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Abstract

The model selection criteria AIC, BIC and Cp have been proposed

for estimation of the rank of coefficient matrix in multivariate linear

model. In general, it is known that under a large-sample asymptotic

framework AIC and Cp is not consistent, but BIC is consistent. How-

ever, we note that these criteria have consistency when the number p

of the response variables and the sample size n are large under a high-

dimensional asymptotic framework such that the ratio p/n tends to a

constant c (0 ≤ c < 1) as p and n are large. The consistency properties

are also shown for extended criteria with a tuning parameter. Further,

we propose the ridge-type criteria whose justifications are given under

a large-sample asymptotic framework. Their consistencies are shown

in a high-dimensional asymptotic framework. Through a Monte Carlo

simulation experiment our results are checked numerically, and the

estimation criteria are compared.
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1 Introduction

The paper concentrates the problem of estimating the rank (or the dimen-

sionality) of coefficient matrix in multivariate linear model. The model with a

reduced rank in multivariate regression model is called multivariate reduced-

rank regression model (see, Izenman (1975), Reinsel and Velu (1998)). The

problem includes also the one of estimating the number of meaningful dis-

criminant functions in discriminant analysis.

One of the estimation methods is based on sequential test procedures.

The tests on each steps are to use the likelihood ratio tests which were

first obtained by Anderson (1951, 2003). There are the methods based on

the use of model selection criteria which are discussed in this paper. The

cross-validation method is also used. Yuan, Ekici, Lu and Monteiro (2007)

proposed a method based on penalization. Chen and Huang (2012) have

proposed a simultaneous method for selecting the rank and the response

variables by using a penalized regression with a group lasso penalty. For

related works, see Bunea, She and Wegkamp (2011, 2012).

We consider multivariate linear model with p response variables y1, . . . , yp,

k explanatory variables x1, . . . , xk, and coefficient matrix Θ of size k×p. Our

interest is to estimate the rank of CΘ, where C is a q× k given matrix with

rank q. We are concerned with the estimation methods by use of the model se-

lection criteria AIC (Akaike (1973)), Cp (Mallows (1973)) and BIC (Schwarz

(1978)). The criteria based on the first two model selection criteria were

proposed by Fujikoshi and Veitch (1979) in multivariate linear model and

canonical correlation analysis. The criterion based on BIC was considered

by Gunderson and Muirhead (1997) in canonical correlation analysis.

It is known (Fujikoshi (1985)) that under a large-sample asymptotic

framework such that

n → ∞, p, q, k; fixed, (1)

the criteria A and C based on AIC and Cp are not consistent, but the criterion

B based on BIC is consistent (Gunderson and Muirhead (1997)), with the

additional assumption that the order of nonsentraly matrix Ω̃ (see (6)) is
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O(n). Here, for a matrix A, O(a) means that each elements of A is O(a).

In this paper we examine consistencies of the criteria A, B and C in a

high-dimensional asymptotic framework such that

p → ∞, n → ∞, p/n → c ∈ [0, 1). (2)

The true rank (or dimension) j∗ and the possibly maximum rank q(≥ j∗)

are fixed. Further, we assume two types of assumptions on largeness of the

noncentrality parameter matrix Ω (see (16)) given by (i) Ω = O(n) and (ii)

Ω = O(np), respectively. Then, it is shown that the criteria A and C are

consistent under some additional assumptions depending on (i) and (ii). On

the other hand, we note that the criterion B is consistent under Ω = O(np),

but is not consistent under Ω = O(n). These results are shown by deriving

sufficient conditions for the extended criteria ICν and Cpν to be consistent,

where IC2 = A, IClogn = B and Cp2 = C. Note that ν may be regarded

as a tuning parameter. Similar high-dimensional consistency properties have

been derived Yanagihara, Wakaki and Fujikoshi (2012) and Fujikoshi, Sakurai

and Yanagihara (2013) for the AIC and/or in selection of the explanatory

variables in multivariate linear model.

In this paper we also propose ridge-type criteria of A, B and C denoted

by Ãλ, B̃λ and C̃λ, respectively. The ridge-type criteria are defined by using

a ridge estimator of the covariance matrix. The criteria are used also for

the case p > n − k. Some justifications of these criteria are given under a

large-sample asymptotic framework. We show their consistency properties

under a high-dimensional asymptotic framework such that p/n → c ∈ [0, 1).

For p > n − k, we point some tendency through a Monte Carlo simulation

experiment.

Our methods are related to multivariate regression model and discrinant

analysis which are very often used for analysis of multivariate data. The

data with a relatively large number of response variables are appeared in

many fields like medical field, and the data with a large number of response

variables are appeared in stock data, genome data, etc. A high-dimensional

3



asymptotic framework will be also applicable for a data set based on a selec-

tion from a large number of response variables.

The present paper is organized as follows. In section 2, we present the

multivariate linear model with a reduced rank, and two special cases are ex-

plained. Then we prepare three criteria and their extensions with a tuning

parameter. In Section 3, we give sufficient conditions for the criteria ICν and

Cpν to be consistent. As a special case, we give consistency properties of the

criteria A, B and C. We check our theoretical results by conducting a Monte

Carlo simulation experiment, and compare with the selection probabilities of

the two criteria. In Section 4, we propose ridge-type criteria whose consis-

tencies are theoretically and numerically studied. In Section 5, we discuss

our conclusions. The proofs of our results are given in Appendix.

2 Rank Estimation Criteria

2.1 Multivariate Linear Model with Reduced Rank

We consider a multivariate linear model of p response variables y1, . . . , yp

on a subset of k explanatory variables x1, . . . , xk. Suppose that there are

the n observations y1, . . . ,yn and x1, . . . ,xn on y = (y1, . . . , yp)
′ and x =

(x1, . . . , xk)
′, respectively, and let Y = (y1, . . . ,yn)

′ and X = (x1, . . . ,xn)
′

be the n × p and n × k observation matrices of y and x, respectively. The

multivariate normal linear model is written as

Y ∼ Nn×p(XΘ,Σ⊗ In), (3)

where Θ is a k × p unknown matrix of coefficients, Σ is a p × p unknown

covariance matrix, and In is the identity matrix of order n. The notation

Nn×p(·, ·) means the matrix normal distribution such that the mean of Y is

XΘ and the covariance matrix of vec (Y) is Σ⊗In, where vec (Y) is the np×1

vector formed by stacking the columns of Y under each other. We assume

that n− k > p and rank(X) = k. When x has a set of dummy variables, X

may not be the full rank. However, as is well known, there are some linear

restrictions on the parameters, and we can make X a full rank matrix.
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Let C be a given q × k matrix with rank(C) = q, consider reduced rank

models including H

Mj : rank(CΘ) = j, j = 0, 1, . . . ,m, m = min(p, q). (4)

