . d{(d+1)p+2}p . 2dp?

E [HZW{lZ' - (p/hl)IdHZ] hoha hohyhs hoh2hs

= O(pn™?).
The above equation implies th&W, 1 Z’ = (p/hy) I3+ Op(p**n~t). Hence V' = Oy(1) is derived,
whereV is given by (5). Moreover, (+ p/h;)™* = O(1), because

1
p) _n-k-p-1

O<(1+h—l ——

Substituting (5) into (A.1) yields

Wal VP
IOg m = |Og|(1+ p/hj_)Idl Id + mv‘
n-k-p-1
- d Iog(l -— E_ 1) N ‘/ﬁr(](n . k_pl) (V) + Op(pr). (A2)
Notice that
log (1— — IS— 1) =log(1- p/n) + O(pn?),
\/T)(n—k—p—l)_ VP p 3/2 -3
nn-k-1 T(l‘ ﬁ)+o(p ).

From the above equations and (A.2), (4) is proved.
Next, we prove (6). Notice that for ficiently largep,

11
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-1
Zwi'z = {(zwi'z)7
-1
— (ZZ/)l/Z {(ZZ/)l/Z(ZWl—lZI)—1(ZZ/)1/2} (ZZ/)]'/Z.

Hence, we have
t(ZWZ') = (U, U3,

whereU; andU, ared x d random matrices defined by
U=22', U,=(ZZ\W"¥zwW;'Z )y (Z2Z)"

From a basic property of a Wishart distribution and th. 2.3.3 in Fujikeshi. (2010), we can see
thatU; andU, are independent, and

U, ~ Wd(p, Id), U, ~ Wd(n -k- P+ d, Id). (A3)
Let 1 1
Vi= ﬁ(Ul - plg), V2= W{UZ = (ho + d)I4}. (A.4)
Then, it is easy to see th&f = Oy(1) andV, = Oy(1), and
tr(V2) > N(0,2d) asp — oo, tr(V3) > N(0,2d) as f1— p) — co. (A.5)
Notice that
n _n 2 p p 1/2,,-3/2
ho+d n- p+0(n ) \/ho+d B \/n— p+o(IO .
pd _pd

= O(pn™?).

ho+d h]_

By using the above equationg;, andV>, V can be expanded as

~n _ dp
tr(V) = ¥ {tr(U1U2 h- h_l}

el ol -2

(s ro - [+ opien (A6

Thus, from (A.3), (A.4), (A.5), and (A.6), (6) is proved.

B. Proof of Theorem 2

Let H(A, O, ) Q' be asingular value decompositionlbfwhereH is apth orthogonal matrix
satisfyingH’'H = H'H = I, Q is anrth orthogonal matrix satisfyin@'Q = QQ’ = I, andA
is anrth diagonal matrix whosath diagonal element is a singular valugi.e., A = diag(s, ..., Ar)
(0< A3 £--- < A). Then, itis easy to see thid = U H and B = Z(Q are independent, and

12
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V ~ N(n—k)xp(on—k,p’ Ip ® In—k), B~ N(n—k)xr (On—k,r, Ir ® In—k)-

Let us partitionV asV = (V1, V,), whereV; andV; are f— k) x r and g — k) x (p — r) matrices,
respectively. Then, we have

V\Vi VV;
vUUu=H| " 172 g
Vi ViV

(B.1)

(BA+ V1) (BA+V1) (BA+WV)'V,

VJ(BA + V1) \AZ:

(ZT +UY(ZT +U) = H( H.

By applying the formula for the determinant of a partitioned matrix (see, e.g., Harville, 1997, th.
13.3.8) to (B.1), we derive
Wi = [U'U| = |V Vol V] {Tn -« — Va(V5 Vo) V5 VA,
W, =|(ZTY + U)'(ZT" + U)| (B.2)
= [V VAll(BA + Vi) {In -« — Va(V3 Vo) 'V HBA + V).

