Cut-off point of linear discriminant rule for large dimension
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Abstract

This paper is concerned with the problem of classifying a observation vector into one of two pop-
ulations IT; : Np(pq, ) and Iz : Npy(py, 3). Anderson (1973, Ann. Statist.) gave an asymptotic
expansion of the studentized statistic, and derived cut-off point to achieve a specified probability of
misclassification. But the dimension p gets large, the precision becomes worse. So in this paper, we
proposed studentized statistic in terms of (n, p) asymptotic. An asymptotic expansion of the statis-
tic is derived up to the order O1, where O; is a term with respect to {p71/2, Nl_l/?'7 N2_1/2, mil/z}
for each sample size N; and m = Ni1 + N2 — 2 — p. Using the expansion, we gave cut-off point to
achieve a specified probability of misclassification.
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1 Introduction

This paper is concerned with the problem of classifying a observation vector into one of two populations
I, : Np(pq, %) and IIy : Np(pe, X). The observation x is classified as coming from either II; or II,
based on the samples

wﬂ,...7wiNi NNP([I,Z,E:) (221,2),
which are independent. For this problem, linear discriminant analysis is used. Let
= = \V/qg—1 1 = =
W = (%, —Z2)'S {:B—Q(asl—i—scg)},
where &1, 2 and S are the sample mean vectors and the pooled sample covariance matrix defined by
1 N; 1 2 N;
ji:ﬁizwij» i=12 S= HZZ@U—@)(%U—@)/,
Jj=1 =1 j=1
n=N—-—2=N;+ Ny —2.

Linear discriminant rule classifies @ as Iy if W(x) > ¢ and Il if W (z) < ¢ for a constant c. Inference
concerning linear discriminant analysis is studied under large sample asymptotic framework AO:

AO: Ny =500, Ny —o00, Ni/Ny—ce(0,00).
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For a review of results under AQ, see, e.g., Fujikoshi et al. [4]. When p becomes large, accuracy
of results proposed using A0 gets worse. As a way to improve the poorness, it is studied under the
asymptotic framework Al:

Al:p—o00, Ni—o00, Ny—o0, p/Ni—=~¢€(0,1), p/Na— v €(0,1)
and N; /Ny — v € (0,00).

As results under Al, Fujikoshi and Seo [3] gave an asymptotic approximation of the probabilities of
misclassification, Fujikoshi [2] gave its error bound. These results are reviewed in Fujikoshi et al. [4].
Following Lachenbruch [5], for « € II,,

1 ,
W= (&, — &) S™* {a: - 5@+ a;Q)} =V12z, + (-1)'U; (1)
where
= (&, — T2)'ST'ES (&) — Z9),
=V (@ — 2)' S (2 — ),

N <

S
3
£

— (C) (@1 - 2)'S T @ — ) — 3D

and D? is the squared sample Maharanobius distance defined by D? = (&, — &2)' S (&, — Z2).
From the normality of x, Z; is distributed as the standard normal distribution, which we denote it
as Z; ~ N(0,1). Since it does not depend on {Z, &2, S}, Z; is independent to the set, and so Z;
is independent from {U;, V'}. The limiting distribution of W under the asymptotic framework Al is
normal with mean u; o = (—1)"lima; E[U;] and variance vg = lima1{E[V]+ Var(U;)} if © € N,(p;, X).

Under the assumption that the Mahalanobis distance A = \/ (g — p2)' S (py — pa) converges to a
positive constant under Al, Fujikoshi and Seo [3] and Fujikoshi [2] showed that Var(U;) — 0. So, we
can abbreviate as vg = limaq E[V].

One may want to determine the cut-off point ¢ to adjust the probabilities of misclassification.
Results under A0 is written in Anderson [1]. On the other hand, from Fujikoshi [2], under the as-
sumption that € II;, the limiting distribution (W — u;)/+/v is N(0,1), where u; and v are constants
such that limaq(u; — wi0) = 0 and lima; (v — vg) = 0. Using this result, we find that the approxi-
mation of the misclassification probability that « is allocated to II; even though = € 1I; is given as
O((—1)"(e — u;)/y/v) for i,j = 1,2 with i # j, where ®(.) is the cumulative distribution function
of the standard normal distribution. Since u; and v contain A2, which need to be estimated. The
unbiased estimator is given as

A\Q:n—p—l

N
By — @) S (®) — &) — .
(@1 = @) 5T (31— 72) NN
Consistency under the asymptotic framework Al holds. Omne can choose ¢ from the fact that the
limiting/glistribution of (W —@;)/V is N(0,1) if € N,(p;, %), where (@;,0) is (u;, v) with replacing
A? by A2,

This paper is organized as follows. In Section 2, we give an asymptotic expansion of the (W —;)/ Vo
for the case that « € II;. We propose a cut-off point which the misclassification probability becomes
presetting level, asymptotically. Section 3 presents simulation results for misclassification probability.
Proof of lemma and derivation of expectations are given in Appendix.