For testing Mj : rank(CΘ) = j, we have an LR statistic given by

Λ(j) = {(1 + ℓj+1) · · · (1 + ℓm)}−1, (5)

where ℓ1 > · · · > ℓm > 0 are the non-zero characteristic roots of ShS
−1
e ,

Se = Y′(In −PX)Y, Sh = (CΘ̂)′{C(X′X)−1C′}−1CΘ̂,

and Θ̂ = (X′X)−1X′Y. Here, without loss of generality we may assume

that ℓ1 > · · · > ℓm > 0, since the probability for ℓi ’s to be equal is 0. It

is well known (see, e.g. Anderson(2003)) that Se and Sh are independently

distributed as a Wishart distribution Wp(n−k,Σ) and a noncentral Wishart

distribution Wp(q,Σ;Σ1/2Ω̃Σ1/2), respectively, where

Ω̃ = Σ−1/2(CΘ)′{C(X′X)−1C′}−1CΘΣ−1/2. (6)

Our problem involves the following two special cases. First we consider

a multivariate reduced-rank regression model which is given by (3) with (4)

and C = Ik. From the rank constraint (4) the regression matrix Θ can be

expressed as a product of two rank j matrices as follows:

Θ = GΞ,

where G is of dimension k × j and Ξ is of dimension j × p. Then

E[Y] = (XG) ·Ξ = ZΞ, Z = XG. (7)

The model means that the j linear combinations z = G′x of the k ex-

planatory variables x are sufficient to model the validation in the p response

variables y. The j-variate z may be regarded as a factor or latent variate.

In practice, the dimension j is unknown, and we need to estimate it.
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Next we consider the reduced-rank problem in discriminant analysis,

based on (q + 1) p-variate normal populations with common covariance ma-

trix Σ. Let µi be the mean vector of the ith population. Suppose that a

sample of size ni is available from the ith population, and let yij be the jth

observation from the ith population. Let us denote the between-group and

within-group sums of squares and products matrices by

Sb =

q+1∑
i=1

ni(ȳi − ȳ)(ȳi − ȳ)′, Sw =

q+1∑
i=1

(ni − 1)Si,

respectively, where ȳi and Si are the mean vector and sample covariance

matrix of the ith population, and ȳ is the total mean vector defined by

(1/n)
∑q+1

i=1 niȳi, and n =
∑q+1

i=1 ni. In general, Sw and Sb are independently

distributed as a Wishart distribution Wp(n − q − 1,Σ) and a noncentral

Wishart distribution Wp(q,Σ;Σ1/2Ω̃Σ1/2), respectively, where

Ω̃ = Σ−1/2

q+1∑
i=1

ni(µi − µ̄)(µi − µ̄)′Σ−1/2, µ̄ = (1/n)

q+1∑
i=1

niµi. (8)

The coefficient vector βi of the i-th population discriminant function is

defined as the characteristic vector satisfying

Σ1/2Ω̃Σ1/2βi = ωiΣβi, β′
iΣβj = δij, i, j = 1, . . . ,m = min(p, q),

where δij denotes the Kroneker delta. Here, ω1 ≥ ω2 ≥ · · · ≥ ωm ≥ 0 are the

possible non-zero characteristic roots of Ω̃. The between-groups variation of

the i-th discriminant function β′
iX is ωi. Therefore, if ωi is zero, the i-th

discriminant function β′
iX is not meaningful. The dimensionality in discrim-

inant analysis may be defined (see Kishisagar (1972), Fujikoshi, Ulyanov and

Shimizu (2010), etc.) as the number of non-zero characteristic roots of Ω̃

which is the number of meaningful population discriminant functions. The

model that the dimension is j(0 ≤ j ≤ m) may be expressed as

Mj : rank(Ω̃) = j,

⇔ ω1 ≥ · · · ≥ ωj > ωj+1 = · · · = ωq = 0, (9)

⇔ rank(µ1 − µq+1, . . . ,µq − µq+1) = j.
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Note that the model Mj in (4) involves the Mj in discriminant analysis

as a special case. This is easily seen by taking k = q+ 1 and choosing Y, C,

X and Θ as follows.

Y = (y11, . . . ,y1n1 , . . . ,yq+1,1, . . . ,yq+1,nq+1)
′, C = (Iq, −1q)

X =


1n1 0 · · · 0
0 1n2 · · · 0
...

...
. . .

...
0 0 · · · 1nq+1

 , Θ =


µ

′
1

µ
′
2

...
µ

′
q+1

 ,

where 1n is an n× 1 vector whose elements are all one. Then, Sh = Sb and

Se = Sw.

2.2 AIC, BIC, Cp and Their Extensions

In general, AIC for a model M is defined (Akaike (1973)) as

AIC = −2 log L̂+ d,

where L̂ is the maximum likelihood under M , and d is the number of inde-

pendent parameters under M . The AIC for Mj is expressed as

AICj =n log(1 + ℓj+1) · · · (1 + ℓm) + n log |(1/n)Se|

+ np(log 2π + 1) + 2

{
j(p+ q − j) + (k − q)p+

1

2
p(p+ 1)

}
, (10)

The result has been obtained by Fujikoshi and Veitch (1979) as an asymptotic

unbiased estimator of the risk function based on Kullback-Leibler distance.

Based on AICj, if min{AIC0,AIC1, . . . ,AICm} = AICj, we estimate the

rank as j. Instead of AICj, we may use

Aj =AICj − AICm

=n log
m∏

i=j+1

(1 + ℓi)− 2(p− j)(q − j), j = 0, . . . ,m. (11)

Here Am = 0. Then the estimation method is equivalent to estimate the rank

as j if min{A0,A1, . . . ,Am} = Aj.
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Similarly, the Bj and Cj based on BIC and Cp are given as follows.

Bj =BICj − BICm

=n log
m∏

i=j+1

(1 + ℓi)− (log n)(p− j)(q − j), j = 0, . . . ,m. (12)

Cj =Cp,j − Cp,m

=n
m∑

i=j+1

ℓi − 2(p− j)(q − j), j = 0, . . . ,m. (13)

Here, Bm = 0, Cm = 0.

Using a tuning parameter ν, we consider the following two extended cri-

teria:

ICν;j =n log
m∏

i=j+1

(1 + ℓi)− ν(p− j)(q − j), j = 0, . . . ,m. (14)

Cpν;j =n
m∑

i=j+1

ℓi − ν(p− j)(q − j), j = 0, . . . ,m. (15)

Here ICν;m = 0 and Cpν;m = 0. Then IC2;j = Aj, IClogn;j = Bj, Cp2;j = Cj.

3 High-Dimensional Consistency

3.1 Theoretical Results

In the following, we are concerned with asymptotic behaviors of the criteria

when p and n are large and q is fixed. So, without loss of generality, we

assume that p ≥ q, then m = min (p, q) = q. Denoting Mj by j simply,

the set of all the models is F = {0, 1, . . . , q}. It is assumed that the true

model is the model (3) with Θ = Θ∗ and Σ = Σ∗. However, we often

write Θ∗ and Σ∗ as Θ and Σ simply. Further, we assume that the minimum

reduced rank model including M∗ is j∗, where 0 ≤ j∗ ≤ q. The j∗ denotes

also the true rank or dimension. We separate F into two sets, one is a set

of overspecified models, i.e., F+ = {j∗, j∗ + 1, . . . , q} and the other is a set

of underspecified models, i.e., F− = Fc
+ ∩ F = {0, 1, . . . j∗ − 1}. Further, we
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denote the set of models deleting the true model from F+ by F+\{j∗}, i.e.,
F+\{j∗} = {j∗ + 1, . . . , q}.

