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Abstract

In this paper, we evaluate the asymptotic behaviors of the differences between the log-
determinants of two random matrices distributed according to the Wishart distribution by using a
high-dimensional asymptotic framework in which the sizes of the matrices and the degrees of free-
doms approach∞ simultaneously. We consider two structures of random matrices: a matrix is
completely included in another matrix, and a matrix is partially included in another matrix. As
an application of our result, we derive the condition needed to ensure consistency for a given log-
likelihood-based information criterion for selecting variables in a canonical correlation analysis.

Key words: Canonical correlation analysis, Consistency of information criterion,
High-dimensional asymptotic framework, Information criterion, Model selection.

∗Corresponding author

E-mail address: yanagi@math.sci.hiroshima-u.ac.jp (Hirokazu Yanagihara)

1. Introduction

LetW1 andW2 be p× p symmetric random matrices distributed according to the Wishart distri-

bution (Wishart matrices). In this paper, we study the asymptotic behavior of the difference between

the log-determinants of two Wishart matrices, i.e.,

log |W2| − log |W1| = log
|W2|
|W1|

. (1)

The difference between the log-determinants of two Wishart matrices plays a key role in multivari-

ate analysis, because many statistics in multivariate analysis (e.g., the log-likelihood ratio statistic

under the normality assumption) can be expressed as a difference (see, e.g., Muirhead, 1982; Siotani

et al., 1985; Anderson, 2003). Hence, to prove the asymptotic behavior of log|W2|/|W1| is of major

interest in multivariate analysis. A common approach to the study of asymptotic behavior is to use
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a large sample (LS) asymptotic framework such that the sample sizen, which is also the number

of degrees of freedom of the Wishart matrix, approaches∞. Since high-dimensional data analysis

has been attracting the attention of many researchers in recent years, it is important to study the

asymptotic behavior in terms of the following high-dimensional (HD) asymptotic framework.

• HD asymptotic framework:n − p and p/n are approaching∞ andc ∈ [0,1), respectively. It

should be emphasized that the ordinary LS asymptotic framework is included in the HD asymp-

totic framework as a special case.

An aim of this paper is to evaluate the asymptotic behavior of log|W2|/|W1|, using the HD asymp-

totic framework. LetOd,p be ad × p matrix of zeros. We will consider the following structures for

Wishart matrices:

Case 1. TheW2 includesW1 completely, i.e.,

W1 ∼Wp(n− k, Ip), W2 =W1 +Z
′Z ∼Wp(n− k+ d, Ip), (2)

wherek andd are positive integers independent ofn andp, andW1 andZ are independent

random matrices defined by

Z ∼ Nd×p(Od,p, Ip ⊗ Id).

Case 2. TheW2 includesW2 partially, i.e.,

W1 = U ′U ∼Wp(n−k, Ip), W2 = (ZΓ′ +U )′(ZΓ′ +U ) ∼Wp(n−k, Ip+ΓΓ
′), (3)

whereΓ is a p × r constant matrix,k andr are positive integers independent ofn and p,

andU andZ are independent random matrices defined by

U ∼ N(n−k)×p(On−k,p, Ip ⊗ In−k), Z ∼ N(n−k)×r (On−k,r , Ir ⊗ In−k).

Cases 1 and 2 correspond to the log-likelihood ratio statistics of models with an inclusion relation

and without an inclusion relation, respectively.

As an application of our result, we derive the condition for ensuring the consistency of a log-

likelihood-based information criterion (LLBIC) for selecting variables in a canonical correlation

analysis (CCA) that analyzes the correlation of two linearly combined variables; note that this is

an important method in multivariate analysis. An optimized solution of can be found by solving

an eigenvalue problem. CCA has been introduced in many textbooks on applied statistical analy-

sis (see, e.g., Srivastava, 2002, chap. 14.7; Timm, 2002, chap. 8.7), and it is widely used in many

applied fields (e.g., Doeswijket al., 2011; Khalilet al., 2011; and Vahedia, 2011). The family of

LLBICs includes many famous information criteria, e.g., Akaike’s information criterion (AIC), the

bias-corrected AIC (AICc), Takeuchi’s information criterion (TIC), the Bayesian information cri-

terion (BIC), the consistent AIC (CAIC), and the Hannan and Quinn information criterion (HQC).

Under a general model, the AIC, AICc, TIC, BIC, CAIC, and HQC were proposed by Akaike (1973;
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1974), Hurvich and Tsai (1989), Takeuchi (1976), Schwarz (1978), Bozdogan (1987), and Hannan

and Quinn (1979), respectively. The AIC and AICc for selecting variables in CCA were proposed

by Fujikoshi (1985), and the TIC for selecting variables in CCA was proposed by Hashiyamaet

al. (2014). By using the AIC for CCA and the definitions of the original information criteria, we

formulate the BIC, CAIC, and HQC for selecting variables in CCA. In this paper, if the asymptotic

probability that an information criterion selects the true model approaches 1, then we say that the

information criterion is consistent. Under the HD asymptotic framework, Yanagiharaet al. (2012)

and Fujikoshiet al. (2014) studied the consistency of an information criterion in a multivariate

linear regression model. For CCA, there are no results in the literature on the consistency of an

information criterion under the HD asymptotic framework, although several authors (e.g., Nishiiet

al., 1988) have studied consistency under the LS asymptotic framework.

This paper is organized as follows: In Section 2, we present our main results. In Section 3, we

show a condition for ensuring the consistency of the LLBIC for CCA. Technical details are provided

in the Appendix.