2 Asymptotic expansion under Al
For technical reason, set

B n?(n+1) Np
T mDm A Dm+2) ( T N1N2) ’




where m = n — p. Note that u; = (=1)'E[U;], but v equals E[V], asymptotically, under Al. Then
limaq w; = u;0 and lima; v = vy. Using unbiased estimator of (u;,v), we have

P W—u1<$w€H1 —El|® M 7
Vi VV

PVt eem) £l Vet U ||
Vo vV

Let
11\ Y2
u; = <]V1 + ]VQ) 2 1/2(531 — iQ),
1
VN
B=x"12g%"1/2

Uy = 2_1/2(]\71@1 + NoZo — Nipty — Nopo),

where N = N; + Ny. Then uy, up and B are independent. In addition, u; ~ N,((1/N; +
1/Ny)~1/28,1,) and uy ~ N,(0,1,), where § = 7Y2(u; — p,). It also holds that nB is dis-
tributed as a Wishart distribution with degrees of freedom n = N — 2 and covariance matrix I,,, which
is denoted as W,(n, I,). Substituting them,

U: = _(_1)i+1 P ’u,/lB_lu1 N (_1)i+1p ’U/lB_IUQ . 5/B_1u1
7 2 NQ Nl p \/m P 7 \/]3 s
V = Np ullB_Q’Uq

B N1Njy p ’

o PN3 o4 (—1)i+1 /2
' NN3jo_(—1yit1j2

In addition,

o Np {m—lu'lB_lul_l}
NNy n D

Then,

@ = (=)t —" Np m—1u/B 'u;  Np F(eyit (22
¢ 2(m— ].) N1N2 n p N1N2 N2 Nl ’
n(n+1) Np w),B 'u,

Tt Dm+2) NN, p

The following lemma gives that these random variables can be expressed as functions of the inde-
pendent standard normal and chi-squared variables, simultaneously.

Lemma 1. Let vi ~ Np(9,1,), va ~ Np(0,1,), A~ Wy(n,I,), and v1, va and A are independent.
Then the following equalities in distribution hold, simultaneously:

_ A 1Y
SE(SIA 1’U1DY1<Z1+A }/szQ)v

1 Y-
T = ’UIQA_I’Ul 2 \/2 (1 —+ 2) {(Zl + A)2 -l— 222 + Y4}23
Y; Y3
1
U=v,A v, 2 v Z+ A+ Z2+Y,),
1
1 Y-
V =v,A %0, 2 5 (1 + 2) {(Zy + A)? + Z2 + Ya),
Y; Y3



where A = V§'6; Zy, Zo, Z3, Y1,...,Ys are independent, Z; ~ N(0,1), i = 1,2,3, Y; ~ X?i’ i =
1 4

IR T

fi=n—p+1, fo=p-1, fa=n—p+2, fy=p—2.

Note that Fujikoshi and Seo [3] has also given similar results, but their results are individual ones,
so cannot treat simultaneously. The proof of Lemma 1 is given in Appendix.
It can be described that

(-1 )H'l\[x—i—U (—1)'a;

it n(n+1) o1 Q1 (1)t <p _ > Q1 (= )Hlp% B
=N e om Y VP 2 W W) T vNm e b
w2 Q4 n o, (=) p p
+T?_2(mfl)w T ml(M_J\h>’ )
- w%, 3)

where Q1 = u’lB_lul7 Q2 = u'lB_Qul, By =8B 'u; and By = u’QB_lul, w? = N1Ny/(Np). From
Lemma 1, we have

@ipn_ 1 g

P fil4+\2/ Wy

Bipn A Z1 f2 Zo
N +fz/flwl( i f@)
BQ DN f2

B A §22

D fil +\/2/f1W1 <1+ T) N
@pn

f2
S,
p f1 1+\/2/f1W1 <1+ T)
where W; = \/f;/2(Y;/fi = 1) fori=1,...,4,
Z A (2 p—2< 2 )
S(\[+ A)Jr(\/ﬁ)Jr ’ 1+ f4W47
1+\/2/f3W3.