The estimation methods based on Aj, Bj and Cj are expressed as

ĵA = argmin
j∈F

Aj, ĵB = argmin
j∈F

Bj, and ĵC = argmin
j∈F

Cj,

respectively. Similarly, the estimation methods based on ICν;j and Cpν;j are

expressed as

ĵICν = argmin
j∈F

ICν;j, and ĵCpν = argmin
j∈F

Cpν;j,

respectively. In this paper we assume that

A1 (The true model): j∗ ∈ F.

A2 (The asymptotic framework): q is fixed, p → ∞, n → ∞, p/n → c ∈
[0, 1).

Further, we make two types of assumptions on the order of Ω̃ in (6).

Since rank(Ω̃) ≤ q, we can write Ω̃ = ΓΓ
′
, where Γ is a p× q matrix. Let

Ω = Γ′Γ, (16)

which is a q × q matrix. In discriminant analysis with q = 1,

Ω̃ = (n1n2/n)Σ
−1/2(µ1 − µ2)(µ1 − µ2)

′Σ−1/2,

and

Ω = ω =
n1n2

n
(µ1 − µ2)

′Σ−1(µ1 − µ2),

which is (n1n2/n) times the squared Mahalanobis distance between two nor-

mal populations Np(µ1,Σ) and Np(µ2,Σ). When ni/n → di > 0, ω = O(n)

and also ω = O(np), depending on whether the squared Mahalanobis dis-

tance is O(1) or O(p), where O(·) is the usual order under a high-dimensional

framework (2). Note that, when we consider the distributions of our criteria,

without loss of generality we may assume

Ω = diag(ω1, . . . , ωq), (17)
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where ω1 ≥ · · · ≥ ωq are the characteristic roots of Ω or the non-zero char-

acteristic roots of Ω̃. Based on these considerations we take up the following

two types of assumptions on the noncentrality matrix.

A3 (The noncentrality matrix-1): For any j(0 ≤ j ≤ j∗),

ωj = nδj = O(n), lim
p/n→c

δj = δ∗j > 0.

A4 (The noncentrality matrix-2): For any j(0 ≤ j ≤ j∗),

ωj = npξj = O(np), lim
p/n→c

ξj = ξ∗j > 0.

In the following, we give sufficient conditions for ICν and Cpν to be con-

sistent. Here, the consistency of e.g., ICν means that the probability that

ICν selects the true model j∗ tends asymptotically to 1, i.e.

lim
p/n→c

P (ĵICν = j∗) = 1.

Theorem 1 Suppose that the assumptions A1 is satisfied.

(1) ICν is consistent if the assumptions A2, A3 and the inequality “ −c−1 log(1−
c) < ν < −c−1 log(1− c) + c−1 log(1 + δ∗j∗)” are satisfied.

(2) ICν is consistent if the assumptions A2, A4 and the inequality “ −c−1 log(1−
c) < ν” are satisfied.

Theorem 1 implies the following results except for Corollary 2(1).

Corollary 1 Suppose that the assumptions A1 is satisfied. Further, assume

that c ∈ [0, ca), where ca (≈ 0.797) is the larger constant satisfying log(1 −
ca) + 2ca = 0.

(1) A is consistent if the assumptions A2, A3 and the inequality “ log(1 +

δ∗j∗) > (j∗ − j){2c+ log(1− c)} are satisfied.

(2) A is consistent if the assumptions A2 and A4 are satisfied.
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Corollary 2 Suppose that the assumptions A1 is satisfied.

(1) B is not consistent if the assumptions A2 with c > 0 and A3 are satisfied.

(2) B is consistent if the assumptions A2 and A4 are satisfied.

Similar results are obtained for the criteria Cpν and Cp.

Theorem 2 Suppose that the assumptions A1 is satisfied.

(1) Cpν is consistent if the assumptions A2, A3 and the inequality “ −(1 −
c)−1 < ν < (1− c)−1 + {c(1− c)}−1δ∗j∗” are satisfied.

(2) Cpν is consistent if the assumptions A2, A4 and the inequality “ −(1 −
c)−1 < ν” are satisfied.

Corollary 3 Suppose that the assumptions A1 is satisfied. Further, assume

that c ∈ [0, 0.5).

(1) C is consistent if the assumptions A2, A3 and the inequality “ δ∗j∗ >

(j∗ − j)c(1− 2c)” are satisfied.

(2) C is consistent if the assumptions A2 and A4 are satisfied.

Theorems 1 and 2 are helpful for selection of tuning parameters. Our

sufficient conditions for consistency are derived as follows. Let Tj be a general

criterion for Mj, j ∈ F. Then, we attempt to show that

∀j ̸= j∗ ∈ F,
1

hj,j∗

(Tj − Tj∗) ≥ Dj,j∗
p→ αj,j∗ > 0 (18)

where Dj,j∗ is some quantity, and hj,j∗ is some positive constant depending

on models. It is easy to see that (18) implies P (ĵT = j∗) → 1.

For example, under A1, A2 and A3 we shall show in Appendix A·1 that

11



for j > j∗;

1

n
{ICν;j − ICν;j∗}

p→ (j − j∗){log(1− c) + νc}.

for j < j∗;

1

n
{ICν;j − ICν;j∗}

p→ log(1 + δ∗j+1) · · · (1 + δ∗j∗)− (j∗ − j){log(1− c) + νc}

≥ (j∗ − j)[log(1 + δ∗j∗)− {log(1− c) + νc}].

Therefore, by obtaining the ranges of ν such that the above right-hand sides

are positive, we can obtain Theorem 1. Generally, we can say that for the

consistency, it needs that the penalty term tends to infinity. When ν = log n,

we have that for j < j∗

1

n log n
(Bj − Bj∗)

p→ −(j∗ − j)c,

which implies P (Bj > Bj∗) → 0. Therefore

P (ĵB = j∗) = P (Bj > Bj∗ , for all j ̸= j∗)

≤ P (Bj > Bj∗), for j < j∗

→ 0, for j < j∗,

which implies Corollary 2(1).

We note that the consistency properties in Theorems 1 and 2 hold case

where the set of candidate models is a subfamily G ⊂ F. In fact, for example,

the estimation method based on AIC is expressed as

ĵA;G = argmin
j∈G

Aj.

Then, the consistency of ĵA;G is given as Theorem 1 with the following mod-

ifications; j∗ ∈ F → j∗ ∈ G, and “any j (0 ≤ j ≤ j∗)” in A2 and A3 → “any

j(0 ≤ j ≤ j∗) ∈ G”.
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3.2 Numerical Study

In this section, we numerically examine the validity of our claims and tenden-

cies for the ranks estimated by A, B, C and their extensions. Our numerical

results are given for the estimation problem of dimensionality in discriminant

analysis with q+1 groups based on the total sample size n of p response vari-

ables. Assume that p ≥ q.

The criteria are based on the nonzero characteristic roots ℓ1 > · · · > ℓq

of SbS
−1
w . Without loss of generality we may assume that Sw and Sb are

independently distributed as Wp(n−q−1, Ip) and Wp(q, Ip;Ωp), respectively.

