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Abstract

This paper is concerned with a test for blocked compound symmetry (BCS) covariance
structure under normality. BCS structure is an extension of intraclass covariance structure.
We derive two asymptotic expansions of the null distribution of the likelihood ratio statistic.
One is an asymptotic expansion in terms of x? distributions under a classical large sample
framework. The other is a high-dimensional Edgeworth expansion when the number of
variable ¢, u and the sample size N approach co together, while the ratio qu/N is converging
on a finite nonzero limit ¢ € (0,1). Finally, numerical simulations reveal that the accuracy
of our asymptotic expansions.

Key Words and Phrases: Blocked compound symmetric structure; Likelihood ratio test;
Asymptotic expansion.

1 Introduction

Suppose that a variable vector &* = (x1,x2,...,2,)" is measured at w points ti,ts,...t,,
and let the variable vector * measured at the ¢; time point be denoted by x;. The g-vectors
x],x5,...,x, are equally correlated if they have the following equicorrelated covariance:

* K\ 20 (7’ = S)
Cov(x,,x;) = { S (£,

where ¥ is a ¢ x ¢ positive definite symmetric matrix, 37 is a ¢ X ¢ symmetric matrix and
r,s = 1,2,...,u. Further, suppose that there are random samples of x = (z}’, x}’, ..., z}')" ,
and let the random samples be denoted by @1, xo,..., N, which are independently distributed
as Ny (p, T') which has the mean vector p and the covariance matrix I'. The covariance matrix

I has the structure as follows:
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where I,, is the u x u identity matrix, 1, = (1,...,1) € R*, and J, = 1,1/,. The covariance
structure is called “blocked compound symmetric (BCS)” structure. If ¢ = 1, namely, ¥y =
op = 0 and ¥y = 01 = 70, where —1/(u—1) <7 < 1, T = o{(1—7)I,+7Jy}. This
covariance structure is called intraclass correlation structure. That is, BCS structure is on
extension of intraclass covariance structure. Intraclass correlation structure is an important
covariance structure for repeated measures data. BCS structure is also an important covariance
structure too.

Leiva (2007) discussed the maximum likelihood estimator and the likelihood ratio test statis-
tic for testing of BCS structure with structured mean vector. Roy and Leiva (2011) considered
the x? approximation of the likelihood ratio test statistic. Srivastava et al. (2008) referred to
an estimate for BCS structure. Also, a linear discrimination method was developed to be used
when the training vectors have a BCS covariance structure in Leiva (2007).

In this paper, we derive two asymptotic expansions of the null distribution of the likelihood
ratio criterion. One is an asymptotic expansion in terms of x? distributions under a classical
large sample framework Al : ¢,u are fixed, N — oo. In general, x? approximation has good
accuracies when the number of variables is small. But under BCS structure, the number of vari-
ables qu tends to get larger, namely this accuracy gets worse as qu gets larger. As an approach
to overcoming this fault, it has been attempted to derive high-dimensional approximations under
a high-dimensional framework A2 : ¢,u, N — oo, qu/N — ¢ € (0,1). Kato et al. (2010) de-
rived a high-dimensional asymptotic expansion of likelihood ratio criterion for testing intraclass
correlation structure and its error bound.

The following section is organized as follows: in Section 2 we introduce the likelihood ratio
statistic and calculate the hth moment of the likelihood ratio statistic under null hypothesis, in
Section 3 we derive the coefficient of Bartlett correction and an asymptotic expansion of the null
distribution under the large sample framework A1, in Section 4 we derive a high-dimensional
asymptotic expansion of the null distribution under the high-dimensional framework A2, in
Section 5 we investigate the accuracy of presented asymptotic expansions and the others by
Monte Carlo simulation. Some preliminary results and the order of cumulant, which is needed
to guarantee the derivation of hth moment and the asymptotic expansions of the likelihood ratio
statistics are given in Appendix.

2 Likelihood ratio test statistic for BCS structure hypothesis

Let @1, x2, ..., xN be a random sample from qu-population N, (p, 3), where T is defined in
(1.1). We assume that 3y + (u — 1)3; and ¥y — X are positive definite matrices. The inverse
and determinant for I' can be written as

1
r'=r,0A'+J,® - (A — AT,
| = |AollA",
respectively, where

Ag =X+ (u—1)%,
A =3 — X



For the proof, see Leiva (2007). Let x; = (&}, @}y, ... @},) and @;; is ¢ x 1, i = 1,2,..., N,
j = 1,2,...,u. We can express the maximum likelihood estimators (MLEs) of pu and T' as

follows:

i=1
1Y 1Y 1 ,
= (@}, @, @) = (NZwil,NZwézv ’NZwiu> 7 (2.1)
=1 i=1 i=1
=1, (Zo%)+J,0%
1
=1 — C J C 2.2
where
N
Vs = Z(mzr - ir)(mis - jS)/7
=1
u
COZZV’/‘M Cl :szrs~
r=1 r#s

For the proof, see Appendix. Moreover, we can express the MLEs of Ay and A as follows:

R 1 U u
AO:MZZVTS’

r=1s=1
N 1 — 1
Al = m ;Vrr - NU(U — 1) Z;¢§: Vrs-

The likelihood ratio criterion for testing the hypothesis
Hy:2=1,® (3 —-%1)+J,@2(=T)
against the alternatives that Hy is not true, is given by
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(2.3)

where V.= NS = 3N (x; — Z)(z; — ) and n = N — 1. From V ~ W_,(n,T), we have the
following result.



Theorem 1. V. ~ Wy, (n,T), then Ao and Ay are distributed independently and

NAg~ W,(n, Ag), (2.4)
N(u—1)A1 ~ Wy(n(u—1),A). (2.5)

For the proof, see Appendix. Then, using a distributional result (see, e.g. Muirhead (1982)
and Fujikoshi et al. (2010)) that

INA|
|20 + U— 1 E]_| HXTL r+1> (26)
|IN(u—1) A1| 2
s~ T 0
where for r = 1,2,...,q, X%—r 41 and X%(ufl)fr 41 denote mutually independent random vari-

ables, each following the x? distribution with n —r 4+ 1 and n(u — 1) — r + 1 degree of freedom
respectively. Moreover, we can express the expectations of (2.6) and (2.7) as follow:

|NAO’ - N q 1—\ n— T-‘y—l h:|
E =27
<zo+<u—1>zl|> Uy
_ghalalT5 ] [n_;h] : (2.8)
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where



Let A = A=. From (2.8), (2.9), we find the hth moment of A as follows:
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E{Ah} —/{ (u— DTV } Vi e etr (—1I“1V> av
= — —~ nqu n n
INAG||N(u—1)Aq|=D | 2727 Ty, [2] T2 2

T u [n+2h] . .