Sorting S in descending order, it can be expressed as

S =50+ S1/2 + 51+ O3,

where
so=1+w?A?
2wA 2
S1/9=—=2Z1+ 4/ W,
1/2 N 1 a 4
z2 7z 2
51:71"’_72_77
p p p

and O/, is a term of] th order with respect to {p~/2 N_l/2 N2_1/27 m~1/2}, By Maclaurin expansion
of (14 /2/f3W3)~! up to the term with order of f;*,

2 2 2



which can be sorted in descending order as

T=1+Tis+Ti+O0s

Ty = \/ Wz— \/ W37

fs Wi - \ﬁfzfg N

Doing Maclaurin expansion of (1 + +/2/fiW;)~! in Q1/p up to the term with order of f; !, and sort
it in descending order, it is written as

with

Q
?1 =q1,0t+ Q1,12+ Q11+ Oz)2,

where

n
41,0 = 50
fi7

Q12 = % (51/2 - \/?80W1> )

n
Qi1 = A <S1 \/ = 7 51/2W1 + 7 50W1>
and using this expansion,

@1 1 o,
B = 14— . Os)o.
» Vaio 1+ 2010 (Q1,1/2 +Q11) 3¢, Qi1/2 ¢+ Os3)2

Using similar way, we can express Q2 /p as

Q2
» =q2,0+ Q2,12 + Q21 + Oz)2,

_(n f2
o= <f1> (1+f3)
2
Qo= () [{(1 ) st oot} -2y (14 2) o]
( ) [{( jzz)Sl‘f‘; 51/2T1/2+§: 80T1} \/z{<1+§:§)51/2+§ SoTl/g}W

+f1( @SOM]‘

In addition, it is also expanded that

B
7]15 =b1o+ Br1j2+ Bi1+ O3,
where
n
by o = —wA?,
0= g
n A f2 Z3 2
B = — — — A — wA W-
MR {(ﬁ? fs f) Vipes
n f2 Zs ., 2 [ Zy f2 Zs 27172
Bi1=— — = AW, + —oJA Wws .
bt fl{ fsf Tijz = fi (xf I3 f) "R !



Sorting in descending order, it can be described that

( f2 )sto< f2>(1+T1/2+51/2)+017
I3 f

where 5'1/2 = S1/2/50 and Tl/g ={(f2/f3)/ (L + f2/ f3)}T1 2, and so

\/<1+£T>S: \/so( jij) <1+ (T1/2+Sl/2)> + 0.

Substituting this expansion into By /p, and using Maclaurin expansion of (1 + /2/f;W7)~!

term with order of fl_l/Q, we have
B
?2 = By1/2+ Ba1 + O3,

where

7)o

1 - - 2 Z
Byy = % (1 + ﬁ) S0 {2(T1/2 +S1/2) — \/;WI} 7%

up to the

Substituting these expansions in (2) and (3), and coordinating it in order, (2) and (3) can be represented

as the sum of terms with descending order, respectively, which are

, 2(n+1 _
( )z+1fx+U ( )Uz ( 1)1-{-1\/( n (n ) Sow 1$+Ui,1/2+Ui,1+03/27

m+1)2(m+2)

n%(n+1)

Ve T m D)

50+ w Q212 + w Q21 + Oz,

where
1)ty
U; = A; - 7;B +-——=RB ,
1/2 Q1,12 1,1/2 NN, 2,1/2

nin+1)  wilz , N (—1)*1p
(m—|—1)(m—|—2) 8qf/02 1,1/2 N1N2

+ s [0 (%) -7

A=y [t e, U (22

(m+1)(m+2) 2/, 2\ N

Uig = AiQ11 — (_1)i+1

These expansions lead that

(71)i+1\/17)a:+ U;, + (*1)i+1ﬂ\i

R; =
vV

= (—1)i+1$ + Ri,l/g + Rz’,l + 03/2a
where

1 L -
Riq/2 = —5(_1)1+1$Q2,1/2 +U; 172

1~ 1~ ~ -
Ri,l = ( )Z—H ( Qz 1/2 *Q 1 ) - 5%,1/2@2,1/2 + Ui,l

32,1 - TiBl,l



with

~ n?(n+1 .
Uij/2 :Uivj/2/{\/(m+§)22rm1r?)sow }
= o n%(n+1) .