2. Main Results

In this section, we evaluate the asymptotic behavior of log|W2|/|W1| in (1) within the HD asymp-

totic framework. We begin by considering case 1, and we have the following theorem (the proof is

given in Appendix A):

Theorem 1 Suppose thatW1 andW2 are Wishart matrices given by(2). Then, we have

log
|W2|
|W1|

= −d log(1− p/n) +

√
p

n

(
1− p

n

)
tr(V ) +Op(pn−2), (4)

whereV is ad × d random matrix with the orderOp(1), which is given by

V =
n
√

p

(
ZW −1

1 Z′ − p
n− k− p− 1

Id

)
, (5)

andtr(V ) is asymptotically distributed as

tr(V )
d→

 (χ2
dp − dp)/

√
p (p is bounded)

N(0,2d/(1− c)3) (p→ ∞)
. (6)

Wakaki (2006) derived a result similar to Theorem 1 by using a property of Wilks’ lambda distribu-

tion, whereas we used a property of the Wishart distribution to prove it.

Notice that

−n
p

log
(
1− p

n

)
= 1+O(pn−1),

and √
p

n

(
1− p

n

)
· 1
√

p
(X − dp) =

1
n

(X − dp) +Op(p3/2n−2),

whereX is a random variable distributed according to the chi-square distribution withdpdegrees of

freedom. Hence, from Theorem 1, the following corollary is obtained:
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Corollary 1 Suppose thatW1 andW2 are Wishart matrices given by(2). Then, we have

log
|W2|
|W1|

= −d log(1− c) + op(1), (7)

and
n
p

log
|W2|
|W1|

= R+ op(1),

whereR is defined by

R=

 X/p, X ∼ χ2
dp (p is bounded)

dg(c) (p→ ∞)
.

Here,g(x) is a function with domainx ∈ [0,1), which is given by

g(x) =

 1 (x = 0)

−x−1 log(1− x) (x ∈ (0,1))
. (8)

From elementary calculus calculations, it turns out thatg(0) is defined to be equal to

limx→0+{−x−1 log(1− x)} and thatg(x) is a strictly monotonically increasing function inx ∈ [0,1).

In this paper, we have derived Corollary 1 through Theorem 1. Although it is necessary to clarify

the asymptotic distribution of tr(V ) in order to prove Theorem 1, (7) can be derived without the

asymptotic distribution of tr(V ), using only the expectation of tr(V ).

Next, we consider case 2, and we have the following theorem (the proof is given in Appendix B):

Theorem 2 Suppose thatW1 andW2 are Wishart matrices given by(3). Then, we have

log
|W2|
|W1|

= log |Ip + ΓΓ
′| + op(1). (9)

3. Application

3.1. Redundancy Model in CCA

In this section, we show an example of an application of Theorems 1 and 2 to an actual statistical

problem. We derive conditions to separately ensure consistency and inconsistency of the LLBIC for

selecting variables in CCA.

Let z = (x′,y′)′ = (x1, . . . , xq, y1, . . . , yp)′ be a (q + p)-dimensional random vector distributed

according to the (q+ p)-variates multivariate normal distribution with the following mean vector and

covariance matrix:

E[z] = µ =

 µx

µy

 , Cov[z] = Σ =

 Σxx Σxy

Σ′xy Σyy

 .
Suppose thatj denotes a subset ofω = {1, . . . ,q} containingq j elements, andx j denotes theq j-

dimensional vector consisting ofx indexed by the elements ofj. For example, ifj = {1,2,4}, then

x j consists of the first, second, and fourth elements ofx. We will also let j̄ denote the complement

of the set j, i.e., j̄ = jc. Of course, it holds thatxω = x andqω = q. Without loss of generality,
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we dividex into two subvectorsx = (x′j ,x
′
j̄
)′, wherex j̄ is a (q − q j)-dimensional random vector.

Expressions ofΣxx andΣxy corresponding to the division ofx are

Σxx =

 Σ j j Σ j j̄

Σ′
j j̄

Σ j̄ j̄

 , Σxy =

 Σ jy

Σ j̄y

 .
These imply that another expression ofΣ corresponding to the division is

Σ =


Σ j j Σ j j̄ Σ jy

Σ′
j j̄

Σ j̄ j̄ Σ j̄y

Σ′jy Σ′
j̄y

Σyy

 . (10)

Let z1, . . . , zn+1 be (n + 1) independent random vectors fromz, and letS be the usual unbiased

estimator ofΣ given byS = n−1 ∑n+1
i=1 (zi − z̄)(zi − z̄)′, where ¯z = (n+ 1)−1 ∑n+1

i=1 zi . Following the

same method that we used forΣ in (10), we divideS as

S =

 Sxx Sxy

S′xy Syy

 =

S j j S j j̄ S jy

S′
j j̄

S j̄ j̄ S j̄y

S′jy S′
j̄y

Syy

 .
One of the interests in CCA is to determine whetherx j̄ is irrelevant. Fujikoshi (1985) determined

thatx j̄ is irrelevant if the following equation holds:

tr(Σ−1
xxΣxyΣ

−1
yyΣ

′
xy) = tr(Σ−1

j j Σ jyΣ
−1
yyΣ

′
jy). (11)

In particular, we note that (11) is equivalent to

Σ j̄y −Σ′j j̄Σ
−1
j j Σ jy = Oq−q j ,p. (12)

Consequently, the candidate model in whichx j̄ is irrelevant can be expressed as

nS ∼Wp+q(n,Σ) s.t. tr(Σ−1
xxΣxyΣ

−1
yyΣ

′
xy) = tr(Σ−1

j j Σ jyΣ
−1
yyΣ

′
jy). (13)

In CCA, the above model is called the redundancy modelj or simply the modelj. If the model j is

selected as the best model, then we can regardx j̄ as irrelevant andx j as relevant.