Here, Ωp = diag(ω1, · · · , ωq, 0, . . . , 0) and ω1, · · · , ωq are the possible nonzero

characteristic roots of the noncentrality matrix Ω defined by (8). Further,

the sample roots ℓ1 > · · · > ℓq may be regarded (see Lemma A1) as the ones

of BW−1, where W and B are independently distributed as Wq(n−p−1, Iq)

and Wq(p, Iq;Ω), respectively and Ω = diag(ω1, . . . , ωq).

Suppose that q = 5, and so we have six candidate modelsM0,M1, . . . ,M5.

It is assumed that the minimum model including the true model is M3 and

so j∗ = 3. The two types of characteristic roots ωi, i = 1, . . . , 5 are defined

as follows:

(a) : ω1 = 2ω3, ω2 =
3

2
ω3, ω3 = n, ω4 = ω5 = 0,

(b) : ω1 = 2ω3, ω2 =
3

2
ω3, ω3 = np, ω4 = ω5 = 0.

These (a) and (b) are corresponding to the noncentrality matrix-1 and -2 on

the assumptions A3 and A4. Several different values of n and p = cn were

prepared for Monte Carlo simulations with 104 repetitions. Tables 4.1 and

4.2 show simulation results for

(n, p) =(30, 5), (60, 10), (120, 20), (210, 35), (300, 50), (480, 80), (600, 100).

In these cases, the values of p/n are all 1/6, and the assumptions A3 and A4

are satisfied.
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Table 4.1. Selection probabilities of ĵA, ĵB and ĵC under (a)

ĵA ĵB ĵC
(n, p) under true over under true over under true over

(30, 5) 0.01 0.76 0.23 0.13 0.82 0.05 0.00 0.72 0.28
(60, 10) 0.00 0.86 0.14 0.18 0.82 0.00 0.00 0.76 0.24
(120, 20) 0.00 0.95 0.05 0.35 0.65 0.00 0.00 0.86 0.15
(210, 35) 0.00 0.99 0.01 0.65 0.35 0.00 0.00 0.95 0.06
(300, 50) 0.00 1.00 0.00 0.87 0.13 0.00 0.00 0.97 0.03
(480, 80) 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.99 0.01
(600, 100) 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

Table 4.2. Selection probabilities of ĵA, ĵB and ĵC under (b)

ĵA ĵB ĵC
(n, p) under true over under true over under true over
(30,5) 0.00 0.76 0.24 0.00 0.95 0.05 0.00 0.70 0.30

(60, 10) 0.00 0.80 0.20 0.00 1.00 0.00 0.00 0.71 0.29
(120, 20) 0.00 0.93 0.07 0.00 1.00 0.00 0.00 0.83 0.17
(210, 35) 0.00 0.99 0.01 0.00 1.00 0.00 0.00 0.95 0.05
(300, 50) 0.00 1.00 0.00 0.00 1.00 0.00 0.00 0.98 0.02
(480, 80) 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00
(600, 100) 0.00 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00

In Tables 4.1 and 4.2, the values for “under”, “true” and “over” denote the

probabilities of selecting the underspecified models, the true model and the

overspecified models, respectively. From the tables we can see the following

tendencies.

• Under the case (a), the selection probabilities of the true model by ĵA

and ĵC are increasing when (n, p) is increasing , and tend to 1.

• Under the case (a), the selection probabilities of the true model by ĵB

do not increase even when (n, p) is increasing

• Under the case (b), the selection probabilities of the true model by by

ĵA, ĵB and ĵC are increasing when (n, p) is increasing, and tend to 1.

Next we examined the selection probabilities when n is fixed and p in-

creases as follows:

n = 100, p = 10, 20, 30, 40, 50, 60, 70, 80, 90.
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In this case, a range of p/n is 0.1 ∼ 0.9. Table 4.3 gives the selection

probabilities of the true model by ĵA, ĵB, and ĵC, and their graph displays.

Here the red, the green and the blue denote the probabilities of ĵA, ĵB,

and ĵC, respectively. In Figure 4.1, the solid lines and the dotted lines are

corresponding to case (a) and case (b), respectively.

Table 4.3. Selection probabilities of the true
model

under (a) under (b)

p ĵA ĵB ĵC ĵA ĵB ĵC
10 0.87 1.00 0.82 0.87 1.00 0.82
20 0.93 0.35 0.80 0.92 1.00 0.79
30 0.95 0.00 0.71 0.94 1.00 0.66
40 0.94 0.00 0.45 0.92 1.00 0.42
50 0.90 0.00 0.21 0.83 1.00 0.16
60 0.80 0.00 0.02 0.70 1.00 0.02
70 0.52 0.00 0.00 0.40 1.00 0.00
80 0.15 0.00 0.00 0.08 1.00 0.00
90 0.00 0.01 0.00 0.00 0.98 0.00

Figure 4.1. Graph displays of

Table 4.3
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From Table 4.3 we can see the following tendencies:

• The probabilities of ĵA in both case (a) and case (b) are increasing for

10 ≤ p ≤ 30 and decreasing for 30 ≤ p ≤ 90, taking the maximum at

p = 30.

• The probabilities of ĵC in both case (a) and case (b) take the maximum

at p = 10 and then are decreasing.

• For case (a) and case (b), the probabilities of ĵA and ĵC are near 0 for

p > 0.797(≈ ca) and p > 0.5, respectively.

• For case (a), the probabilities of ĵB are 1 whem p = 10, but zero when

30 ≤ p ≤ 90.
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• For case (b), the probabilities of ĵB are 1 for all p(10 ≤ p ≤ 90).

Next we examined a range of tuning parameters ν such ĵICν and ĵCpν are

consistent. The experiment was done for p/n = 0.9, n = 1000 and p = 900.
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Figure 4.2. Selection probabilities of

ĵICν
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Figure 4.3. Selection probabilities of

ĵCpν

The numerical results are given in Figures 4.2, 4.3 whose horizontal axis

and vertical axis show the values of ν and the selection probabilities of the

true model, respectively. The solid lines and the dotted lines correspond to

case (a) and case (b). In Figure 4.2, the left dotted vertical line denotes

ν = −1
c
log(1− c), and the right dotted vertical line denotes −1

c
log(1− c) +

1
c
log(1 + δ∗j∗). In Figure 4.3, the left dotted vertical line denotes ν = 1

1−c
,

and the right dotted vertical line denotes 1
1−c

+ 1
c(1−c)

δ∗j∗ . From these figures

we can see the following tendencies:

• For case (a), ĵICν shall be consistent when

−1

c
log(1− c) < ν < −1

c
log(1− c) + log(1 + δ∗j∗).

• For case (b), ĵICν shall be consistent when −1
c
log(1− c) < ν.

• For case (a), ĵCpν shall be consistent when

1

1− c
< ν <

1

1− c
+

1

c(1− c)
δ∗j∗ .
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• For case (b), ĵCpν shall be consistent when 1
1−c

< ν.