Qij/2 _Qmp/{(m+l)2(m+2) 0}~

()
2
Since R; /5 is represented as the linear combination of {Z1, Z2, Z3, W1, ..., Wa}, E[R;1/2] = 0. As a

result, we give the following theorem.

Theorem 1. Let

By Taylor expansion,

O(R;) = ((—1)"'z) + ¢((—1)"'2) [Ri;1 2 + Rin] — (1) 2)R? | 5 + Os)s.

- +gpip - el
T =1 — {(*1) B[R] ~ §E[R?,1/2]} ’

where E[R} ;] is E[R} ;] with replacing A* by A2 Fori=1,2,

Vo

Explicit formula of E[R; 1] and E[R? /2] can be derived, which are given in Appendix.
Based on the expansion, we set cutoff point ¢; as

P ((_1)1+1M < (_1)1“1’1@1

T € Hz) = (I)((—l)ZJrl.TJ) + 03/2.

—

o = Vo |~ { Bl - C i e -2

where z, is the « percentile point of the standard normal distribution. The cutoff point ¢;(co) makes
the desired misclassification probability to be a within the error O3/5. The other misclassification
probabilities can be described as

PW>ealzell) =E {@<(61®+U2@>},

A\/V o~
(co — ulz/J‘;Ul —|—u1>} 7

P(W<cQ|meH1):E[<I><

respectively. Note that
o)V B,
U +a1 20, Uy—iin 50,
E[Rm-/g] = Oj/z (i,7 =1,2).
From the expansion, we have

— n Np m—1u,B tu, Np
Uy — U2 = —

m—1 N1N2 n p N1N2
It will be found that

n n

m+1 m-—1

} — w2 (1 +w?A?) w2+ Oyp0.

o~ o~ n P
—w——A25%0
m

under the asymptotic framework Al. In addition,

nd 272y P
- —w “(1+w’A%) = 0.
m

Combining these results,

. 3 i m A2
111%1{1P(W > clx elly) = lg{lP(W <colxeell;) = (Zla _li\r{l \/;W> .



A Proof of Lemma 1

Proof of Lemma 1. Let T be a orthogonal matrix of order p which the first row is proportional to &',
and let B = TAT" and w; = T'v;, i = 1,2. Then B ~ Wy(n,I,), wi ~ Ny(Ae1,I,), wa ~ N,(0,1,)
and w1, we and B are independent;

S = (T8)(TAT)"}(Tw;) 2 Ae) B 'wy,

(
— (Twy) (TAT) " Y(Tw)) 2w, B w, 2 \/w!, B 2w, Z
2 1

T )
U = (Tv,) (TAT)"}(Tw;) 2 w| B 'wy,
V = (Tvy)(TAT)"%(Tv;) 2 w| B 2wy,

where e; denotes fundamental vector with 1 in i-th position, Z ~ N(0,1), and Z and {B,w;} are
independent. By using reflection matrix(Householder matrix) H between e; and (1//w)jw;)wy,

S 2 AVw|wi(He,)(HBH') ' {H(1/\/w,w,)w,} = Aw|(HBH') 'e;.
Besides,
U2 w|B 'w, = w\w, -e,(HBH') ‘e,
V 2w B %w; = wiw; - e,(HBH') 2e;.

Given wy, C = HBH' ~ W,(n,I,), so C and w; are independent. Partition
/
€11 Co w11
C = and w; = .
(021 Cz2> ! <w21>

S 2 Aw,C ey =

It can be expressed that

/ —1
(w11 — w5 Cay 21),
C11.2

where ¢11.9 = ¢11 — c’mC’;Qlch. In addition,

!
D _ w7 W1
U=ww, eC e, = ——,
C11.2
/
D I ~y—2 W W ;1
V =wijw; -e]C e = 2 (145 Cos €o1).
112

It is noted that = = 02_21/2021 ~ Np_1(0,1,), D =Cgoy ~W,_1(n,I,_1), and & and D are indepen-
dent, thus w11, wso1, &, D and cy1.0 are independent. Using these results, we have
A ’ —1/2 'p—1
(w1 —wHy D™ /*x) and V=——-(1+z'D x).