=2 = DL E S [N AN (- DA
1ﬂqu [5
n+2h—qu—1
L4 —c— < 1 )
X etr| —=I'""V |dV
2SR, [ 2

n ~ —h ~ —h(u—1)
_ ghau(y, _ pyhatu—n) Lo 5] [N Aol g | [ 1V (= DA
Lou [5] 3o + (u—1)%4] 130 — X4

n n(u—1) n
O e N e N1
T3], [soti] T, [

(2.10)

2

If g =1, X in (2.3) and hth moment of A in (2.10) coincide with the intraclass correlation’s
respectively.

3 Asymptotic expansion of the null distribution of A under a
large-sample framework

First we consider asymptotic expansion of the null distribution of —2log A under a large-
sample framework:

Al: q,u are fixed, N — oo.
From (2.10), the characteristic function of —2log A is written as
C(t) = E[exp{—2itlogA}| = E [)\—Qit] ) [A—mt]

and the logarithm of C(t) is

log C(t) = —itng(u — 1) log(u — 1) +log 'y, [g(l — 2z't)} —logly, [n(u2—1)(1 - 2it)]
— logl, [3(1 - 2it)} —log Ty [g} +1logT, ["(“2_1)] +1log T, [g} : (3.1)

To obtain an expansion for log C(t), we use the following generalized version of Stirling’s formula
for the gamma function (see, e.g. Muirhead (1982)):

2a 6a2

logT'(a +2) = %log(Qw) + <a+2 - ;) loga —a+ Baz) _ Bsl2) +0 ( 13> ,
a

(3.2)

where By (z) = 22 — 2+ 1/6, B3(z) = 2% — (3/2)2% + (1/2)=.



Expanding each of the gamma functions in (3.1), we can express the log C(t) as follows:

log C(t) = log(1 — 2it)" 37 + %Bl(m 1)+ %@W —1)+0(n"3),

where
51=v1—u_1v2,
2 (u—1)2+1
/82—3{71)1—(”_1)211}2}7
qu(qu + 1
= D g4,
m = (1 —2it)~
and
U
v = 3*4(2q2u2 +3qu — 1),
q 2
=212 —1
v2 =50 (2¢° + 3¢ — 1),
1
wy = —ﬁqu(qu — 1) (qu+ 1)(qu + 2),
1
w = —g54(g = Dlg +1)(g +2),

respectively. From these findings, C'(¢) can be expanded as
1 1
C(t) = (1—2it)"2/ |1+ ~Bi(m—1)+ — {Bo(m? — 1) + B3 (m — 1)} +O(n™%).  (3.3)

From (3.3), we can get the coefficient of Bartlett correction as follows:

B uw(2¢?u?® — 2¢%u? + 3qu® — 3qu — u — 2¢% — 3q + 2)
7= 6(u—1)(qu? +u—2q—2)

. (3.4)

Therefore, we obtain the following result.

Theorem 2. Let A be the LR criterion for testing BCS structure (1.1) given in (2.3). Then,
w _
Pr(=2plogA < 2) = Gy(x) + 55 {Gr+a(z) = Gp(2)} + On %),

where Gt is the distribution function of the X2 distribution with f degree of freedom, p = 1—~/n,
7y is the coefficient of Bartlett correction given (3.4), M = np and

1
YT 988 (u— 1)2(qu2q+u— 2q — 2)
+ 32¢*u° + 18¢3u° — 30¢%u® — 12qu® — 26¢* u* + 24¢3u* + 89¢%u* + 42qu* — 13u?
+ 12¢%u® — 18¢3u® — 94¢%u® — 30qu® + 64u® — 4¢*u® + 12¢%u® + 59¢%u® — 48qu?
— 112u? — 24¢*u — 84¢3u — 48¢%u + 108qu + 96u + 24¢* + 72¢° + 24¢* — 72q — 48) .

(2q4u8 — 4¢*u" + 6¢°u” — 10¢*u® — 24¢3u’ + ¢

If ¢ = 1, this result coincides with the result of testing intraclass correlation structure.



4 Asymptotic expansion of the null distribution of A under a
high-dimensional framework

In general, an asymptotic expansion in terms of x? distributions under a large sample frame-

work gets worse as the number of variables qu gets larger. It seems the data vectors which test

the BCS structure tends to be large number of variables. Accordingly, it has been attempted to

derive high-dimensional approximations of the null distribution of A under a high-dimensional
framework:

A2:q,u, N — oo, % —c€(0,1).
The hth moment of A is defined in (2.10). Hence, the characteristic function of T'= —log A
is given by
Cr(t) =Elexp {itT} = E [A™"]

. n(u—1) .
— (u— 1)-itaton) Lo [ — 1] o [*5] Ty [5]

Pou [8] 1 [2052 —it(u — 1)] T [ — 1]

17,1 [=it + 5 (n = 5)]
1o T [—it(u—1) + & {n(u—1) — j}]

where K = H?;é L[5 {n(u—-1)-3}] /TI7, 'T'[L(n—j)]. Accordingly, the cumulant gener-
ating function of T' can be expressed as

_ K(u o 1)—2‘tq(u—1)

qu—1

log Cr(t) =log K — itq(u — 1) log(u — 1) Z log’ [—zt + = (n - j)]

i=q

qg—1

— ZlogF {—n(u -1)+ = {n(u —1) - j}:|
7=0
Now we use the Taylor expansion formula:
— 1 k=D
logT (a4 z) =logT (a k— , (4.1)

k=1

where 1 is the di-gamma function defined by 1 (v) = (d/dv)logI'(v). It is known that the
polygamma function () (a) = (d*/dv*)1(v)|y— can be expressed as