4 Ridge-type Criteria and Their Properties

4.1 Ridge-Type Criteria

When p > n − k, Se becomes singular, and so we can not use the criteria

AIC, BIC and Cp. One way to overcome such an issue is to use a ridge-type

estimator as an estimator of Σ defined by

Σ̃λ =
1

n
(Se + λIp) =

1

n
Se,λ, (19)

or its modifications. Here, λ is an estimator of ridge parameter λ0, and

in this paper we use λ = {1/(np)}trSe. For a discussion on the use of λ,

see Kubokawa and Srivastava (2012). Let ℓ̃1 > · · · > ℓ̃q be the non-zero

characteristic roots of ShS
−1
e,λ. Then, we propose the following modifications

of A, B and C:

For j = 0, . . . , q,

Ãλ,j =n log

q∏
i=j+1

(1 + ℓ̃i)− 2(p− j)(q − j),

B̃λ,j =n log

q∏
i=j+1

(1 + ℓ̃i)− (log n)(p− j)(q − j), (20)

C̃λ,j =n

q∑
i=j+1

ℓ̃i − 2(p− j)(q − j).

Here, Ãλ,q = 0, B̃λ,q = 0 and C̃λ,q = 0. The criteria Ãλ, B̃λ and C̃λ are

obtained from A, B and C by substituting ℓ̃j to ℓj.

4.2 Justifications of Ridge-Type Criteria

In this subsection we give justifications for Ãλ and C̃λ by deriving asymptotic

unbiased estimators of the AIC-type or the Cp-type risks based on ridge-type

estimators. For a notational simplicity, we may start a canonical form given

17



as follows. Let Y be an n× p random matrix whose rows are independently

as Np(·,Σ) and

E(Y) = E{

 Y1

Y2

Y3

} = η =

 η1

η2

O

 , Y1; q×p, Y2; r×p, Y3; (n−k)×p,

(21)

where η1; q × p, η2; r × p, η3; (n− k)× p and r = k − q. Then the model

Mj is expressed as rank(η1) = j. It holds that

Y′
1Y1 = Sh, Y′

3Y3 = Se, η′
1η1 = Σ1/2Ω̃Σ1/2,

where Ω̃ is the noncentrality matrix defined in (6). Let the density function

of Y denote by f(Y;η1,η2,Σ) which is expressed as

−2 logf(Y;η1,η2,Σ) = n log |Σ|+ np log(2π)

+ trΣ−1 {(Y1 − η1)
′(Y1 − η1) + (Y2 − η2)

′(Y2 − η2) + Y′
3Y3} .

The maximum likelihood estimators of η1, η2 and Σ are obtained by first

maximizing with respect to Σ, and then maximizing with respect to η1 and

η2. For the second maximization, we use a singular value decomposition of

S−1/2
e Y′

1 denoted by

S−1/2
e Y′

1 =

q∑
i=1

√
ℓiaib

′
i, (22)

where a′
is are the orthonormal characteristic vectors of S−1/2

e ShS
−1/2
e and b′is

are the orthonormal characteristic vectors of Y1S
−1/2
e Y′

1. Then, the maxi-

mum likelihood estimators are expressed as

η̂1 =

(
j∑

i=1

√
ℓibia

′
i

)
S1/2
e , η̂2 = Y2,

nΣ̂ =S1/2
e

(
Ip +

q∑
i=j+1

ℓiaia
′
i

)
S1/2
e .

Now we consider the ridge-type estimators η̂1,λ, η̂2,λ and Σ̂λ defined from

η̂1, η̂2 and Σ̂ by substituting Se,λ to Se. The AIC-type risk of a candidate
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model Mj based on the ridge-type estimator is

RA,λ = E∗
YE

∗
Z

{
−2 log f(Z; η̂1,λ, η̂2,λ, Σ̂λ)

}
, (23)

which is based on Kullback-Leibler information. Here Z;n × p may be re-

garded a future random matrix that has the same distribution as Y and is

independent of Y, and E∗ denotes the expectation to the true model M∗.

When we estimate RA,λ by

−2 log f(Y;η̂1,λ, η̂2,λ, Σ̂λ)

=n log

q∏
i=j+1

(1 + ℓ̃i) + n log |(1/n)Se,λ|+ np{1 + log(2π)}, (24)

where ℓ̃1 > · · · > ℓ̃q > 0 are the non-zero characteristic roots of ShS
−1
e,λ, then,

the bias term is expressed as “−bA,λ”, where

bA,λ = E∗
YE

∗
Z

{
−2 log f(Z; η̂1,λ, η̂2,λ, Σ̂λ) + log f(Y; η̂1,λ, η̂2,λ, Σ̂λ)

}
= E∗

YE
∗
Z

{
trΣ̂

−1

λ (Z− η)′(Z− η)
}
− np. (25)

Here, for a notational simplicity, we express the true parameters as the ones

in (21). Taking the expectations with respect to Z and Y2, the bias term can

be written as

bA,λ = (n+ k − q)b
(1)
A,λ + b

(2)
A,λ − np, (26)

where

b
(1)
A,λ = E∗

Y

(
trΣ̂

−1

λ Σ
)
, b

(2)
A,λ = E∗

Y

{
trΣ̂

−1

λ (η1 − η̂1)
′(η1 − η̂1)

}
. (27)

The terms b
(1)
A,λ and b

(2)
A,λ are asymptotically evaluated in Appendix under a

large-sample asymptotic framework and Ω̃ = O(n). We have

bA,λ = 2

{
j(p+ q − j) + (k − q)p+

1

2
p(p+ 1)− 1

2p
trΣ

}
+ o(1). (28)

This suggests that Ãλ in (20) is an asymptotic unbiased estimator for RA,λ.
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Next we give justifications for C̃λ. EstimatingΣ by a ridge-type estimator

Σ̃λ = (1/n)Se,λ, we have the likelihood f(Y;η1,η2, Σ̃λ), which is maximized

at η1 = η̂1,λ and η2 = η̂2,λ. This implies that

−2 log f(Y;η̂1,λ, η̂2,λ, Σ̃λ)

=n

q∑
i=j+1

ℓ̃i + trΣ̃
−1

λ Se + n log |Σ̃λ|+ np{1 + log(2π)}. (29)

Consider a different AIC-type risk R̃A,λ obtained from RA,λ by substituting

Σ̃λ to Σ̂λ. Then, similarly it is shown that C̃λ is an asymptotic unbiased

estimator of R̃A,λ. Another justification cab be obtained by considering a

ridge-type Cp risk defined by

RC,λ = E∗
YE

∗
Z

{
trΣ̃

−1

λ (Z− η̂)′(Z− η̂)
}
, (30)

and by deriving its asymptotic unbiased estimator under a large-sample

framework and Ω̃ = O(n).

4.3 Consistency of Ridge-Type Criteria

In this section we examine consistency of ridge-type criteria when n− k > p.

More precisely, it is shown that the criteria Ãλ, B̃λ and C̃λ have the same

consistency properties as the citeria A, B and C, respectively. The results

are stated as follows:

Theorem 3 Suppose that the assumptions A1 is satisfied, and (1/p)trΣ →
α0. Then, we have the following results.