It follows from (B.2) that

W5
T =log—= -log|I, +I'T’
g Wil gllp |
VI« — Vao(VZ Vo) VIV,
:Iog{ Vi tIn-k — Va( 2 2) - 2,} 1 }—|og|1p+rr'|. (B.3)
I((BA + V1)'{Ink — V2(V; V2) TV (BA + V1)

Notice thatV;, V,, and B are mutually independent, and

Vi {Ink = Va(Vs Vo) 'V Vi ~ Wi (n— k= p+1, I),
(BA + V1) {Ink - Va(V, Vo) TV H(BA + Vi) ~We(n— K= p+ 1,1 + A?).

Hence, we derive
1
n-k-p+r
1
n—-k-—p+r

’ ’ - 4 P
Villn«~ Va(V; V) 'V \Vi > I,
(I + A M2(BA + VA (I« — Va(V; Vo) V) (BA + Vi)(I, + A2 5 1.

These equations imply that

1
(n—-k—=p+r)
1
(n—k—=p+r)I + A?

IV Tk - Va(V3 Vo) V5V S 1,
(B.4)

’ ’ — ’ p
|(BA + Vi) {In« - Va(V; Vo) 'V H(BA + Vi) = 1

Notice thatl'T' = QA2Q’. By using this equation and a basic property of a determinant (see e.g.,
Harville, 1997, cor. 18.1.2), we derive
\I, + A% = |I, + T'T| = [I, + TT|. (B.5)

By substituting (B.4) and (B.5) into (B.3), % 0'is obtained. This means that equation (9) is
proved.

13
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C. Proof of Lemma 1l

We first describe a lemma about another expressias, pf; this is required for proving Lemma
1 (the proof is given in Appendix G).

LemmaA.l Let&, Aj, andB be mutually independent random matrices, which are defined by
&~ Nnxq(On,p, Ip ® In), Aj ~ Nnx(q—qj)(on,q—qj» Iq—qj ® In), B ~ Nnxq(on,q» Yux® In),

and let B; denote then x g; matrix consisting of the columns & indexed by the elements pf
Then, for anyj € 7, nS,,.; can be rewritten as

NSy, = SpA(AT) + &) (In- P) (AL + §)X}/3 (C.1)

yyx’
where P; is the projection matrix to the subspace spanned by the columBjof.e., P, =
Bj(BJfBj)‘lBJf, andT; is given by(20). In particular, whenj € 7,

nS,,; = X2E (I, - P)EXY? (C.2)

yy-X yy-x:

Whenj € 9. \{j.}, it follows from Lemma A.1 that

_ _ IS, . &' (In - P;.)él
Frin(i) = Fmin(j.) = ~log 12 = —log -0
min(Jj) min(J«) g InS,, | &' (I, - P)&|
_ 1og U= P)E+ E (P - P))E

&' (In - P))él

Notice thatl, — P; and P; — P;, are idempotent matrices, anfh (- P;)(P; — P;.) = Onp holds.
Hence, (19) is proved.
Whenj e J_, it follows from Lemma A.1 that

Fmin(j) = Fmin(w) = logInS,,.j| — logInS,,.xl

= log|(AjT + &) (In - P))(A|T + &)| - log|&'(I, - P.)&|
AT + &) (In - P)(AT] + &) ilo & (I, — P)E|
- € Tn- P8 e - P
AT+ 8) (In - P)(AT] + &)
- |E'(In - P)é&|

& (In - P,)E + & (P, — P)&|

+log .
|&'(In - P,)&|

Notice thatl, - Pj, I, - P,,, and P, — P; are idempotent matrices, anth P,,)(P, — Pj) = Onn
holds. Hence, (22) is proved.
D. Proof of Equation (23)

It follows from the general formula for the inverse of a block matrix, e.g., th. 8.5.11 in Harville

14
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(1997), that

T By
e Xy
1l

_1 1yl gy -1 _y-lyt g1
T T T e TR TR TR
_y-1 SV 2—1 E_l

-1 _
2XX - - E

i i

wherej7; are given by (21). By using the above equation, we have

1, yly ol sy sl sy xaed _
g DR R XN ( iy )
_y -1y y-1 -1 -
o Rl SN 7
_ NV 1%, _ ’ -1y, vy -1 _ ’ -1,
= 25, E5Ey, + (B, - 2:jj{:jj Zjy) Eﬁj(zjy - 2jj{:jj Bjy)- (D.1)

2, Sy = (3, 3% )

1y "y

It follows from (20) and (D.1) that

-1/2 §-1/2 T
12,512 = I, + TT.