1
SO _C+Z<1+k +a>’ s=0,
a)= o0 s+1|
Zu s=1,2,...,

= (k+a)t’




where C' is the Euler constant. Then, we can write

log Cr(t) =log K — itq(u — 1) log(u — 1)

+quzl{1ogr[ }+§: k= 1)<2(n—j))}
=S {logF 2o -] + 2(—1)’”",2%““-” (- 1-2) -1 }

j=0 k=1
_ f: W )
r=1 "
_ 2 2 S (r) (it)
=itp + - (it)“c” + Z/{ mt (4.2)
r=3 ’
where
qu—1 q—1
= —alu=Dlogtu—1) — 3 60 (300-) + 0 (-1 -0) (-1
J=q Jj=0
qu—1 1 q—1 1
=X (50-9)) - > (3000- =) (w17 (1)
qu—1 q—1
k(") = (=1)" w(’ul) 1(n -7 ) - 1/1(’"*1) 1(n(u —1)—35)) (u—=1) } r>3
(50 (3-9) - £ (ot

From A.3 in Appendix, we find that o2 = O} and kO = = Oj_5, where O} denotes a term of jth
order with respect to (n=!, qu™1).

Let

T—u —(2/n)log A — 3
\/0.72

7= (4.4)



Then, using (6.1), characteristic function of Z can be expressed as follows:

Cz(t) = B [exp(itZ)]

2 = () .
= exp —% + Z " ; (it)!
j=3 j! <\/072)
k
= exp (— 1+Z—' Z - (it)?
2 k=1 k! j=3 7! (\/aﬁ)j
2 (3+3) '
t 1 [ o= BUT
= exp (—> 1+ Z —(it)? Z (it)?
2 — k! = (J+3)!
_ & S~ Ly j
=exp | —5 1+ Z o (it) Z'Ww (it)? 5,
k=1 """ j=0
where #9) = k) /(v/52)7 and
ko mGi+3)

wi= Y. ]I G (4.5)

Let
(®) 2 s 1 s—k
s o 3k Y
CY(t) = exp (—2> 1+ZH(zt) Z%J(zt)ﬂ : (4.6)
k=1 7=0
Then, we have
) ’
s t2 S 1 ) [e.e] . ] o0 1 o0 ,‘Z’, ] . )
Cy(t) — CY(t) = exp (—2) E(u:)?ﬂf S gy + Y o 3 ity
k=1 j=s—k+1 k=s+1 =~ \j=3 J:
Inverting (4.6) formally, we obtain asymptotic expansion of the distribution:
s s—k
P,(z) = 2(z) — d(x) Z Z’Yk,jhakﬂ'—l(x) ; (4.7)
k=1 j=0

where ® and ¢ are the distribution function of the standard normal distribution and its density
function, respectively; v ; is given by (4.5); h,(x) denotes the rth order Hermite polynomial

defined by
d " 1 2\ _ r _1 2
<d$> exp( 2% > = (—=1)"h,(x) exp( 5% > .



Theorem 3. Let A\ be the LR criterion for testing BCS structure (1.1) given in (2.3). Let
Z ={—(2/n)log A\ — u}/Vo? be the standardized statistic in (4.4). Then,

P(Z < z)=2s(z) + Ogyy, (4.8)
where ®(x) is given by (4.7).
As the special cases of (4.8),
Oy (z) = ®(z), (4.9)
B (z) = B(x) éqs(m)g@) (22— 1), (4.10)
Dy(z) = B(z) — () {ék@ (22 — 1) + Liw (23 — 22) + %(#3))2(905 —102° + 153:)} :

(4.11)

5 Numerical comparison

In this section we present the simulations results under various setting of ¢, © and N in order
to investigate the accuracy of proposed asymptotic expansions. We take

20 1.0 --- 1.0 1.0 05 --- 0.5

1.0 20 --- 1.0 0.5 1.0 --- 0.5
o= . . 2= . . )

1.0 1.0 --- 20 0.5 05 --- 1.0

We list the estimated significance levels of —2plog A using the x? distribution in Table 1, Table
2, Table 3 and of Z using the standard normal distribution in Table 4, Table 5, Table 6 for
N =n+1 = 20 and 100 calculated by using 1,000,000 repetitions with nominal significance
levels of 0.01, 0.05, 0.50, 0.95, 0.99. In order to get these values, we need to calculate (") (a),
which is an infinite series. It can be calculated numerically with suitable precision by using
software, e.g., R. From the tables, we can see that the x? approximation and an asymptotic
expansion of —2plog A have good accuracy for small qu to N. On the other hand, the normal
approximation of Z has good accuracy for large qu, and the first order asymptotic expansion
has good accuracy in almost all range of (qu, N) except for small qu.

6 Conclusion

In this paper, we proposed the likelihood ratio criterion for testing the BCS structure hy-
pothesis:

H0:2:Iu®(20—21)+Ju®21 VS. Hl#Ho.

We gave the hth moment of the likelihood ratio statistic under null hypothesis. And we derived
the coefficient of Bartlett correction and an asymptotic expansion of the null distribution under

10



the large sample framework A1 : ¢,u are fixed, N — oo. Further high-dimensional approxima-
tions of the null distribution under a high-dimensional framework:

qu

A2:q,u, N — o0, W—H:E(O,l)

were derived. Finally, we investigate the accuracies of asymptotic expansions proposed in this
paper by the Monte Carlo simulation.

Appendix

A.1. MLEs of w and T
The likelihood function to obtain MLEs of g and I has the following form:

N

L(p,T;xy,...,xN) = Hf(mz)

=1

Nqu

— (2m) D)% exp [

> (@i — p) T (a; — H)]

i=1

(t:(D7'V) = Ner{D (& — p)(@ — )’}

Do | = l\D\l—‘

)|

where 2 = N' SN 2, and V = 2N (®, — &) (x, — &)'. Hence, MLE of  is given by fi = &.
Let Co=3Y1" Vi, C1 =33 V,, A=A7" and B =2 [Aj' — AT']. Then,
r#s

tr [T7'V] =tr[(A + B)Cy + BC|]
=tr{Iny®A+Iy®J,® B}

1 1 1
: {INu®]Vu <CO_ (u—l)Cl> +IN®JU®]VU(U—1)01}:|

Therefore, logarithm of L(p,T; @1, ..., xN) can be expressed as:

Nqu

— 0 T Y e |-

log(2m) — — log \T'| — 1 (tr T *IV]) .

logL(u7F;m17"'7$N) =

Let C=1,® Nu (Co = )C1> +J,® Nu(u )Cl Using Lemma 3.2.2 of Anderson (1984),

this maximum of T is reached when T = C.