(1) Ãλ is consistent if c ∈ [0, ca), the assumptions A2, A3 and the inequality

“ log(1 + δ∗j∗) > (j∗ − j){2c+ log(1− c)} are satisfied.

(2) Ãλ is consistent if c ∈ [0, ca) and the assumptions A2 and A4.

(3) B̃λ is not consistent if the assumptions A2 and A3 are satisfied.

(4) B̃λ is consistent if the assumptions A2 and A4 are satisfied.
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(5) C̃λ,p is consistent if c ∈ [0, 0.5), the assumptions A2 and A3, and the

inequality “ δ∗j∗ > (j∗ − j)c(1− 2c)” are satisfied

(6) C̃λ,p is consistent if c ∈ [0, 0.5), the assumptions A2 and A4 are satisfied.

Theorem 3 is shown by noting that the limiting values of ℓ̃i, i = 1, . . . , q

are the same as the ones of ℓi, i = 1, . . . , q. For the proof, see Lemma A2 in

Appendix. It is possible to generalize the Theorem for a generalized criterion

with a tuning parameter.

4.4 Numerical Study

In this section we consider the selection probabilities of ridge-type criteria

Ã, B̃ and C̃ under case (a) and case (b) considered in Section 3.2. First,

simulations were done Σ = (0.8|i−j|), n = 100 and p = 10, 20, . . . , 90. The

results are given in Figures 4.4 and 4.5. The horizontal axis and the vertical

axis show the values of p and the selection probabilities of the true model,

respectively. Those color-codes are the same as before.
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Figure 4.4. Selection probabilities of

the true rank by Ã, A, B̃, B, C̃ and

C for case (a)
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Figure 4.5. Selection probabilities of

the true rank by Ã, A, B̃, B, C̃ and

C for case (b)
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Based on Figures 4.4 and 4.5, it may be pointed that when n− q−1 ≥ p,

the selection probabilities of the true model by A, B and C are similar with

the ones by their ridge-type criteria Ã, B̃ and C̃, respectively.

Next, in order to examine behaviors of ridge-type criteria Ã, B̃ and C̃

when n − q − 1 < p, we did simulation experiments for Σ = (0.8|i−j|),

n = 100 and p = 100, 200, . . . , 1000. For case (a), the selection probabilities

of the true model were 0 for all p and all the criteria. The numerical results

for case (b) are given in Table 4.4, which implies the following tendencies.

• The selection probabilities of the true model by ĵA become 1 wwhen

p = 300, 400, 500.

• ĵA chooses overspecified models when p is near n (less than 200), and

chooses underspecified models when p is larger than 600.

• ĵB chooses the true model when p is near n, and chooses underspecified

models as n is large.

• ĵC chooses overspecified models for all p such that n− q − 1 < p.

Table 4.4. Selection probabilities of the true model under (b)

ĵA ĵB ĵC
p under true over under true over under true over

100 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 1.00
200 0.00 0.00 1.00 0.14 0.86 0.00 0.00 0.00 1.00
300 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
400 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
500 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
600 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
700 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
800 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
900 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
1000 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
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5 Concluding Remarks

In general, it is known that under the large-sample asymptotic framework (1),

AIC and Cp are not consistent, but BIC is consistent, in the sense that the

probabilities of selecting the true model do not approach to one. However,

in this paper, we demonstrated that the AIC and Cp for estimating the rank

(dimensionality) in multivariate linear model have a consistency property,

under a high-dimensional asymptotic framework (2). For the consistency, it

is required to satisfy some additional assumptions. For AIC, it needs that

c ∈ [0, ca), where ca ≈ 0.797. For Cp, it needs that c ∈ [0, 0.5). More

precisely, the consistency was considered under two types of assumptions

on the largeness of the characteristic roots of the noncentrality matrix Ω in

(16). For BIC, we note that it is consistent when Ω = O(np), but it is not

consistent Ω = O(n). These results were extended for the criteria ICν and

Cpν with a tuning parameter in (14) and (15). We gave sufficient conditions

for ICν and Cpν to be consistent. The sufficient conditions are useful in

selection of the tuning parameter ν. We proposed ridge-type criteria Ãλ,

B̃λ and C̃λ in (20) which are also defined for the case where p > n − k.

It was shown that Ãλ and C̃λ are asymptotic unbiased estimators of AIC-

type and Cp-type, respectively, under a large-sample framework. Further,

these ridge-type criteria have the same consistency properties as A, B and

C, respectively.

In discriminant analysis the number of groups may be not large. However,

in multivariate regression model the number k of explanatory variables may

be large. For such cases, it will occur that n, p and k are large. In Appendix

A·1, we give the limiting behavior of the characteristic roots of ShS
−1
e under

a high-dimensional asymptotic framework (A1). It is lest to study asymp-

totic properties of the methods based on AIC and Cp, etc. under (A1) or a

generalization of (A1).

Recently the methods based on the penalization technique have been

proposed by Yuan, Ekici, Lu and Monteiro (2007), Bunea, She and Wegkamp

(2011), etc., Chen and Hung (2012) and Bunea, She and Wegkamp (2012)
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also consider simultaneous methods for dimension reduction and variable

selection. It is hoped to combine the penalization techniques and the model

selection methods.

Appendix

A.1 The proofs of Theorems 1 and 2

First we prepare a lemma on the limiting behavior of the characteristic roots

of ShS
−1
e in a high-dimensional case.

Lemma 1 Let Se and Sh be independently distributed as a Wishart distribu-

tion Wp(n−k,Σ) and a noncentral Wishart distribution Wp(q,Σ;Σ1/2Ω̃Σ1/2),

respectively. Here it is assumed that n − k ≥ p. Let ℓ1 > · · · > ℓq and

ω1 ≥ · · · ≥ ωq be the possible nonzero characteristic roots of ShS
−1
e and Ω̃,

respectively. We assume that rank(Ω̃) = a, and hence ω1 ≥ · · · ≥ ωa >

ωa+1 = · · · = ωq = 0. For the limiting behavior of ℓ1 > · · · > ℓq under a

high-dimensional asymptotic framework

p → ∞, n → ∞, k → ∞, p/n → c ∈ [0, 1), k/n → 0. (31)

we have the following results:

(1) Suppose that for any j(0 ≤ j ≤ a), ωj = nδj = O(n) and

lim
p/n→c

δj = δ∗j > 0. Then

ℓj
p→ c

1− c
+

1

1− c
δ∗j , j = 1, . . . , a, and ℓj

p→ c

1− c
, j = a+1, . . . , q.

(2) Suppose that for any j(0 ≤ j ≤ a), ωj = npξj = O(np), and

lim
p/n→c

ξj = ξ∗j > 0. Then

1

p
ℓj

p→ 1

1− c
ξ∗j , j = 1, . . . , a, and ℓj

p→ c

1− c
, j = a+ 1, . . . , q.
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Proof 1 It is known (see Fujikoshi et al. (2010)) that the nonzero charac-

teristic roots ℓ1 > · · · > ℓq > 0 of ShS
−1
e may be regarded as the ones of

BW−1, where W and B are independently distributed as a central Wishart

distribution Wq(m, Iq) and a noncentral Wishart distribution Wq(p, Iq;Ω),

respectively. Here, m = n− k − p+ q, Ω = diag(ω1, . . . , ωq), and

ω1 ≥ · · · ≥ ωa > ωa+1 = · · · = ωq = 0.