C11.2 Cl1.2

’
D Wi,Wi1

|iS]

S

Let G be orthogonal matrix of order p — 1 which the first row is proportional to =’ D~ '2. Given
and D, y = Gwa; ~ N,_1(0,I,_1), and it is found that w1, c11.2, , D and y are independent.
Partitioning y = (y1 y5)’, we have

p A _ p A —
S = {wi, — (Gwy) (GD™ V%)) = (w1, — Va'D txy),
C11-2 C11.2
2 /
p wi; + (Gw Gw p 1
i (G (Guwa) D L2 42y gy,
C11.2 C11-2
2 /
+ (Gw Gw _ 1 _
2 w1y ( 221)( 21)(1+a:’D 1m) 2 5 (1+a:’D lm)(wfl+yf+y’2y2).
Ci1.2 Cl1.2
These show the conclusion of the lemma. O



B Expectations
Firstly, we calculate E[R? 1/2)- 1t is that

2 ~ ~
E[R}, )] = E[Qg,uﬂ +E[U}, 5] — (-1 2E[Qa.1/2 - Uiy

Since 51/2 iR T1/2 A Wl,

4

=[5 st () st 2 (12 5)
21/20 = 7 f3) T VRN h
Noting that
272
Sf/z 4pr Zl + f W4 +22(")\[A Z1W4’
it holds that A2 A2 9
s ~ =
B[8T) ==+
It also holds that 9 9 ) 92
2 “ 2 “ 2 Z 4=
E[T1/2] sz[Wz] + f3E[W3] fo + f3
Thus,
5 f2> (4w2A2 2) <f2>2 2 A 2)2 (2
E[Q2,1/2] f ( f3 P + fa + f3 (14w ) fa

+f1 ( ;2) (1+w2A2)2] :

For evaluating E[U? 1 /2], note that

2 /2
%,1/2 f2 <S1/2 h S%Wf -2 fl5051/2W1>-

2 42 A2 2 2
G = [\ ) R
n? [2 2 (4 2) 9 }
== |+ =+ -+ )%,
il h fi
Moreover, the following equalities hold.

n’ f2 f2 1
E[B3 5] = =5 <1+> <1+ ) 1+ w?A2) -,
Bl = oo\ 5 )5 = U 7)) '

2
E[B}, ) = %{( +;§p>m2+ﬁw%4}.

Thus,

From independence,

E[By1/2 - Baja) = E[Bi1/2] - E[Ba12] =
E[Q1,1/2 - Ba1j2] = E[Q1,1/2] - E[Ba1 /2] =

)




In addition,

n2 [2wA2 2
ElQi1/2Bi1y2] = 7 [ E[Z}] + ﬁSOWAQE[WE]]
1

n2[/2 2 2
== |-+ wA2+w3A4}
T [(p fl) i

E[U?, 5] = AFE[QF 1 /5] — 21 A E[Q1,1/2 - Byl

2
p
t NN, E[B; a2l 7 ‘E[B} 12)-

On the other hand,

From independence,

ElQ2,1/2 - Uiy
~(7) (ve ) dmsi=n (7) (14 ) %5 e
+ QE <1 + ﬁ) (Jcl)SS%AiE[Wl] - 25 <1 + g) (ﬁ>3507iwA2E[W12]
n ( ?

3) K%QAQ +2> + 21wy ]A

:<f1) » ) h

3
n fo N3/2+(71)i+1/2 2A2 4 (n) ( fg) W2A2 3/2+( 1)i+1/2 , o
() (12 -4 1t a2y Naizrcnyz
<f1> ( f3> N D fi \ N I a+ ) N

Next, we calculate E[R;1]. It can be expressed that

E[Riyl] = (—]_)i+1x (2E[Qg’l/2] — ;E[Q2’1]> — %E[U¢71/2Q271/2] + E[ﬁl’l]

Since Sy /o LTy /o 1L W,

0= (1) s i 1+ ) swi]

Noting that F[S1] =0 and E[T1] = 2/fs,

ElQ21] = 7 Bf( +w?A?) + fG <1+§§)(1+w2A2)}

It is described that

E[Ui1] = AE[Q11] — (—1)"! (m i(?)jmll 23 3/2 E[Q3 1 5]
(=1)"'p n i1 (PP _
+ %]\/&NQ E[B271] — TiE[BLl] + (m — 1)(m n 1) [(1) +1 (]\72 _ ]V1> —w 2] ,

where the following equalities hold.
BlQui] = - |71+
MR LA 7
E[Bs1] =0,

2n
E[Bl’l] = 2wA2

10
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