Hence, we have

il
L2y s-12 [y
_|Eyy->< E.’/U‘JE_I/_L/X S .

[32,,xl

By using the above equation, (23) is proved. On the other hand, it follows from (12) that
I'j = Opq-q holds whenj € 7. Henceg; = 0 holds whenj € 7.

|Ip+rjr'j

E. Two Examples ofg;

Two examples of; are presented in this section. In both examples, we assumgishiie subset
of j. such thatj, = {j,j N j.}.
First, we show the case that a limiting valuespis bounded. Let

La. /

Sa= A). Ty = Qp). By =p ’
o w P ot @ - Dola )"

wherep € (-1, 1) and2(m) is anm x m symmetric matrix defined by
Qm) = (1 - p)Im+ plnl),

From the general formula of the inverse of the sum of two matrices, e.g., cor. 18.2.10 in Harville
(1997), we have

_ 1 0
1_ _ ’
am = {Im R 1m1m}.

Then, we can see that

15y = (2.1 = |QUP) — (01p15)2(a) H(01g, 1))
1-p)P(1 -1 (E.2)

- 1+(q - 1)p
It follows from the same calculations as in (E.1) that

15
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L-p)PL+(p+0g; - Do

0 — _ ’ -1 ’ —
12y,.51 = |2(p) (plplqj)Q(QJ) (p1q, 1p) 1+(q - Dp (E.2)
Hence, from (E.1) and (E.2), the following equation is derived:
i 1 i— 11 L, —1
5, ~ log Zwil _joq 1+ (P+0j ~ DI+ (G ~ L)
12Xl {1+(p+0a.— DH1+(q; - D)o}
1+ (q* B 1).0}
—log{———1.
g{1+ (a - Do
This equation indicates that the limiting valuedgfis bounded ap — .
Next, the case tha; approacheso is shown. Let
1q$ ’
EXX = Iq, 2!/1/ = Ip, Exy = o,
Og-q.
wherea is a p-dimensional vector defined by
1-p2
o= (o,....p")
qp?
Herep € (-1, 1). Notice that
’ 1- :
ola= s 2 = L= )
ar° = §
Hence, we can see that
12yyxl = 1Xyy5.1 = |Ip - (alfq*)Iq*(qu*a') (E3)
=|Ip - quae’| = 1 {1- (0?)P} = (V)" '
It follows from the same calculations as in (E.3) that
’ ’ q
15,4l = ‘Ip ~ (aly)Ig (plg )| = [1 - q—J (1~ (pz)p}} : (E.4)
From (E.3) and (E.4), the following equation is derived:
21 [ g 2 ] 2
0j =log=—— =log|1- —{1- (0°)°}| - plo .
j = log g = log|1- 2 {1 (07)P) | - plog(e?)

This equation indicates thaf approacheso asp — co.

F. Proof of Corollary 2

From a simple calculation, we have the following expansion:

_npi2n-p)

n{o(a; + §) ~ b(a) ~ b + ) +b(a)] = T2 (@ 6 + O )

16
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It follows from the above equation and (16) that

2p(q; - ) (AIC)
p(2 - p/n)(q; — 0.)/(1 - p/n)? + O(pn)  (AIC,)

Ny ) 2P0 — G + Rijg) — K~ Ry + K. (TIC) F1
M) = me) p(g; - g.)logn (BIC) FD
p(g; — g.)(1 + logn) (CAIC)
2p(qj — g.)loglogn (HQC)

On other hand, by using the results in Mardia (1974), the mean and variarCBpfri (17) are
calculated as

dd+2)
n(n+2)’
These imply that for any € 7,

8d(d + 2)(n - 2)(n+ 1*(n—d)(n—d + 2)

E (D) = M(n + 2)2(n + 4)(n + 6)

Var[x(D)] =

R 5o, SR %o

It follows from the above equations and (F.1) that

p 2(d; - 9.) (AIC, TIC)
] L] 2-09/1-¢)@i-a) (AIC)
=1 plogn  » A= qj - 0 @ic.cac) ~ 2
ploglogn 2(d; - 9.) (HQC)