An estimator ofΣ in (13) is given by

Σ̂ j = arg min
Σ

{
F(S,Σ) s.t. tr(Σ−1

xxΣxyΣ
−1
yyΣ

′
xy) = tr(Σ−1

j j Σ jyΣ
−1
yyΣ

′
jy)

}
,

whereF(S,Σ) is given by

F(S,Σ) =
{
tr(Σ−1S) − log |Σ−1S| − (p+ q)

}
.

It is easy to see thatnF(S,Σ) is the Kullback–Leibler (KL) discrepancy function assessed by the

Wishart density. In the analysis of covariance structure, the discrepancy function is frequently called

the maximum likelihood discrepancy function (Jöreskog, 1967). Although we do not present it here,

Σ̂ j can be derived in a closed form (see, e.g., Fujikoshi & Kurata, 2008; Fujikoshiet al., 2010, chap.

11.5).
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3.2. A Class of Information Criteria for CCA

LetJ be a set of candidate models denoted byJ = { j1, . . . , jK}, whereK is the number of mod-

els. We separateJ into two sets such that one is a set of overspecified models, and the other is a set

of underspecified models. LetJ+ denote the set of overspecified models, which is defined by

J+ =
{
j ∈ J| tr(Σ−1

xxΣxyΣ
−1
yyΣ

′
xy) = tr(Σ−1

j j Σ jyΣ
−1
yyΣ

′
jy)

}
.

Suppose that the true model is expressed as the overspecified model having the smallest number of

elements, i.e.,

j∗ = arg min
j∈J+

q j .

For simplicity, we writeq j∗ asq∗. On the other hand, letJ− denote the set of underspecified models,

which is defined by

J− = J̄+ ∩ J .

For the general expression for anyj ∈ J , Σyy· j andSyy· j are defined as

Σyy· j = Σyy −Σ′jyΣ−1
j j Σ jy, Syy· j = Syy − S′jyS−1

j j S jy. (14)

In particular, we writeΣyy·ω = Σyy·x andSyy·ω = Syy·x. From Fujikoshiet al. (2010, chap. 11.5)

and the fact that tr(̂Σ jS) = p+ q, the minimum value ofF(Σ,S) under the modelj is given by

Fmin( j) = F(S, Σ̂ j) = log
|Syy· j |
|Syy·x|

.

In the modelj, various information criteria can be defined by adding a penalty term for the model

complexitym( j) to nFmin( j), i.e., several information criteria are included in the following class of

information criteria:

ICm( j) = nFmin( j) +m( j). (15)

By changingm( j), (15) can express the following specific criteria:

m( j) =



2{pqj + (q2 + p2 + q+ p)/2} (AIC)

n{b(q) + b(q j + p) − b(q j) − (q+ p)} (AICc)

2{pqj + (q2 + p2 + q+ p)/2} + κ̂x + κ̂( jy) − κ̂ j (TIC)

{pqj + (q2 + p2 + q+ p)/2} logn (BIC)

{pqj + (q2 + p2 + q+ p)/2}(logn+ 1) (CAIC)

2{pqj + (q2 + p2 + q+ p)/2} log logn (HQC)

, (16)

whereb(q) is a function ofq defined bynq/(n − q − 1), and κ̂x, κ̂ j , and κ̂( jy) are estimators of

multivariate kurtoses ofx, x j , and (x′jy
′)′, respectively, which are defined by

κ̂x = κ̂(Dx), κ̂ j = κ̂(D j), κ̂( j,y) = κ̂(D( j,y)).

Hereκ̂(D) is an estimator of multivariate kurtosis of thed-variates extracted fromz byD′z, which
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is defined by

κ̂(D) =
1

n+ 1

n+1∑
i=1

{
(zi − z̄)′D(D′SD)−1D′(zi − z̄)

}2 − d(d + 2), (17)

whereD is a (q+ p) × d matrix whose elements are 0 or 1, and satisfiesD′D = Id, e.g.,

Dx =

 Iq

Op,q

 , Dy =  Oq,p

Ip

 , D j =

 Iq j

Op+q−q j ,q j

 , D( j,y) = (D j ,Dy).

Additionally, we assume that there exists a nonzero functionam(n, p) such that

βm( j) = plim
n−p→∞,p/n→c

m( j) −m( j∗)
am(n, p)

, 0 < |βm( j)| < ∞. (18)

We regard as the best model the candidate model that makes ICm the smallest, i.e., the best model

chosen by ICm can be expressed as

ĵm = arg min
j∈J

ICm( j).

Let αm be an asymptotic probability such thatP( ĵm = j∗) → αm asn− p→ ∞ andp/n→ c. The

ICm is consistent ifαm = 1, and it is inconsistent ifαm < 1.

3.3. Conditions for Consistency in CCA

We begin with the following lemma (the proof is given in Appendix C):

Lemma 1 The following equations are derived:

1. Let

W1 =W , W2 =W +Z′Z,

whereW1 andW2 are independent random matrices defined by

W ∼Wp(n− q j , Ip), Z ∼ N(q j−q∗)×p(Oq j−q∗,p, Ip ⊗ Iq j−q∗).