In general, letting

U =
1
√
p
(B− pIq −Ω), V =

1√
m
(W −mIq),

the limiting distributions of U and V are normal. When Ω = n∆ = O(n)

and ∆ = diag(δ1, . . . , δa, 0, · · · , 0), we have

1

p
B = Iq +

n

p
∆+ Iq +

1
√
p
U,

1

m
W = Iq +

1√
m
V.

This implies that the characteristic roots of BW−1 are the same as the ones

of

W−1/2BW−1/2 =
p

m

(
1

m
W

)−1/2(
1

p
B

)(
1

m
W

)−1/2

p→
(
Iq +

1

c
∆∗
)

c

1− c
,

where lim∆ = ∆∗, and ∆∗ = diag(δ∗1, . . . , δ
∗
a, 0, . . . , 0). This shows the first

result (1).

Next we consider the case ωj = O(np) = npξj, j = 1, . . . , a. We have

1

np
B = Ξ+

1

n
Iq +

1

n
√
p
U,(

1

m
W

)−1/2

= Iq −
1

2
√
m
V +

3

8m
V2 +O(m−3/2),

where Ξ = diag(ξ1, . . . , ξa, 0, . . . , 0). Therefore

m

np
W−1/2BW−1/2 =

(
1

m
W

)−1/2(
1

np
B

)(
1

m
W

)−1/2

=

(
Ξ1 O
O O

)
+

1√
m

(
Q11 Q12

Q21 Q22

)
, (32)
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where Ξ1 = diag(ξ1, . . . , ξa),

Q11 = −1

2
(V11Ξ1 +Ξ1V11) + O(m−1/2),

Q12 = Q′
21 = −1

2
Ξ1V11 +O(m−1/2),

Q22 =

√
m

n
Iq−a +

1

4
√
m
V21Ξ1V12 +O(m−1),

and

V =

(
V11 V12

V21 V22

)
, V12; a× (q − a).

From (32) it is easy to see that

1

p
(ℓ1, . . . , ℓa)

p→ 1

1− c
(ξ∗1 , . . . , ξ

∗
a).

Further, applying Lawley (1959) to (32), the larst q − a characteristic roots

{m/(np)}(ℓa+1, . . . , ℓq) are the same as the ones of

1√
m
Q22 −

1

m
Q21Ξ1Q12 +O(m−/2) =

1

n
Iq−a +O(m−/2).

This shows that ℓj
p→ c/(1− c) for j = a+ 1, . . . , q.

The Proof of Theorem 1

In the proof of Theorem 1 it is assumed that the true dimensionality is

j∗. Since the number of possible models is finite, it is sufficient to show that

the values of ICν;j − ICν;j∗ converges to positive values.

Note that for j > j∗

ICν;j − ICν;j∗ = −n log{(1 + ℓj∗+1) · · · (1 + ℓj)}+ ν(j − j∗)(p+ q − j − j∗),

and for j < j∗

ICν;j − ICν;j∗ = n log{(1 + ℓj+1) · · · (1 + ℓj∗)}+ ν(j − j∗)(p+ q − j − j∗).

Suppose that Ω = O(n). Then, using Lemma A1 (1), we have that for j > j∗

1

n
{ICν;j − ICν;j∗}

p→ (j − j∗){log(1− c) + νc}.
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The limiting value is positive when −1
c
log(1 − c) < ν. Next suppose that

j < j∗. Then, using Lemma A1 (1), we have

1

n
{ICν;j − ICν;j∗}

p→ log(1 + δ∗j+1) · · · (1 + δ∗j∗)− (j∗ − j){log(1− c) + νc}

≥ log(1 + δ∗j∗) · · · (1 + δ∗j∗)− (j∗ − j){log(1− c) + νc}

= (j∗ − j)[log(1 + δ∗j∗)− {log(1− c) + νc}].

The limiting value is positive when

ν < −1

c
log(1− c) +

1

c
log(1 + δ∗j∗).

Now we shall prove the result (2). For j > j∗, the limiting behavior of ℓj

under ωj = O(np) is the same as the one under ωj = O(n). Therefore, the

limiting value of (1/n) {ICν;j − ICν;j∗} is positive when −1
c
log(1 − c) < ν,

from Lemma A1 (2) we have

1

np
{ICν;j − ICν;j∗}

p→ j∗ − j.

This proves Theorem 1 (2).

The Proof of Theorem 2

Theorem 2 is proved by the same way as in Theorem 1, due to Lemma

A1. In the following we give an outline of the proof. We have that for j > j∗

Cpν;j − Cpν;j∗ = −n(ℓj∗+1 + · · ·+ ℓj) + ν(j − j∗)(p+ q − j − j∗),

and for j < j∗

Cpν;j − Cpν;j∗ = n(ℓj+1 + · · ·+ ℓj∗) + ν(j − j∗)(p+ q − j − j∗).

Suppose that Ω = O(n). Then, using Lemma 1 (1), we have that for j > j∗

1

n
{Cpν;j − Cpν;j∗}

p→ (j − j∗)c

{
− 1

1− c
+ ν

}
.
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The limiting value is positive when − 1
1−c

< ν. Next suppose that j < j∗.

Then, using Lemma 1 (1), we have

1

n
{Cpν;j − Cpν;j∗}

p→ c

1− c
(j∗ − j) +

1

1− c
(δ∗j+1 + · · ·+ δ∗j∗) + ν(j − j∗)c

≥ c

1− c
(j∗ − j) +

(j∗ − j)

1− c
δ∗j∗ + ν(j − j∗)c

= (j∗ − j)

{
c

1− c
+

1

1− c
δ∗j∗ − νc

}
.

The limiting value is positive when

ν <
1

1− c
+

1

c(1− c)
δ∗j∗ .

Now we shall prove the result (2). For j > j∗, the limiting behavior of

ℓj under ωj = O(np) is the same as the one under ωj = O(n). Therefore,

the limiting value of (1/n) {Cpν;j − Cpν;j∗} is positive when − 1
1−c

< ν, from

Lemma 1 (2) we have

1

np
{Cpν;j − Cpν;j∗}

p→ j∗ − j.

This proves Theorem 2 (2).

Noting that for j > j∗, ℓj → c/(1 − c) under both cases Ω = O(n) and

Ω = O(np), it holds that

1

p
{Cpν;j − Cpν;j∗}

p→ (j − j∗)
1− 2c

1− c

whose limiting value is positive when c ∈ [0, 1/2). When j < j∗ and Ω =

O(n),

1

n
{Cpν;j − Cpν;j∗}

p→ 1

1− c
(δj+1 + · · ·+ δj∗) + (j∗ − j)

{
c

1− c
− 2c

}
≥ (j − j∗)

1− c
{δj∗ − c(1− 2c)} .

Further, when j < j∗ and Ω = O(np),

1

n
{Cpν;j − Cpν;j∗}

p→ 1

1− c
(ξ∗j+1 + · · ·+ ξ∗j∗) > 0.