A.2. Distributions of 30 and 31

Let X = (@1, ®2,...,xy)". Then, we can express
N
_ 1 1,
T = NZwT NX 1y,
r=1
L
S—N;(wr—x)(a} —xz) ==-X'QX

11



where Q = Iy — %JN. Moreover, let X = (X1, X9,...,X,). Then, S can be written as

1

=_X'QX
S N Q
X1QyX; - 1QNX S11 - S
X;QNXI X;QNXU Sul Suu
Let block diagonal matrix of S be denoted by

Si1 - 0 ) Vi 0

D = . c. . = — . .

si=| =y .

Then, we rewrite Cy and C as follows:
Co=N(1,®1,)D[S](1,®1,),
C = N(l; ® Ig){S — D[S]}(1, ® Ig).

Hence, we can obtain

~ 1
Ao = E<1;‘ ®1q)S(1, ® Iy),
A= e s - islaer)

Moreover, let B), = %J », We can express Ag and A as follows:

Ao =(1,®1)D[(Bu®I)8(B,®1,)] (1. ® I,), (6.1)
Ai= 1 (1,01,)D(Q,®1)8(Q,o 1) (1.1, (6.2
Proof. By using
21,0 I,)S1,e1,) 21,0 I,)S1,e1,)
(B, ®@1,)S(B,®1,) = : : )
1712(1; ®I)S(1,® 1) - ﬁ(l; ®1,)S(1. ® Iy)

we obtain

(1,2 1)D[(B,®1,)S(B, ®I,)](1,® I,;) = %(12 ®1,)S(1, @ 1,).

Similary, note that
(Qu1,)8(Q,®1,) =8 - (Bu®1,)S — S(By® 1)+ (Bu® I)S(By© 1),

12



we can derive

(1, ®I) [(Qu®1) (Qu®1q)](1u®1q)
_ZST‘T‘_ZIZISTS

=1, I,)D[S|(1, I, ——-(1,®1,)S(1,®1I,)

Q\*—‘

— (e, {D[S} - 15} (1,0 1,).

O
Let I, € R? — {0}. Then, we can obtain
15(1, @ I)D [(By ® I7)S(By ® I4)] (1, ® 1) ( QZZl X Qn X, l)
r=1 s=1
=tr [(Bu®1)S(B, ®1,)], (6.3)
and
(L, ®I)D[(Q, ® 1,)S(Q, ® I,)] (1 @ Iy)l,
=tr [(T, @ 1,)S(I, ®1y)] —2tr [(Bu @ 1,)S(I, ®@1y)] + tr [(By ®1)S(By, ®1)]
=tr [(Q, ®1,)S(Q, ®1,)] (6.4)
and

(By @ 1)T(By,®1;) = (By @ I){I, @ (X — 1) + Ju @ Z1}(By ® 1)

= (B0~ B0l + D),

= (IA0lq) Bu, (6.5)
(Quel)T(Q, ®1g) = (Q, ® ) {Tu® (Zo — 1) + Ju ® 1 HQ, ® 1)

= {l3(Z0 — Z1)lg}Q, + (1;Z11,)Q, T Q,,

= (l381l) Q,, (6.6)

respectively. To derive the distributions of 30 and 31, we need the following two lemmas which
are referred to in Rao (1973, 8b.2(ii)) and Klein and Zezula (2010, Lemma 2).

Lemma 1. Let X is a p X p matriz . Then, it is true that
W~ W, (f, ) & L,WIL,/USL, ~ X7
for every 1, satisfying I;le #0

Lemma 2. Let W ~ W), (f,X), X is a p X p positive definite and T is a k x p matriz. Also let
r(T) = rank(T) and {1, ... L,y > 0 are the characteristic roots of TWT'. Then,

r (TWT) Z 0ix3-

13



From lemma 2, NS ~ Wy, (n,T),

Nt [(Q, ® U)S(Q, ®1g)] ~ UAlE (1) = 1, (N(u - 1)31) LU ALy ~ X2 )
= N(u—1)A1 ~ Wau(n(u—1),A),

and, similarly, N Ag ~ Wy(n, Ap). Moreover, B, Q, =0, Aj and A; are mutually independent.

A.8. Order of cumulant
We show that the order of (") in a similar way to Kato et al. (2010). To prove the order of
k"), we use the following lemmas:

Lemma 3. Let p and r be positive integer such that v > 2. Then, for a positive real number A
such that A —p >1/2,

j p 1 1
A—jy =r-1 {(A—p—l/?)*‘1 - (A—l/Q)H}’

M“’S

<.
Il
-

Mws

1o { 1 1 }
A—jy Sr—1\(A-p—1j27 " (@A-1j27 1)

<.
Il
-

Lemma 4. For A >0, v >0, a > 0 and any positive integer r,

i _ 1 < ur
AT (A4v)r — A"(A+0)’
1 1 1 ur

A (A+ovya S (Aroy T A(A+o)

For r > 1, we can express £t as follows:
qu—1
k() — 1)+1 Zw (
qu—1 q—1
1 ) (u—1)" 1
—(_1)*! M Z(n — _ CON s —1)—
SIADY {¢ (300-9) -GS0 (G >)}

Jj=q

A Z ) { ( n— j)> (a1 (;m(u -1)- s)) } -

s=0 j=q

-1

n— j)) - qzw(m (;(n(u 1) j)> (u— 1)+

J=0

l\D\'—‘

By trigonometric inequality, it holds that

60 (500-0) - =10 (Jatu-1-9)|.




and so

a1 , - 2"(r = 1)! 2"r! 2701 (r +1)!
w“ <2(”_”> —C +1{ (r(z—jr) N 3<n1(—j>r+)2}’