Then, for anyj ∈ J+\{ j∗}, Fmin( j) − Fmin( j∗) can be rewritten as

Fmin( j) − Fmin( j∗) = − log
|W2|
|W1|

. (19)

2. Let

W1 = U ′U =W3 +U
′
2U2, W2 = (ZΓ′j +U )′(ZΓ′j +U ), W3 = U ′1U1,

whereU = (U ′1,U
′
2)′, U1, U2, andZ are mutually independent random matrices defined by

U1 ∼ N(n−q)×p(On−q,p, In−q ⊗ Ip), U2 ∼ N(q−q j )×p(Oq−q j ,p, Iq−q j ⊗ Ip),

Z ∼ N(n−q j )×(q−q j )(On−q j ,q−q j , Iq−q j ⊗ In−q j ),
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andΓ j is a p× (q− q j) nonrandom matrix defined by

Γ j = Σ−1/2
yy·x (Σ j̄y −Σ′j j̄Σ

−1
j j Σ jy)

′Σ−1/2
j̄ j̄· j . (20)

HereΣyy·x is given by(14), andΣ j̄ j̄· j is defined by

Σ j̄ j̄· j = Σ j̄ j̄ −Σ′j j̄Σ
−1
j j Σ j j̄ . (21)

Then, for anyj ∈ J−, Fmin( j) − Fmin(ω) can be rewritten as

Fmin( j) − Fmin(ω) = log
|W2|
|W1|

+ log
|W1|
|W3|

. (22)

Let δ j = log |Ip + Γ jΓ
′
j |. It is known thatδ j ≥ 0 with equality if and only if j ∈ J+, because

Γ j = Op,q−q j holds if and only if j ∈ J+. Moreover,δ j can be rewritten as

δ j = log |Ip + Γ jΓ
′
j | = log

|Σyy· j |
|Σyy·x|

, (23)

(the proof is given in Appendix D). Notice thatδ j depends onp not n. It should be kept in mind

that sometimes limp→∞ δ j becomes infinite and other times it is finite (see examples in Appendix

E). The size of a convergent value and the order ofδ j play an important role in deciding whether a

criterion is consistent. In addition, we assume that limp→∞ δ j > 0 for j ∈ J−.
When j ∈ J+\{ j∗}, it follows from Corollary 1 and Lemma 1 thatFmin( j) − Fmin( j∗) = op(1).

Notice that

Fmin( j) − Fmin( j∗) = Fmin( j) − Fmin(ω) + Fmin(ω) − Fmin( j∗).

Sinceω ∈ J+, Fmin(ω) − Fmin( j∗) = op(1) holds. By using this result, Theorem 2, and Lemma 1,

we have

Fmin( j) − Fmin( j∗) = δ j + op(1) (∀ j ∈ J−). (24)

Let us defineRj by

Rj =

 X j/p, X j ∼ χ2
(q j−q∗)p

(p is bounded)

(q j − q∗)g(c) (p→ ∞)
, (25)

whereg(x) is the function given by (8). By applying Corollary 1 to the case of CCA through Lemma

1, we derive
n
p
{Fmin( j) − Fmin( j∗)} = −Rj + op(1) (∀ j ∈ J+\{ j∗}). (26)

From Lemma A.3 in Yanagihara (2013), we can see that the LLBIC is consistent if the following

equations hold:

plim
n−p→∞,p/n→c

1
p
{ICm( j) − ICm( j∗)} > 0 (∀ j ∈ J+\{ j∗}),

plim
n−p→∞,p/n→c

1
n
{ICm( j) − ICm( j∗)} > 0 (∀ j ∈ J−).

Besides, if there is a modelj such that either of the above two inequities is not satisfied, the LLBIC

is not consistent. Recall that ICm( j) = nFmin( j) +m( j). Hence, from the above equations, (24), and

(26), conditions for consistency are obtained as in the following theorem:
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Theorem 3 TheICm is consistent whenn−p→ ∞ andp/n→ c ∈ [0,1) if the following conditions

are satisfied simultaneously:

C1. For anyj ∈ J+\{ j∗},
Rj

(
lim

n−p→∞,p/n→c

p
am(n, p)

)
< βm( j), (27)

whereRj is given by(25), andam(n, p) andβm( j) are given in(18).

C2. For anyj ∈ J−,
lim

n−p→∞,p/n→c

nδ j

am(n, p)
> −βm( j), (28)

whereδ j is given by(23 ).

If either of the above two conditions is not satisfied, theICm is not consistent whenn− p→ ∞ and

p/n→ c ∈ [0,1).

If p is bounded,P(|Rj | > ϵ) , 0 ∀ϵ > 0, becausepRj is a positive random variable distributed

according to the chi-square distribution. Hence, whenp is bounded, the condition C1 is equivalent

to limn→∞ am(n, p) = ∞.

Although a condition for consistency has been derived, we still do not know which criteria satisfy

that condition. Therefore, the conditions for the consistency of specific criteria in (16) are clarified

in the following corollary (the proof is given in Appendix F):

Corollary 2 Let

S− = { j ∈ J−|q∗ − q j > 0}, ca = arg solve
x∈[0,1)

{−g(x) + 2 = 0} ≈ 0.797. (29)

Necessary and sufficient conditions for the consistency of specific criteria are as follows:

• AIC& TIC: p→ ∞, c ∈ [0, ca), and for anyj ∈ S−, lim
n−p→∞,p/n→c

nδ j

2p(q∗ − q j)
> 1.

• AICc: p→ ∞, and for anyj ∈ S−, lim
n−p→∞,p/n→c

nδ j(1− c)2

p(q∗ − q j)(2− c)
> 1.

• BIC& CAIC: for any j ∈ S−, lim
n−p→∞,p/n→c

nδ j

p(q∗ − q j) logn
> 1.

• HQC: for any j ∈ S−, lim
n−p→∞,p/n→c

nδ j

2p(q∗ − q j) log logn
> 1.
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Appendix

A. Proof of Theorem 1

It follows from a basic property of a determinant (see, e.g., Harville, 1997, cor. 18.1.2) that

log
|W2|
|W1|

= log
∣∣∣Ip +W

−1/2
1 Z′ZW −1/2

∣∣∣ = log |Id +ZW −1
1 Z′|. (A.1)

Notice that

E[ZZ′] = pId, E
[
tr

{
(ZZ′)2

}]
= d(p+ d + 1)p, E

[
{tr(ZZ′)}2

]
= d(dp+ 2)p.