These imply Theorem 2.
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A.2 Bias Terms and Consistency for Ridge-Type Cri-
teria

In deriving the bias terms b
(1)
A,λ and b

(2)
A,λ in (30), without loss of generality we

may assume that

η =
(
diag(

√
ω1, . . . ,

√
ωq

)
,O), Σ = Ip, λ =

1

np
trΣSe,

where Se and Sh are independently distributed as Wp(n−k, Ip) andWp(q, Iq; Ω̃),

repectively, and Ω̃ = diag(ω1, . . . , ωq, 0, . . . , 0). Our derivation is done un-

der a large-sample framework in (1), assuming that ωi = O(n) = nδi, and

δ1 ≥ · · · ≥ δj > δj+1 = · · · = δq = 0. Note that

(1/n)Se =Ip +O(n−1/2),

(1/n)Se,λ =(1/n)Se + (α/n)Ip + o(1), α = (1/p)trΣ,
q∑

i=j+1

ℓ̃iãiã
′
i =

q∑
i=j+1

ℓiãia
′
i + o(n−1),

where a′
is are the orthonormal characteristic vectors of S−1/2

e,λ ShS
−1/2
e,λ . Fur-

ther, for i = j + 1, . . . , q, nℓi = O(1) and the limiting distribution of

n(ℓj+1 + · · · + ℓq) is a chi-square distribution with (p − j)(q − j) degrees

of freedom (see, e.g., Muirhead (1982), Fujikoshi et al. (2010)). Therefore,

we have

b
(1)
A,λ =E

{
tr

(
1

n
Se

)−1

− (ℓj+1 + · · ·+ ℓq)

}
− pα

n
+ o(n−1)

=
np

n− k − p− 1
− 1

n
(p− j)(q − j)− pα

n
+ o(n−1).

On the other hand

b
(2)
A,λ =E

{
trΣ̂

−1

λ (η1 − Y1)
′(η1 − Y1)

}
+ E

{
trΣ̂

−1

λ (η1 − η̂1)
′(η1 − η̂1)

}
+ 2E

{
trΣ̂

−1

λ (η1 − Y1)
′(Y1 − η̂1)

}
=(1) + (2) + (3).
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We use

Y1 = S1/2
e,λ

(
q∑

i=1

√
ℓ̃ib̃iã

′

i

)
, Y1 − η̂1,λ =

q∑
i=j+1

√
ℓ̃ib̃iã

′

iS
1/2
e,λ . (33)

Then

(1) =E

{
tr

(
1

n
Se

)−1

(η1 − Y1)
′(η1 − Y1)

}
+ o(1) = pq + o(1).

Using (33), we have

(2) =E

{
tr

(
1

n
Se,λ

)1/2

Σ̂
−1

λ

(
1

n
Se,λ

)1/2
(

q∑
i=j+1

nℓ̃iãiã
′

i

)}

=E

(
q∑

i=j+1

nℓi

)
+ o(1) = (p− j)(q − j) + o(1).

(3) is decomposed

(3) =2E

{
trΣ̂

−1

λ η′
1

(
q∑

i=j+1

√
ℓ̃ib̃iã

′

i

)
S1/2
e,λ

}
− 2E

{
trΣ̂

−1

λ S1/2
e,λ

(
q∑

i=j+1

ℓ̃iãiã
′

i

)
S1/2
e,λ

}
=(3a)− (3b)

We can see that (3a) is o(1), by perturbation expansion method based on

V =
√
n− k{1/(n− k)Se − Ip} and U = Y1 − η1. (3b) is evaluated as

(3b) =2E

{
tr

(
q∑

i=j+1

nℓiaia
′

i

)}
+ o(1)

=2E {n(ℓj+1 + · · ·+ ℓq)}+ o(1) = 2(p− j)(q − j) + o(1).

These give

b
(2)
A,λ = pq − (p− j)(q − j) + o(1),

and hence (28).

Lemma 2 Let Se and Sh be independently distributed as a Wishart distribu-

tion Wp(n−k, Ip) and a noncentral Wishart distribution Wp(q, Ip; Ω̃), respec-

tively. Here, we assume that n − k ≥ p ≥ q and Ω̃ = diag(ω1, . . . , ωp). Let
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Se,λ = Se + λIp, where λ = (np)−1trΣSe. Let ℓ1 > · · · > ℓq and ℓ̃1 > · · · > ℓ̃q

be the possible nonzero characteristic roots of ShS
−1
e and ShS

−1
e,λ, respectively.

We assume that (i) a high-dimensional asymptotic framework given by (31),

(ii) when p/n → c ∈ [0, 1), (1/p)trΣ → α0, and (iii) ω1 ≥ · · · ≥ ωa > ωa+1 =

· · · = 0. Then, the characteristic roots ℓ̃1 > · · · > ℓ̃q have the same limiting

values as the ones of the characteristic roots ℓ1 > · · · > ℓq given in Lemma

A1.

Proof 2 In general, it holds that ℓi ≥ ℓ̃i, i = 1, . . . , q. Noting that

(Se + λIp)
−1 =S−1

e

(
Ip + λS−1

e

)−1

=S−1
e − λS−2

e

(
Ip + λS−1

e

)−1
,

the following decomposition is obtained

ShS
−1
e = ShS

−1
e

(
Ip + λS−1

e

)−1
+ λShS

−2
e

(
Ip + λS−1

e

)−1
.

Using Weyl’s Theorem (see Seber (2008, p.117)), we have

ℓi ≤ ℓ̃i + λtrShS
−2
e

(
Ip + λS−1

e

)−1 ≤ ℓ̃i + λtr
(
ShS

−1
e

) (
S−1
e

)
.

Note that 2trAB ≤ trA2+trB2 for any square matrices A and B. Therefore,

2tr
(
ShS

−1
e

) (
S−1
e

)
≤tr

(
n−γ/2ShS

−1
e

)2
+ tr

(
nγ/2S−1

e

)2
=n−γ(ℓ21 + · · ·+ ℓ2q) + nγ(n− k)−2tr

{
(n− k)−1Se

}−2
.

where γ is a positive constant. By Marčenko-Pastur law (see Bai and Siver-

stein (2010)), it is known (Bai, Chen and Fujikoshi (2015)) that

lim
1

n
tr
{
(n− k)−1Se

}−2
=

c

(1− c)3
.

When ωj = nδj = O(n) and lim δj = δ∗j > 0, from Lemma A1 we have

lim(ℓ21 + · · ·+ ℓ2q) =
a∑

i=1

(
c

1− c
+

1

1− c
δ∗i

)2

+ (q − a)

(
c

1− c

)2

.
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Noting that λ → α, and taking 0 < γ < 1, we get lim ℓi ≤ lim ℓ̃i, and hence

lim ℓ̃i = lim ℓi. When ωj = npξj = O(np) and lim ξj = lim ξ∗j , we have seen

that (1/p)ℓj → (1−c)−1ξ∗j , j = 1, . . . , a and ℓj → c(1−c)−1, j = a+1, . . . , q.

By a similar discussion as in the case of ωj = O(n), we can see that ℓ̃j has

the same limiting value as ℓj, for j = 1, . . . , q.
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