O (Lonw—1)—s)) = (—1)+ 2"(r —1)! 2"r! 270 (r + 1)!
o0 (G- -9 ) = i { BT e A e )

for some 61, 05. Hence, we have

]w (500-3)) — (=176 (-1~ ) ' < B+ By+ By,
where
_ oty 1 B (u—1)"
Br=2 =N " 1) sy |
__or (u_l)r
S (T e TR Ve el
Ba— 2T(T+ 1)! 01 92(u — 1)T
B R R N CICE VN
For u > 2, j(u—1) — s > 0.Then,
o 1 B (u—1)"
B =2 - G~ G oy )
_ o, 1 B (u—1)"
ba=2 !{m—j)r“ <n<u—1>—s>f+1}’
27 (r + 1)!
S

Applying Lemmas 3 and 4, we can obtain

qu—1 qu—1

1 1
B <2"(r —1)! —_—
Y msre-ny {5
qu—1 j’l”
<2"(r —1)!
J=q
g—1 q(u—1) 1 q(u—1) i
= 2"p! — + 2"l -
n ; n—g+1—7)r n ; n—gqg+1—7)
cyd=l 1 1 - 1
nor=1{(n—q+1/2—qu-1))"" (n—q+1/2)"!
+2,,Hq(u—1) 1 { 1 B 1 }
n r—1{mn-q¢q+1/2—qu—1)"1t (n—q+1/2)"1
< 27nr!qu -1 1 qlu—1)(r—1)
n r—1ln—qg+1/2—qu—1))""Yn-q+1/2)
_ QTT!qu -1 Q(u — 1) (67)

n (n—qu+1/2)""1(n—q+1/2)

15



and

qu—1 qu—1

. 1
ZBQ2T'Z{7L jr+1_nr+1(u_1)}

qu—1
Jjr+1)
Tl E
< 277! {nr+1 (n—j)+n

-1 .
=2"r 'Q( ) +2T(r+1)'quz: )
1 C L (n—j)rtin

— oy |Q( 1)+2r(r—|—1)!q_1 Z: : 1

nrtl n

;_n

J
2 (r + 1)!—
+27(r + 1)l Z CEPEREST

e q(u 1) r g—11 1 1
<2 n’t +2(r +1>! n r{(n—q—i—l/Q—q(u—l))r_(n—q+1/2)7“}

, glu-1)1 : - 1
+2(r )T T{(n_q+1/2—q(u—1))T (n—q+1/2)r}
qu=11 =L
n rn—q+1/2—qu-1))"(n—-q+1/2)
q( 1) . qu—1 alu —1)

+2(r+ (n—qu+1/2)"(n—q+1/2)

1
< 27"7*'M +27(r +1)!
n

=2"r!

(6.8)

and

or(r+ 1)l 1 { 1 B 1 }
-3 r+ll(n—g+1/2—qlu-1)*  (n—g+1/2)"H
< 2"(r +1)! gu—1)(r+1)

- 3 (n—q+1/2—qu—1))"*t(n—q+1/2)

2"(r +1)! q(u—1)

T3 o gt 13

From inequalities (6.7), (6.8) and (6.9), we can prove || = O*_,
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Table 1: Actual probabilities of x? approximation and the asymptotic expansion of —2plog A

for N =20

qu

e
—_

0.05

0.50

0.95

0.99

0.0101 (0.0100

0.0502 (0.0501

0.5002 (0.4996

0.9495 (0.9493

0.9899 (0.9898

0.0105
0.0108

0.0103
0.0104

0.0519 (0.0510
0.0531 (0.0514

0.5036 (0.4997
0.5063 (0.4996

0.9505 (0.4993
0.9512 (0.9492

0.9901 (0.9898
0.9904 (0.9898

0.0114
0.0125

0.0106
0.0111

0.0546 (0.0516
0.0580 (0.0527

0.5108 (0.4985
0.5204 (0.4997

0.9515 (0.9479
0.9536 (0.9479

0.9902 (0.9892
0.9906 (0.9891

10

0.0138
0.0161

0.0116
0.0124

0.0616 (0.0540
0.0696 (0.0564

0.5288 (0.5000
0.5499 (0.5045

0.9549 (0.9468
0.9590 (0.9470

0.9911 (0.9889
0.9920 (0.9888

12

0.0184
0.0250
0.0219
0.0236

0.0132
0.0153

0.0149

0.0758 (0.0580
0.0943 (0.0643

0.5596 (0.5015
0.6007 (0.5157

0.9604 (0.9448
0.9676 (0.9473

0.9923 (0.9881
0.9939 (0.9886

14

0.0302
0.0469

0.0169
0.0220

0.1065 (0.0671
0.1466 (0.0812

0.6177 (0.5113
0.6838 (0.5445

0.9693 (0.9427
0.9789 (0.9501

0.9944 (0.9871
0.9964 (0.9889

16

0.0678
0.1167
0.1042

0.0283
0.0430
0.0394

0.1854 (0.0924
0.2743 (0.1268
0.2537 (0.1194

0.7194 (0.5453
0.8056 (0.6120
0.7892 (0.6009

0.9821 (0.9451
0.9908 (0.9601
0.9895 (0.9580

0.9969 (0.9868
0.9986 (0.9910
0.9983 (0.9905

18
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0.2283
0.3716
0.3051
0.3622

0.0845
0.1454
0.1184

)
)
)
)
)
)
)
)
)
0.0145)
)
)
)
)
)
)
)
)
)
0.1420)

~~ ~  ~ ~| " | | =~ ~ ~N|~ <[~ |~ ~ |

0.4159 (0.1908
0.5809 (0.2898
0.5086 (0.2486

)
)
)
)
)
)
)
)
)
0.0859 (0.0618)
)
)
)
)
)
)
)
)
)
0.5703 (0.2840)

(
(
(
(
(
(
(
(
(
0.0903 (0.0630
(
(
(
(
(
(
(
(
(

0.8714 (0.6554
0.9382 (0.7634
0.9132 (0.7248

)
)
)
)
)
)
)
)
)
0.5840 (0.5107)
)
)
)
)
)
)
)
)
)
0.9353 (0.7580)