By using the above results, the assumption thatZ andW1 are independent, and th. 2.2.8 in Fujikoshi

et al. (2010), we derive

E
[
ZW −1

1 Z′
]
=

1
h1

E[ZZ′] =
p
h1

Id,

E
[
tr

{
(ZW −1

1 Z′)2
}]
=

1
h0h3

E
[
tr

{
(ZZ′)2

}]
+

1
h0h1h3

E
[{

tr(ZZ′)
}2]

=
d(p+ d + 1)p

h0h3
+

d(dp+ 2)p
h0h1h3

,

wherehi = n− k− p− i. Hence, the following equation is obtained:

E
[∥∥∥ZW −1

1 Z′ − (p/h1)Id

∥∥∥2
]
=

d(d + 1)p
h0h3

+
d{(d + 1)p+ 2}p

h0h1h3
+

2dp2

h0h2
1h3
= O(pn−2).

The above equation implies thatZW −1
1 Z′ = (p/h1)Id+Op(p1/2n−1). Hence,V = Op(1) is derived,

whereV is given by (5). Moreover, (1+ p/h1)−1 = O(1), because

0 <

(
1+

p
h1

)−1

=
n− k− p− 1

n− k− 1
< 1.

Substituting (5) into (A.1) yields

log
|W2|
|W1|

= log |(1+ p/h1)Id|
∣∣∣∣∣∣Id +

√
p

(1+ p/h1)n
V

∣∣∣∣∣∣
= −d log

(
1− p

n− k− 1

)
+

√
p(n− k− p− 1)

n(n− k− 1)
tr(V ) +Op(pn−2). (A.2)

Notice that

log
(
1− p

n− k− 1

)
= log(1− p/n) +O(pn−2),

√
p(n− k− p− 1)

n(n− k− 1)
=

√
p

n

(
1− p

n

)
+O(p3/2n−3).

From the above equations and (A.2), (4) is proved.

Next, we prove (6). Notice that for sufficiently largep,
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ZW −1
1 Z′ =

{
(ZW −1

1 Z′)−1
}−1

= (ZZ′)1/2
{
(ZZ′)1/2(ZW −1

1 Z′)−1(ZZ′)1/2
}−1

(ZZ′)1/2.

Hence, we have

tr(ZW −1
1 Z′) = tr(U1U

−1
2 ),

whereU1 andU2 ared × d random matrices defined by

U1 = ZZ′, U2 = (ZZ′)1/2(ZW −1
1 Z′)−1(ZZ′)1/2.

From a basic property of a Wishart distribution and th. 2.3.3 in Fujikoshiet al. (2010), we can see

thatU1 andU2 are independent, and

U1 ∼Wd(p, Id), U2 ∼Wd(n− k− p+ d, Id). (A.3)

Let

V1 =
1
√

p
(U1 − pId), V2 =

1
√

h0 + d
{U2 − (h0 + d)Id}. (A.4)

Then, it is easy to see thatV1 = Op(1) andV2 = Op(1), and

tr(V1)
d→ N(0,2d) asp→ ∞, tr(V2)

d→ N(0,2d) as (n− p)→ ∞. (A.5)

Notice that

n
h0 + d

=
n

n− p
+O(n−2),

√
p

h0 + d
=

√
p

n− p
+O(p1/2n−3/2),

pd
h0 + d

− pd
h1
= O(pn−2).

By using the above equations,V1, andV2, V can be expanded as

tr(V ) =
n
√

p

{
tr(U1U

−1
2 ) − dp

h1

}
=

n
√

p

 p
h0 + d

tr


(
Id +

1
√

p
V1

) (
Id +

1
√

h0 + d
V2

)−1
 − dp

h1


=

(
n

n− p

) {
tr(V1) −

√
p

n− p
tr(V2)

}
+Op(p1/2n−1). (A.6)

Thus, from (A.3), (A.4), (A.5), and (A.6), (6) is proved.

B. Proof of Theorem 2

LetH(Λ,Or,p−r )′Q′ be a singular value decomposition ofΓ, whereH is apth orthogonal matrix

satisfyingH ′H = H ′H = Ip, Q is anrth orthogonal matrix satisfyingQ′Q = QQ′ = Ir , andΛ

is anrth diagonal matrix whoseath diagonal element is a singular valueλa, i.e.,Λ = diag(λ1, . . . , λr )

(0 ≤ λ1 ≤ · · · ≤ λr ). Then, it is easy to see thatV = UH andB = ZQ are independent, and

12
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V ∼ N(n−k)×p(On−k,p, Ip ⊗ In−k), B ∼ N(n−k)×r (On−k,r , Ir ⊗ In−k).

Let us partitionV asV = (V1,V2), whereV1 andV2 are (n− k) × r and (n− k) × (p− r) matrices,

respectively. Then, we have

U ′U =H

 V ′1V1 V ′1V2

V ′2V1 V ′2V2

H ′,

(ZΓ′ +U )′(ZΓ′ +U ) =H

 (BΛ + V1)′(BΛ + V1) (BΛ + V1)′V2

V ′2 (BΛ + V1) V ′2V2

H ′.

(B.1)

By applying the formula for the determinant of a partitioned matrix (see, e.g., Harville, 1997, th.

13.3.8) to (B.1), we derive

W1 = |U ′U | = |V ′2V2||V ′1 {In−k − V2(V ′2V2)−1V ′2 }V1|,
W2 = |(ZΓ′ +U )′(ZΓ′ +U )|
= |V ′2V2||(BΛ + V1)′{In−k − V2(V ′2V2)−1V ′2 }(BΛ + V1)|.