Hence, it is easy to see that

im p [ 1 (AICAICTIC)
n-powpinocam(np) | 0 (BIC, CAIC,HQC)

By using the above results and (27), we can see that condition C1 holds for the BIC, CAIC, and
HQC. Condition C1 holds for the AIC, Al and TIC if p goes toco and the following equation is

satisfied:
(AIC, TIC)

2
9(c) < { Y(1-0)+1/(1-c? (AICo)
whereg(X) is given by (8). The above equation implies that condition C1 holds for the AIC and TIC
if pgoes too andc € [0, ¢,), and it holds for the Algif p goes too, because-g(x) + 2 > 0 holds
whenx € [0, c;) and—g(X) + (1 - )™t + (L - X)~2 > 0 holds wherx € [0, 1), wherec, is given in
(29). Moreover, from (28) and (F.2), we can see that condition 2 holds if the following equation is
satisfied:

s

né;/(2p) (AIC, TIC)
a-g< lim noj(1-cy?/{p(2-c)} (AICc)
© 7 T nepesprnoc | noj/(plogn) (BIC,CAIC)

né;/(2ploglogn) (HQC)
It is easy to see that the above equation is satisfiegd # q; < 0, becaus&; > 0. Hence, it is
suficient to consider the case pfe S_, whereS_ is given in (29). Consequently, Corollary 2 is
proved.
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G. Proofof LemmaA.1

LetY = (y1,...,yns1) @and X = (x1,...,xn1)’, Wherey; andz; are theith individuals fromy
andx, respectively, and(; denotes anr(+ 1) x ¢; matrix consisting of the columns df indexed
by the elements of. Then,nS,, ; is expressed as

-1
NSy = Y Hopt {Tnvt = Hoa X (X[ Ha X)) X Hova} Hoa

where H}, is the projection matrix to the orthocomplement of the subspace spann&g bg.,
H, = I, - 1,1} /n, and1, is ann-dimensional vector of ones. L& be ann x p random matrix
such that

(B, V) ~ Nn><(q+p)(0n,q+p, 2),

whereB is ann x g random matrix. From a property of a multivariate normal distribution, we can
rewritenS,,.; usingV andB, as follows:

nSy.j = V'(In- P)V, (G.1)

whereP; = Bj(B|B;j) ' Bj, andBj is ann x g; matrix consisting of the columns d indexed by
the elements of. From a property of a conditional distribution of a multivariate normal distribution,
e.g., th. 2.2.7 in Srivastava and Khatri (1979), we have

VIB ~ Noup(BE 5y, Zyyx ® In),  BjlBj ~ Nnwo(BiZ' S5 Zjpj @ I),
whereXlj7; is given by (21). Hence, we can exprégsas

V = BEgX,, +EX)5. Bj=BX'Sjj+ A 2]11/2] (G.2)

where&, A, andB; are mutually independent random matrices. It should be kept in mind that any
S,.i (J € J) can be represented by using the commipecause is independent of. Without
loss of generality, we assume thatis arranged asR;, By). It follows from the same calculation

asin (D.1) that
X,

1111(27 B 2/ 121”)

. it+ EiEEal et -niy e
BX;l%,, = (B;, B 712 e ;1
IR i
1 -1
RO >18),)) + BiE

= B3}z, -
SubstitutingByin (G.2) into the above equation yields

BY3Zy = BiZjH ), - 2= (3, - B 1zjy)}

1/2 /
+(BiZ'S+ 4 2“/1)2”1](2 =52y,

= BiXjl'Sj, + AT'Z)3,

whereI'; is thep x (g — g;) matrix defined by (20). Substituting the above equation ¥itm (G.2)

18
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yields
V = BiXj'Sj, + AT|S)5 + EX))3 (G.3)

yy-X yy-x:

Notice that {, — P;) Bj = Ong;. By using (G.1) and (G.3), (C.1) is proved. Moreovef,= Opqq,
if j € J,, because then (12) holds. This implies that for ary. 7,
V = Bj%|'S), + 85,3 (G.4)

yy-X

Hence, from (G.1) and (G.4), (C.2) is proved.
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