(
(
(
(
(
(
(
(
(
0.5927 (0.5125
(
(
(
(
(
(
(
(
(

0.9947 (0.9599
0.9984 (0.9801
0.9972 (0.9739

)
)
)
)
)
)
)
)
)
0.9646 (0.9464)
)
)
)
)
)
)
)
)
)
0.9982 (0.9795)

(
(
(
(
(
(
(
(
(
0.9664 (0.9468
(
(
(
(
(
(
(
(
(

0.9992 (0.9901
0.9998 (0.9957
0.9996 (0.9941

)
)
)
)
)
)
)
)
)
0.9932 (0.9883)
)
)
)
)
)
)
)
)
)
0.9998 (0.9955)

(
(
(
(
(
(
(
(
(
0.9936 (0.9885
(
(
(
(
(
(
(
(
(
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for N =100

Table 2: Actual probabilities of x? approximation and the asymptotic expansion of —2plog A

qu

q

u

0.1

0.05

0.50

0.95

0.99

10 5 2

2

5

0.0099 (0.0099)
0.0102 (0.0101)

0.0501 (0.0499
0.0504 (0.0501

0.4992 (0.4986
0.5000 (0.4988

0.9499 (0.9497)
0.9498 (0.9494)

0.9901 (0.9901
0.9899 (0.9898

20

10

2
10

0.0106 (0.0102)
0.0110 (0.0103)
0.0108 (0.0101)
0.0108 (0.0101)

0.0519 (0.0505
0.0535 (0.0508
0.0534 (0.0510
0.0531 (0.0505

0.5061 (0.5001
0.5109 (0.5002
0.5092 (0.4997
0.5102 (0.5004

0.9511 (0.9496)
0.9521 (0.9493)
0.9518 (0.9494)
0.9520 (0.9494)

0.9903 (0.9898
0.9906 (0.9898
0.9904 (0.9898
0.9905 (0.9898

30

15

10

0.0119 (0.0104)
0.0136 (0.0106)
0.0128 (0.0105)
0.0135 (0.0106)

0.0133 (0.0105)

0.0572 (0.0511
0.0627 (0.0516
0.0596 (0.0513
0.0627 (0.0519
0.0611 (0.0513

0.5229 (0.5001
0.5412 (0.5027
0.5316 (0.5012
0.5400 (0.5017

0.9550 (0.9492)
0.9591 (0.9497)
0.9569 (0.9494)
0.9589 (0.9495)
0.9586 (0.9498)

0.9912 (0.9896
0.9924 (0.9899
0.9918 (0.9898
0.9922 (0.9898
0.9920 (0.9898

40

20

10

20

10

0.0158 (0.0110)
0.0215 (0.0117)
0.0191 (0.0112)
0.0207
0.0202
0.0209

0115
0.0115
0.0116

0.0703 (0.0525
0.0878 (0.0554
0.0815 (0.0538
0.0865 (0.0547
0.0842 (0.0544
0.0866 (0.0550

0.5610 (0.5014
0.6060 (0.5095
0.5930 (0.5072
0.6037 (0.5087
0.5973 (0.5079
0.6037 (0.5094

0.9629 (0.9487)
0.9709 (0.9502)
0.9685 (0.9496)
0.9706
0.9692
0.9705

0.9498
0.9495

0.9931 (0.9894
0.9950 (0.9898
0.9944 (0.9897
0.9948 (0.9898
0.9946 (0.9896
0.9948 (0.9898

50

25

10

25

10

0.0262
0.8891
0.3100
0.7972

0.8891
0.3100

(
(
(
(
(
(
(
(
(
(
0.0131 (0.0105)
(
(
(
(
(0
(
(
(
(
(
(0.7972

)
)
)
0.0119)
)
)
)

0.1020 (0.0551
0.8891 (0.8891
0.3100 (0.3100

)
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
0.0619 (0.0516)
( )
( )
( )
( )
( )
( )
( )
( )
( )
0.7972 (0.7972)

0.6364 (0.5096
0.8891 (0.8891
0.7060 (0.5262

)
)
)
)
)
)
)
)
)
)
0.5373 (0.5019)
)
)
)
)
)
)
)
)
)
)
0.7972 (0.7972)

(
(
(
(
(
(
(
(
(
(
0.5385 (0.5018
(
(
(
(
(
(
(
(
(
(

0.9754 (0.9482
0.9859 (0.9533
0.9844 (0.9530)
0.9857 (0.9531)

(
(
(
(
(
(
(
(
(
(

0.9585 (0.9495)
(
(
(
(0.9498)
( )
(0.9499)
( )
( )
(
(

0.9958 (0.9892
0.9980 (0.9904
0.9977 (0.9903

)
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
0.9921 (0.9897)
( )
( )
( )
( )
( )
( )
( )
( )
( )
0.9979 (0.9906)
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Table 3: Actual probabilities of x? approximation and the asymptotic expansion of —2plog A
for N =100

qu q¢ u 0.1 0.05 0.50 0.95 0.99

60 30 2 |0.0606 (0.0150) [0.1861 (0.0631) | 0.7601 (0.5221) | 0.9894 (0.9499) | 0.9985 (0.9894
2 30(1.0000 (1.0000) {1.0000 (1.0000) |1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000
15 4 {1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000
4 15]1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000
10 6 |{1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000
6 1011.0000 (1.0000) |1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000

70 35 2 |1.0000 (1.0000) |1.0000 (1.0000) | 1.0000 (1.0000) |1.0000 (1.0000) | 1.0000 (1.0000
2 35(1.0000 (1.0000) {1.0000 (1.0000) |1.0000 (1.0000) | 1.0000 (1.0000) |1.0000 (1.0000
10 7 {1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000
7 10{1.0000 (1.0000) {1.0000 (1.0000) |1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000

20 4 |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000
4 2011.0000 (1.0000) |1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000
10 8 |{1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000
8 10|1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000

90 45 2 |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000
2 45(1.0000 (1.0000) | 1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000
15 6 |{1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) | 1.0000 (1.0000
6 15]1.0000 (1.0000) |1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000
10 9 |{1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000) |1.0000 (1.0000