(B.2)

It follows from (B.2) that

T = log
|W2|
|W1|

− log |Ip + ΓΓ
′|

= log

 |V ′1 {In−k − V2(V ′2V2)−1V ′2 }V1|
|(BΛ + V1)′{In−k − V2(V ′2V2)−1V ′2 }(BΛ + V1)|

 − log |Ip + ΓΓ
′|. (B.3)

Notice thatV1, V2, andB are mutually independent, and

V ′1 {In−k − V2(V ′2V2)−1V ′2 }V1 ∼Wr (n− k− p+ r, Ir ),

(BΛ + V1)′{In−k − V2(V ′2V2)−1V ′2 }(BΛ + V1) ∼Wr (n− k− p+ r, Ir +Λ
2).

Hence, we derive

1
n− k− p+ r

V ′1 {In−k − V2(V ′2V2)−1V ′2 }V1
p
→ Ir ,

1
n− k− p+ r

(Ir +Λ
2)−1/2(BΛ + V1)′{In−k − V2(V ′2V2)−1V ′2 }(BΛ + V1)(Ir +Λ

2)−1/2 p
→ Ir .

These equations imply that

1
(n− k− p+ r)r

∣∣∣V ′1 {In−k − V2(V ′2V2)−1V ′2 }V1)
∣∣∣ p
→ 1,

1
(n− k− p+ r)r |Ir +Λ2|

∣∣∣(BΛ + V1)′{In−k − V2(V ′2V2)−1V ′2 }(BΛ + V1)
∣∣∣ p
→ 1.

(B.4)

Notice thatΓ′Γ = QΛ2Q′. By using this equation and a basic property of a determinant (see e.g.,

Harville, 1997, cor. 18.1.2), we derive

|Ir +Λ
2| = |Ir + Γ

′Γ| = |Ip + ΓΓ
′|. (B.5)

By substituting (B.4) and (B.5) into (B.3),T
p
→ 0 is obtained. This means that equation (9) is

proved.
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C. Proof of Lemma 1

We first describe a lemma about another expression ofSyy· j ; this is required for proving Lemma

1 (the proof is given in Appendix G).

Lemma A.1 LetE, A j , andB be mutually independent random matrices, which are defined by

E ∼ Nn×q(On,p, Ip ⊗ In), A j ∼ Nn×(q−q j )(On,q−q j , Iq−q j ⊗ In), B ∼ Nn×q(On,q,Σxx ⊗ In),

and letB j denote then × q j matrix consisting of the columns ofB indexed by the elements ofj.

Then, for anyj ∈ J , nSyy· j can be rewritten as

nSyy· j = Σ1/2
yy·x(A jΓ

′
j + E)′(In − P j)(A jΓ

′
j + E)Σ1/2

yy·x, (C.1)

whereP j is the projection matrix to the subspace spanned by the columns ofB j , i.e., P j =

B j(B′jB j)−1B′j , andΓ j is given by(20). In particular, whenj ∈ J+,

nSyy· j = Σ1/2
yy·xE′(In − P j)EΣ1/2

yy·x. (C.2)

When j ∈ J+\{ j∗}, it follows from Lemma A.1 that

Fmin( j) − Fmin( j∗) = − log
|nSyy· j∗ |
|nSyy· j |

= − log
|E′(In − P j∗)E|
|E′(In − P j)E|

= − log
|E′(In − P j)E + E′(P j − P j∗)E|

|E′(In − P j)E|
.

Notice thatIn − P j andP j − P j∗ are idempotent matrices, and (In − P j)(P j − P j∗ ) = On,n holds.

Hence, (19) is proved.

When j ∈ J−, it follows from Lemma A.1 that

Fmin( j) − Fmin(ω) = log |nSyy· j | − log |nSyy·x|
= log

∣∣∣(A jΓ
′
j + E)′(In − P j)(A jΓ

′
j + E)

∣∣∣ − log
∣∣∣E′(In − Pω)E

∣∣∣
= log

|(A jΓ
′
j + E)′(In − P j)(A jΓ

′
j + E)|

|E′(In − P j)E|
+ log

|E′(In − P j)E|
|E′(In − Pω)E|

= log
|(A jΓ

′
j + E)′(In − P j)(A jΓ

′
j + E)|

|E′(In − P j)E|

+ log
|E′(In − Pω)E + E′(Pω − P j)E|

|E′(In − Pω)E| .

Notice thatIn −P j , In −Pω, andPω −P j are idempotent matrices, and (In −Pω)(Pω −P j) = On,n

holds. Hence, (22) is proved.

D. Proof of Equation (23)

It follows from the general formula for the inverse of a block matrix, e.g., th. 8.5.11 in Harville

14
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(1997), that

Σ−1
xx =

 Σ j j Σ j j̄

Σ′
j j̄

Σ j̄ j̄


−1

=

 Σ−1
j j +Σ

−1
j j Σ j j̄Σ

−1
j̄ j̄· jΣ

′
j j̄
Σ−1

j j −Σ−1
j j Σ j j̄Σ

−1
j̄ j̄· j

−Σ−1
j̄ j̄· jΣ

′
j j̄
Σ−1

j j Σ−1
j̄ j̄· j

 ,
whereΣ j̄ j̄· j are given by (21). By using the above equation, we have

Σ′xyΣ
−1
xxΣxy =

(
Σ′jy,Σ

′
j̄y

)  Σ−1
j j +Σ

−1
j j Σ j j̄Σ

−1
j̄ j̄· jΣ

′
j j̄
Σ−1

j j −Σ−1
j j Σ j j̄Σ

−1
j̄ j̄· j

−Σ−1
j̄ j̄· jΣ

′
j j̄
Σ−1

j j Σ−1
j̄ j̄· j


 Σ jy

Σ j̄y


= Σ′jyΣ

−1
j j Σ jy + (Σ j̄y −Σ′j j̄Σ

−1
j j Σ jy)

′Σ−1
j̄ j̄· j(Σ j̄y −Σ′j j̄Σ

−1
j j Σ jy). (D.1)

It follows from (20) and (D.1) that

Σ−1/2
yy·x Σyy· jΣ

−1/2
yy·x = Ip + Γ jΓ

′
j .