( ) ) )
( ) ) )
( ) ) )
( ) ) )
( ) ) )
( ) ) )
( ) ) )
( ) ) )
( ) ) )
( ) ) )
80 40 2 |1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000)
( ) ) )
( ) ) )
( ) ) )
( ) ) )
( ) ) )
( ) ) )
( ) ) )
( ) ) )
( ) ) )
( ) ) )
9 10 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000)

) )

) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (

240 [1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000) | 1.0000 (1.0000

) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
) ( ) ( ( (
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Table 4: Actual probabilities of asymptotic normality and the first order asymptotic expan-
sion of Z for N = 20

qu

e
—_

0.05

0.50

0.95

0.99

0.0318 (0.0110

0.0702 (0.0559

0.4057 (0.4964

1.0000 (0.9252

1.0000 (0.9949

0.0263
0.0233

0.0105
0.0103

0.0678 (0.0529
0.0656 (0.0517

0.4377 (0.4985
0.4511 (0.4993

0.9914 (0.9423
0.9803 (0.9458

1.0000 (0.9898
0.9999 (0.9896

0.0228
0.0199

0.0104
0.0101

0.0647 (0.0522
0.0617 (0.0515

0.4522 (0.4999
0.4643 (0.5003

0.9789 (0.9465
0.9697 (0.9483

0.9999 (0.9900
0.9987 (0.9901

10

0.0210
0.0180

0.0101
0.0102

0.0628 (0.0514
0.0600 (0.0508

0.4618 (0.4987
0.4721 (0.4997

0.9725 (0.9477
0.9651 (0.9490

0.9992 (0.9899
0.9974 (0.9900

12

0.0195
0.0170
0.0178
0.0174

0.0101
0.0102

0.0101

0.0615 (0.0511
0.0591 (0.0504

0.4665 (0.4999
0.4756 (0.5001

0.9685 (0.9485
0.9626 (0.9491

0.9984 (0.9901
0.9964 (0.9900

14

0.0186
0.0165

0.0102
0.0101

0.0604 (0.0510
0.0582 (0.0506

0.4694 (0.5004
0.4774 (0.5002

0.9661 (0.9492
0.9612 (0.9495

0.9978 (0.9901
0.9960 (0.9901

16

0.0187
0.0165
0.0168

0.0100
0.0099
0.0101

0.0605 (0.0507
0.0579 (0.0509
0.0582 (0.0509

0.4707 (0.4996
0.4776 (0.4998
0.4777 (0.4998

0.9655 (0.9491
0.9614 (0.9492
0.9622 (0.9489

0.9974 (0.9904
0.9958 (0.9903
0.9961 (0.9902
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0.0204
0.0186
0.0191
0.0187

0.0098
0.0097
0.0097

)
)
)
)
)
)
)
)
)
0.0100)
)
)
)
)
)
)
)
)
)
0.0097)

~~ ~  ~ ~| " | | =~ ~ ~N|~ <[~ |~ ~ |

0.0611 (0.0519
0.0593 (0.0516
0.0599 (0.0516

)
)
)
)
)
)
)
)
)
0.0598 (0.0506)
)
)
)
)
)
)
)
)
)
0.0596 (0.0513)

(
(
(
(
(
(
(
(
(
0.0591 (0.0507
(
(
(
(
(
(
(
(
(

0.4640 (0.4993
0.4710 (0.4990
0.4693 (0.4989

)
)
)
)
)
)
)
)
)
0.4738 (0.4995)
)
)
)
)
)
)
)
)
)
0.4733 (0.4972)

(
(
(
(
(
(
(
(
(
0.4738 (0.5009
(
(
(
(
(
(
(
(
(

0.9685 (0.9494
0.9646 (0.9498
0.9658 (0.9498

)
)
)
)
)
)
)
)
)
0.9640 (0.9491)
)
)
)
)
)
)
)
)
)
0.9650 (0.9491)

(
(
(
(
(
(
(
(
(
0.9633 (0.9492
(
(
(
(
(
(
(
(
(

0.9982 (0.9916
0.9968 (0.9913
0.9973 (0.9915

)
)
)
)
)
)
)
)
)
0.9970 (0.9902)
)
)
)
)
)
)
)
)
)
0.9969 (0.9912)

(
(
(
(
(
(
(
(
(
0.9967 (0.9900
(
(
(
(
(
(
(
(
(
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sion of Z for

Table 5: Actual probabilities of asymptotic normality and the first order asymptotic expan-

N =100

qu

q

u

0.1

0.05

0.50

0.95

0.99

10 5 2

2

5

0.0204 (0.0103)
0.0178 (0.0101)

0.0624 (0.0514
0.0597 (0.0507

0.4612 (0.5012
0.4721 (0.5011

0.9716 (0.9481
0.9639 (0.9494

0.9991 (0.9897
0.9972 (0.9900

20

10

2
10

0.0156 (0.0100)
0.0140 (0.0100)
0.0141 (0.0101)
0.0140 (0.0102)

0.0573 (0.0502
0.0555 (0.0499
0.0560 (0.0498
0.0554 (0.0502

0.4814 (0.4998
0.4867 (0.5001
0.4855 (0.5005
0.4864 (0.4998

0.9594 (0.9497
0.9562 (0.9501
0.9565 (0.9500
0.9564 (0.9500

0.9954 (0.9900
0.9938 (0.9900
0.9940 (0.9901
0.9938 (0.9900

30

15

10

0.0137 (0.0100)
0.0127 (0.0100)
0.0131 (0.0100)
0.0126 (0.0100)

0.0126 (0.0101)

0.0553 (0.0500
0.0534 (0.0502
0.0539 (0.0503
0.0538 (0.0500
0.0534 (0.0505

0.4874 (0.5000
0.4917 (0.4995
0.4899 (0.5001
0.4906 (0.5004

0.9563 (0.9498
0.9544 (0.9497
0.9548 (0.9498
0.9543 (0.9498

0.9936 (0.9901
0.9928 (0.9898
0.9930 (0.9899
0.9926 (0.9899
0.9927 (0.9900

40

20

10

20

10

0.0129 (0.0099)
0.0121 (0.0099)
0.0119 (0.0102)