Hence, we have ∣∣∣Ip + Γ jΓ
′
j

∣∣∣ = ∣∣∣Σ−1/2
yy·x Σyy· jΣ

−1/2
yy·x

∣∣∣ = |Σyy· j ||Σyy·x|
.

By using the above equation, (23) is proved. On the other hand, it follows from (12) that

Γ j = Op,q−q j holds whenj ∈ J+. Hence,δ j = 0 holds whenj ∈ J+.

E. Two Examples ofδ j

Two examples ofδ j are presented in this section. In both examples, we assume thatj is the subset

of j∗ such thatj∗ = { j, j̄ ∩ j∗}.
First, we show the case that a limiting value ofδ j is bounded. Let

Σxx = Ω(q), Σyy = Ω(p), Σxy = ρ

 1q∗

q∗ρ/{1+ (q∗ − 1)ρ}1q−q∗

 1′p,

whereρ ∈ (−1,1) andΩ(m) is anm×msymmetric matrix defined by

Ω(m) = (1− ρ)Im + ρ1m1′m.

From the general formula of the inverse of the sum of two matrices, e.g., cor. 18.2.10 in Harville

(1997), we have

Ω(m)−1 =
1

1− ρ

{
Im −

ρ

1+ (m− 1)ρ
1m1′m

}
.

Then, we can see that

|Σyy·x| = |Σyy· j∗ | =
∣∣∣Ω(p) − (ρ1p1′q∗)Ω(q∗)

−1(ρ1q∗1
′
p)
∣∣∣

=

∣∣∣∣∣∣(1− ρ)
{
Ip +

ρ

1+ (q∗ − 1)ρ
1p1′p

}∣∣∣∣∣∣ = (1− ρ)p{1+ (p+ q∗ − 1)}ρ
1+ (q∗ − 1)ρ

.
(E.1)

It follows from the same calculations as in (E.1) that
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|Σyy· j | =
∣∣∣∣Ω(p) − (ρ1p1′q j

)Ω(q j)
−1(ρ1q j 1

′
p)
∣∣∣∣ = (1− ρ)p{1+ (p+ q j − 1)}ρ

1+ (q j − 1)ρ
. (E.2)

Hence, from (E.1) and (E.2), the following equation is derived:

δ j = log
|Σyy· j |
|Σyy·x|

= log
{1+ (p+ q j − 1)}{1+ (q∗ − 1)ρ}
{1+ (p+ q∗ − 1)}{1+ (q j − 1)ρ}

→ log

{
1+ (q∗ − 1)ρ
1+ (q j − 1)ρ

}
.

This equation indicates that the limiting value ofδ j is bounded asp→ ∞.

Next, the case thatδ j approaches∞ is shown. Let

Σxx = Iq, Σyy = Ip, Σxy =

 1q∗

0q−q∗

α′,
whereα is a p-dimensional vector defined by

α =

√
1− ρ2

q∗ρ2
(ρ, . . . , ρp)′.

Hereρ ∈ (−1,1). Notice that

α′α =
1− ρ2

q∗ρ2

p∑
k=1

(ρ2)k =
1
q∗

{
1− (ρ2)p

}
.

Hence, we can see that

|Σyy·x| = |Σyy· j∗ | =
∣∣∣Ip − (α1′q∗)Iq∗(ρ1q∗α

′)
∣∣∣

=
∣∣∣Ip − q∗αα′

∣∣∣ = 1−
{
1− (ρ2)p

}
= (ρ2)p.

(E.3)

It follows from the same calculations as in (E.3) that

|Σyy· j | =
∣∣∣∣Ip − (α1′q j

)Iq j (ρ1q jα
′)
∣∣∣∣ = [

1−
q j

q∗

{
1− (ρ2)p

}]
. (E.4)

From (E.3) and (E.4), the following equation is derived:

δ j = log
|Σyy· j |
|Σyy·x|

= log

[
1−

q j

q∗

{
1− (ρ2)p

}]
− p log(ρ2).

This equation indicates thatδ j approaches∞ asp→ ∞.

F. Proof of Corollary 2

From a simple calculation, we have the following expansion:

n
{
b(q j + p) − b(q j) − b(q∗ + p) + b(q∗)

}
=

np(2n− p)
(n− p)2

(q j − q∗) +O(n−2p).
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It follows from the above equation and (16) that

m( j) −m( j∗) =



2p(q j − q∗) (AIC)

p(2− p/n)(q j − q∗)/(1− p/n)2 +O(pn−1) (AICc)

2p(q j − q∗) + κ̂( jy) − κ̂ j − κ̂( j∗y) + κ̂ j∗ (TIC)

p(q j − q∗) logn (BIC)

p(q j − q∗)(1+ logn) (CAIC)

2p(q j − q∗) log logn (HQC)

. (F.1)

On other hand, by using the results in Mardia (1974), the mean and variance of ˆκ(D) in (17) are

calculated as

E [κ̂(D)] =
d(d + 2)
n(n+ 2)

, Var [κ̂(D)] =
8d(d + 2)(n− 2)(n+ 1)4(n− d)(n− d + 2)

n4(n+ 2)2(n+ 4)(n+ 6)
.

These imply that for anyj ∈ J ,

κ̂ j
p
→ 0,

1
p
κ̂( jy)

p
→ 0.