0.0119
0.0121
0.0121

.0101
0.0100
0.0100

0.0541 (0.0499
0.0532 (0.0498
0.0526 (0.0505
0.0527 (0.0501
0.0529 (0.0501
0.0531 (0.0499

0.4905 (0.4998
0.4934 (0.4999
0.4928 (0.4999
0.4928 (0.5003
0.4929 (0.5002
0.4937 (0.4995

0.9546 (0.9497
0.9531 (0.9499
0.9531 (0.9501
0.9530 (0.9502
0.9529 (0.9504
0.9531 (0.9501

0.9928 (0.9900
0.9920 (0.9900
0.9921 (0.9900
0.9920 (0.9900
0.9920 (0.9902
0.9919 (0.9900

50

25

10

25

10

0.0124
0.0116
0.0115
0.0118

0.0101
0.0102

(
(
(
(
(
(
(
(
(
(
0.0126 (0.0101)
(
(
(
(
(0
(
(
(
(
(
(0.0098

)
)
)
0.0099)
)
)
)

0.0531 (0.0502
0.0519 (0.0504
0.0523 (0.0502

)
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
0.0537 (0.0503)
( )
( )
( )
( )
( )
( )
( )
( )
( )
0.0527 (0.0497)

0.4932 (0.4990
0.4939 (0.5006
0.4951 (0.4992

)
)
)
)
)
)
)
)
)
)
0.4908 (0.4999)
)
)
)
)
)
)
)
)
)
)
0.4950 (0.4994)

(
(
(
(
(
(
(
(
(
(
0.4907 (0.5001
(
(
(
(
(
(
(
(
(
(

0.9537 (0.9499
0.9523 (0.9502
0.9529 (0.9497

)
)
)
)
)
)
)
)
)
)
0.9548 (0.9495)
)
)
)
)
)
)
)
)
)
)
0.9524 (0.9502)

(
(
(
(
(
(
(
(
(
(
0.9544 (0.9499
(
(
(
(
(
(
(
(
(
(

0.9922 (0.9900
0.9915 (0.9901
0.9917 (0.9900

)
( )
( )
( )
( )
( )
( )
( )
( )
( )
( )
0.9927 (0.9900)
( )
( )
( )
( )
( )
( )
( )
( )
( )
0.9917 (0.9899)
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Table 6: Actual probabilities of asymptotic normality and the first order asymptotic expan-
sion of Z for N = 100

qu q¢ u 0.1 0.05 0.50 0.95 0.99
60 30 2 |0.0120 (0.0100) [0.0532 (0.0496) | 0.4941 (0.4993) | 0.9530 (0.9500) | 0.9919 (0.9900
2 30/0.0114 (0.0100) | 0.0518 (0.0503) | 0.4955 (0.4998) [ 0.9519 (0.9501) | 0.9913 (0.9901
15 4 ]0.0116 (0.0098) | 0.0521 (0.0501) | 0.4950 (0.4999) | 0.9521 (0.9501) | 0.9914 (0.9901
4 15[0.0114 (0.0100) [ 0.0519 (0.0501) | 0.4952 (0.4999) | 0.9523 (0.9498) | 0.9916 (0.9899
10 6 [0.0114 (0.0100) | 0.0520 (0.0502) | 0.4948 (0.5003) | 0.9523 (0.9499) | 0.9914 (0.9900
6 10(0.0112 (0.0103) | 0.0515 (0.0505) | 0.4957 (0.4995) | 0.9523 (0.9499) | 0.9914 (0.9900
70 35 2 {0.0120 (0.0098) | 0.0530 (0.0496) | 0.4948 (0.4993) | 0.9527 (0.9500) | 0.9918 (0.9900
2 35/0.0112 (0.0100) | 0.0522 (0.0497) | 0.4963 (0.4994) [ 0.9522 (0.9497) | 0.9913 (0.9900
10 7 10.0114 (0.0099) | 0.0519 (0.0499) | 0.4952 (0.5005) | 0.9521 (0.9498) | 0.9913 (0.9900
( )
( )
( )
( )
( )
( )
( )

( ) ) ) )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

7 10|0.0114 (0.0099) | 0.0520 (0.0499) | 0.4966 (0.4991) | 0.9523 (0.9497) | 0.9914 (0.9899)
80 40 2 {0.0117 (0.0100) | 0.0528 (0.0497) | 0.4950 (0.4995) | 0.9526 (0.9500) | 0.9916 (0.9901)
2 400.0114 (0.0099) | 0.0519 (0.0500) | 0.4957 (0.5001) | 0.9520 (0.9498) | 0.9913 (0.9899)
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

20 4 |0.0112 (0.0101) | 0.0523 (0.0496) | 0.4960 (0.4996 0.9494) | 0.9913 (0.9900
4 2010.0113 (0.0100) | 0.0515
10 8 {0.0115 (0.0098) | 0.0520 (0.0498) | 0.4954 (0.5003
8 10]0.0113 (0.0099) | 0.0516 (0.0503) | 0.4955 (0.5004
90 45 2 |0.0119 (0.0100) | 0.0525 (0.050) |0.4935 (0.5004
2 45(0.0114 (0.0099) | 0.0522 (0.0499) 0.4997
15 6 |0.0114 (0.0100) | 0.0520 (0.0501) | 0.4953 (0.4998
6 15]0.0115 (0.0100) | 0.0521 (0.0501) | 0.4956 (0.4995
( )
( )

0.9526
0.9516
0.9521
0.9516
0.9530
0.9522
0.9521
0.9521
0.9521
0.9521

0.0503) | 0.4950 (0.5008 0.9502
0.9498
0.9503
0.9498
0.9500
0.9501
0.9502
0.9501

0.9502

0.9912
0.9912
0.9912
0.9919
0.9914
0.9915
0.9915
0.9915
0.9915

0.9900
0.9900
0.9901
0.9899
0.9900
0.9899
0.9900
0.9899
0.9899

0.4954

10 9 {0.0114 (0.0101) | 0.0519 (0.0501) | 0.4958 (0.4993
0.0520 (0.0500) | 0.4955

9 10]0.0115 (0.0100 0.4997
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