It follows from the above equations and (F.1) that

am(n, p) =


p

p

p logn

p log logn

, βm( j) =


2(q j − q∗) (AIC,TIC)

{(2− c)/(1− c)2}(q j − q∗) (AICc)

q j − q∗ (BIC,CAIC)

2(q j − q∗) (HQC)

. (F.2)

Hence, it is easy to see that

lim
n−p→∞,p/n→c

p
am(n, p)

=

 1 (AIC,AICc,TIC)

0 (BIC,CAIC,HQC)
.

By using the above results and (27), we can see that condition C1 holds for the BIC, CAIC, and

HQC. Condition C1 holds for the AIC, AICc, and TIC if p goes to∞ and the following equation is

satisfied:

g(c) <

 2 (AIC,TIC)

1/(1− c) + 1/(1− c)2 (AICc)
,

whereg(x) is given by (8). The above equation implies that condition C1 holds for the AIC and TIC

if p goes to∞ andc ∈ [0, ca), and it holds for the AICc if p goes to∞, because−g(x) + 2 > 0 holds

whenx ∈ [0, ca) and−g(x) + (1− x)−1 + (1− x)−2 > 0 holds whenx ∈ [0,1), whereca is given in

(29). Moreover, from (28) and (F.2), we can see that condition 2 holds if the following equation is

satisfied:

q∗ − q j < lim
n−p→∞,p/n→c


nδ j/(2p) (AIC,TIC)

nδ j(1− c)2/{p(2− c)} (AICc)

nδ j/(p logn) (BIC,CAIC)

nδ j/(2p log logn) (HQC)

.

It is easy to see that the above equation is satisfied ifq∗ − q j ≤ 0, becauseδ j > 0. Hence, it is

sufficient to consider the case ofj ∈ S−, whereS− is given in (29). Consequently, Corollary 2 is

proved.
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G. Proof of Lemma A.1

Let Y = (y1, . . . ,yn+1)′ andX = (x1, . . . ,xn+1)′, whereyi andxi are theith individuals fromy

andx, respectively, andX j denotes an (n+ 1)× q j matrix consisting of the columns ofX indexed

by the elements ofj. Then,nSyy· j is expressed as

nSyy· j = Y ′Hn+1

{
In+1 −Hn+1X j

(
X ′

jHn+1X j

)−1
X ′

jHn+1

}
Hn+1Y ,

whereHn is the projection matrix to the orthocomplement of the subspace spanned by1n, i.e.,

Hn = In − 1n1′n/n, and1n is ann-dimensional vector of ones. LetV be ann × p random matrix

such that

(B,V ) ∼ Nn×(q+p)(On,q+p,Σ),

whereB is ann× q random matrix. From a property of a multivariate normal distribution, we can

rewritenSyy· j usingV andB, as follows:

nSyy· j = V ′(In − P j)V , (G.1)

whereP j = B j(B′jB j)−1B′j , andB j is ann× q j matrix consisting of the columns ofB indexed by

the elements ofj. From a property of a conditional distribution of a multivariate normal distribution,

e.g., th. 2.2.7 in Srivastava and Khatri (1979), we have

V |B ∼ Nn×p(BΣ−1
xxΣxy,Σyy·x ⊗ In), B j̄ |B j ∼ Nn×q(B jΣ

−1
j j Σ j j̄ ,Σ j̄ j̄· j ⊗ In),

whereΣ j̄ j̄· j is given by (21). Hence, we can expressV as

V = BΣ−1
xxΣxy + EΣ1/2

yy·x, B j̄ = B jΣ
−1
j j Σ j j̄ +A jΣ

1/2
j̄ j̄· j , (G.2)

whereE, A j , andB j are mutually independent random matrices. It should be kept in mind that any

Syy· j ( j ∈ J) can be represented by using the commonE, becauseE is independent ofj. Without

loss of generality, we assume thatB is arranged as (B j ,B j̄). It follows from the same calculation

as in (D.1) that

BΣ−1
xxΣxy = (B j ,B j̄)

 Σ−1
j j +Σ

−1
j j Σ j j̄Σ

−1
j̄ j̄· jΣ

′
j j̄
Σ−1

j j −Σ−1
j j Σ j j̄Σ

−1
j̄ j̄· j

−Σ−1
j̄ j̄· jΣ

′
j j̄
Σ−1

j j Σ−1
j̄ j̄· j


 Σ jy

Σ j̄y


= B jΣ

−1
j j

{
Σ jy −Σ j j̄Σ

−1
j̄ j̄· j(Σ j̄y −Σ′j j̄Σ

−1
j j Σ jy)

}
+B j̄Σ

−1
j̄ j̄· j(Σ j̄y −Σ′j j̄Σ

−1
j j Σ jy).

SubstitutingB j̄ in (G.2) into the above equation yields

BΣ−1
xxΣxy = B jΣ

−1
j j

{
Σ jy −Σ j j̄Σ

−1
j̄ j̄· j(Σ j̄y −Σ′j j̄Σ

−1
j j Σ jy)

}
+ (B jΣ

−1
j j Σ j j̄ +A jΣ

1/2
j̄ j̄· j)Σ

−1
j̄ j̄· j(Σ j̄y −Σ′j j̄Σ

−1
j j Σ jy)

= B jΣ
−1
j j Σ jy +A jΓ

′
jΣ

1/2
yy·x,

whereΓ j is thep× (q− q j) matrix defined by (20). Substituting the above equation intoV in (G.2)
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yields

V = B jΣ
−1
j j Σ jy +A jΓ

′
jΣ

1/2
yy·x + EΣ1/2

yy·x. (G.3)

Notice that (In−P j)B j = On,q j . By using (G.1) and (G.3), (C.1) is proved. Moreover,Γ j = Op,q−q j

if j ∈ J+, because then (12) holds. This implies that for anyj ∈ J+

V = B jΣ
−1
j j Σ jy + EΣ1/2

yy·x. (G.4)

Hence, from (G.1) and (G.4), (C.2) is proved.
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